20_{25}^{24}

- Bioreagents, Biochemicals \& Speciality Fine Chemicals
- Animal Cell Culture
- Nanopowders \& Carbon Nanotubes (CNTs)
- Dehydrated Culture Media Products
- BioLit DNA \& Protein Tools and Kits
- Laboratory Accessories
endless Process of science..

Quality Policy

mesuaromut cermincinow semaces wr. LTo
SISCO RESEARCH LABORATORIES PVT. LTD. SISCO RESEARCHLABORATORIES PVT, LTD

We, at Sisco Research Laboratories Pvt. Ltd., shall always strive to provide the best quality Laboratory Reagents and Biochemicals, Microbiological Culture Media, Supplements \& Kits, and BioLit ${ }^{\text {™ }}$ range of protein and DNA tools required for teaching, research, analysis and manufacture of high quality products for better quality of life.

We shall always maintain and upgrade our products and services to meet the highest International Quality Standards.

It is our constant endeavor to achieve maximum customer satisfaction by implementing an efficient customer relationship management system to meet the requirements and expectations of our valued customers.

To achieve our goals, we have instituted a quality management system conforming to ISO 9001:2015, ISO 17025:2017, CE Certification for our Microbiology range of products and an FDA Approval for select range of Pharmacopoeial products; and are firmly committed to continually improving its effectiveness through technological advancement, enhancement of skills, cultivation of a suitable work environment and dedicated team work

0 RR

Dear Scientists, Researchers and Trade Partners

It is my honor to introduce you to our latest range of products, meticulously designed to meet the exacting standards of modern research.
Our expansive catalog of over 9000 items encompasses chemicals, biochemicals, culture media, DNA tools, and laboratory accessories, all such offerings that provide you with unparalleled resources to propel your scientific endeavors forward.

It is our 50th year of existing, having modest beginnings since 1974. In this spam of time, we have recognized the pivotal role that superiorquality research chemicals play in your investigations. It is our solemn pledge to continue to furnish you with the tools requisite for transformative discoveries and breakthroughs of profound consequence.
The Global Laboratory Chemicals Market is also due to an exciting growth era, expected to surge to USD 5.37 billion by 2030, a remarkable CAGR of 5.2%. We intend to remain steadfast in support of your evolving needs with innovative solutions and cutting-edge technologies.
As you navigate through the catalogue, I extend my sincere wishes for a productive and enriching exploration. May our products serve as catalysts for your scholarly pursuits.
With the utmost respect and anticipation of our continued collaboration,

S. K. Agarwal

Chairman
1st April 2024

.8

Quality Control

Quality control facilities in our manufacturing plants

- Anaerobic Culture Jars
- Analytical Balances
- Antibiotic Zone Reader
- Atomic Absorption Spectrophotometer (AAS)
- Autoclaves
- Bacteriological Incubator
- B.O.D. Incubator
- Calorimeter
- Conductivity Meters
- Colony Counter
- Cyclomixer
- Electrophoresis Equipments
- FTIR Spectrophotometer
- Gas Chromatograph (w/Head space)
- Gel-Strength Indicator
- High Speed Centrifuges
- HPLC Instrument
- Hot Air Ovens
- IR Spectrophotometer
- Karl-Fischer Apparatus
- Kjedhal's Apparatus
- Lab Furnace
- Laminar Air Flow Bench
- Melting Point Apparatus
- Micro-Ovens
- Microscopes
- pH Meters
- Polarograph
- Potentiometric Titrator
- Refractive Index Apparatus
- Rotary Flask Shaker
- TLC Equipments
- Transilluminator
- Turbidometer
- UV Cabinet
- UV Spectrophotometers
- Viscometer
- other support instruments It is the precise instrumental, chemical, biochemical and microbiological analysis which
 its products shall always meet the highest international standards.

Contents

International Business

 $\cdot 0$You will find the SRL brand in 6 different regions around the world and in more than 100 countries. Our main motive has always been to provide our products to customers in different corners of the world, wherever there is an industry or an institution that is working on improving the quality of our lives through research, innovation, quality control and manufacturing. Having more than 40 authorized agents and distributors and more than 100 trade partners, SRL is always on the lookout to make brighter and long lasting partnerships with companies that have a similar goal in mind, i.e. to be the best in their business. Before we appoint trade partners, we make it a point to conduct systematic checks to ensure that our partners are in a position to offer better sales support and post-sales services to their valued customers who choose an SRL product. We welcome new partnerships for growth and prosperity.

Our global reach

Eurasia

- Austria
- Azerbaijan
- Belgium
- Bulgaria
- Cyprus
- Czech Republic
- Denmark
- Finland
- France
- Germany
- Greece
- Hungary
- Ireland
- Italy
- Malta
- Moldova
- Netherlands
- Norway
- Poland
- Portugal
- Russia
- Spain
- Sweden
- Switzerland
- Turkey
- Turkmenistan
- United Kingdom
- Uzbekistan

Middle East

- Bahrain
- Egypt
- Jordan
- Kuwait
- Lebanon
- Morocco
- Oman
- Qatar
- Saudi Arabia
- Tunisia
- United Arab Emirates

Central Asia

- Bangladesh
- Bhutan
- Kazakhstan
- Maldives
- Nepal
- Srilanka
- Tajikstan
- Zambia
- Zimbabwe

Africa

- Benin
- Botswana
- Chad
- Cameroon
- Djibouti
- Ethiopia
- Ghana
- Kenya
- Madagascar
- Malawi
- Mali
- Mauritius
- Mozambique
- Namibia
- Nigeria
- Rwanda
- Seychelles
- South Africa
- Tanzania
- Uganda

North \& South
 America
 East Asia \& Pacific

- Argentina
- Brazil
- Canada
- Chile
- Costa Rica
- Ecuador
- Guatemala
- Jamaica
- Mexico
- Peru
- Trinidad \& Tobago
- Venezuela
- United States of America
- Australia
- Brunei
- Burma
- Cambodia
- China
- Fiji
- Indonesia
- Japan
- Laos
- Malaysia
- Mongolia
- New Zealand
- Philippines
- Singapore
- South Korea
- Thailand
- Vietnam

Depots

Hyderabad

123/124, Murthy Building, Prashanti Nagar, Kukatpally, Hyderabad 500072.
Telangana, India.
Telefax: +91-40-2307 0166
e-mail: hyderabad@srlchem.com

Chennai

Plot No.: 8B,
Self Help Industrial Estate,
Keeelkattalai, Kovilambakkam,
Chennai 600 117,
Tamil Nadu, India.
Telephone: +91-9962005587 /
+91-44-22682215
Email: chennai@srlchem.com

Delhi

69/6A, (Part A)
Rama Road Industrial Area,
Najafgarh Road,
New Delhi 110 015, India.
Tele Fax: +91-11-45914530
Email: delhi@srlchem.com

Mumbai

Raj Rajeshwari Logistic Park, Gala No. 3-8, Bldg.No. B-4, Behind Mini Punjab Grill,
Vehale, Bhatala,
Bhiwandi 421 302,
Maharashtra, India.
Telephone: +91-9322931625 /
9619147231
Email: bhiwandi@srlchem.com

Kolkata

46, N.S.C. Bose Road,
P.O. Malancha Mahinagar,

District: South 24 Paraganas,
Before Malancha Bazaar
Kolkata 700 145,
West Bengal, India.
Telephone: +91-8334800445
Email: kolkata@srlchem.com

Administrative Office:
608-B, Satellite Gazebo, Near Solitaire Corporate Park, Andheri Ghatkopar Link Road, Chakala, Andheri (East), Mumbai 400 099. India Tel.: +91-22-4268 5800
E-mail: marketing@srlchem.com

Website: www.srlchem.com

Label Explanation

for Laboratory \& Research Chemicals

for Dehydrated Culture Media, Ingredients, Supplements \& Kits

for BioLit ${ }^{\text {TM }}$ DNA \& Protein Tools

Website

.0

Consistently we follow in all aspects of our products and services continues even more comprehensively on our website. Some of the most revolutionary information we offer,

1. Interactive Product Pages

- Technical product specifications \& print-ready Product Data sheets
- (containing technical \& application for each product)
- LIVE Stock Checks
- Check the stocks of your desired product packing in real time at each of our
- Manufacturing Sites
- Distribution Depots
- Avail prices in more than 17 Global Currencies
- Access to H.S. Codes \& MSDS of all products

2. Quick Links for viewing and downloads

- Product search by keywords, CAS, application, grade
- Certificate of Analysis (COA)
- Material Safety Data Sheet (MSDS)
- Latest Catalog Download
- Technical Product Brochures
- Picture gallery for product packaging

3. Online Transactions

- Get quotations
- Place Orders
- Ask us a Technical Query
- Apply for a position with us

4. Locate your nearest SRL Stockists \& Distributor

- Indian Stockist network provided City-wise \& State-wise
- Global Distributors provided country-wise

5. Multi-Lingual Display

- Read content in more than 80 Global languages of your \} preference

6. News and Information

- Follow our developments and road shows
- Path-breaking research developments in the Bioscience industry
- Latest SRL product offerings and highlights

7. Regulatory Certifications, now available online.

Click and Download our

- ISO 9001-2015 Quality Management Certificate
- FDA (Food \& Drug Association) Certificate
- CE (European Conformity) Certificate
- GMP (Good Manufacturing Practices) Certificate
www.srlchem.com is ideal for researchers, scientists and
customers who are always looking for new molecules,
product information and availabilities at the click of a button!

Order your

Trademark \& Grades of SRL

No part of this book may be reproduced by any mechanical, photographic or electronic process or in the form of a phonographic audio/audio visual recording, nor may it be stored in a retrieval system, transmitted or otherwise copied for public or private use, without written permission from the publisher.
Trademarks owned by Sisco Research Laboratories Pvt Ltd

Registered Trademarks

SRL ${ }^{\oplus}$
 Bio-Indenta ${ }^{\circledR}$
 BioLit ${ }^{\oplus}$
 SafeDye ${ }^{\text {TM }}$
 Seralite ${ }^{\circledR}$ Serabeads ${ }^{\circledR}$
 ChroMed
 Seralose
 FluroBronze ${ }^{\circledR}$ ExiPlus ${ }^{\circledR}$

"All trademarks mentioned in the catalogue other than those mentioned here, are not property/owned by Sisco Research Laboratories Pvt. Ltd. (SRL)"

Grades of Purity

SRL products adhere to highest grades of quality. However, we understand that our multiple grades may tend to overlap and disorient users. The explanations below give an approximate representation of the SRL grades and most closely suited applications of our products.

AAS

ACS/AR/Reagent Grade
Dried/Specially Dried

Cell Culture

Electronic Grade
ExiPlus ${ }^{\text {w" }}$

Extrapure
GC-HS
High Purity/Ultrapure

HPCL/UV
Microbiology/Bacteriology
Microscopy
Molecular Biology
NMR Spectroscopy

OAS

Pure/Technical/Practical/Grade
OAS/CHR/Reference
Standard Grade
Scintillation
Tissue Culture

Products for Atomic Absorption Spectrocopy specially suited for AAS instrumentation.
Complying with the specifications of American Chemical Society (ACS) reference manuals/ANALAR specifications, for critical laboratory analysis and quality production applications.
Containing highly reduced water content for 'anhydrous' reactions, synthesis and assay studies. Low endotoxin products specially suited for cell culture DNA, RNA, Genetics applications.
Very low ionic impurities and suited for electronics and high-end applications.
Complying with the compendial specifications of USP (United States Pharmacopoeia) or BP (British Pharmacopoeia) or Ph.Eur (European Pharmacopoeia) or all. For production, quality control and laboratory applications.
Purified grade suited for general laboratory or synthesis.
For Gas Chromatography assay. Suited for use in GC instrumentation with Head Space.
Having very high levels of assay/purity (typically 3 N (99.9\%), 4 N (99.99%), 5 N (99.999%) or more) as compared to similar products in their class/category. Specially synthesized and purified for critical applications with low elemental impurities.
For High Pressure Liquid Chromatography or Ultra Violet Spectroscopy. Suited for use in HPLC or UV instrumentation.
For microbiological application and bacteriological studies.
Typically dyes, stains and indicators (powders and solutions) used for microscopy and histological applications.
For molecular biology, cell culture, tissue culture, genetics, and all such applications, tested 'nondetected' for DNAse, RNAse and Protease.
Solvents for NMR studies suited to most advanced NMR instrumentation.
Organic Analytical Standard for reference studies.
General, commercial grade for synthesis and routine applications.
Organic Analytical Standard/Chromatographically Harmonized Reagent to be used as in reference studies as an analytically pure standard.
Ideal for scintillation studies.
Ideal for plant tissue culture application \& studied.

For Pharmaceutical Grade Labelled Products

IP

BP
USP-NF
Indian Pharmacopoeia.
British Pharmacopoeia.
United States Pharmacopoeia \& The National Formulary.

For Dehydrated Culture Media

Production Capabilities

We invite you to tour and audit our plant and discuss any queries with our technical team

Our Bulk Manufacturing facilities follow cutting edge bio-techniques for producing many of our specialized products in bulk volumes. Multi-purpose process vessels and unit operations ensure consistent high quality batch-after-batch in a timely manner.

Our production facilities include -

- SS \& Glass-lined Reactors with distillation columns
- All Glass Reactors
- SS Centrifuges
- SS Nutsche Filters
- SS Sparkler Filters
- SS Pulverizers, Sifters and Blenders
- Vacuum Tray Dryers
- SS Rotocone Vacuum Dryers, etc.

To support these unit operations, our utilities include -

- Chilled Brine Plant
- Cooling Water and Chilled Water Plant
- Boiler and Oil Heating System
- High Pressure Vacuum System
- Micron-filter Air Purification System
- DM Water Plant, Nitrogen Plant, Scrubbers, etc.

Contact info@srlchem.com for more info.
Keeping strong the quality promise.

Bulk Manufacturing \& Custom Synthesis (BMCS) Business

Developing bulk specialty chemicals and customized new molecules in compliance with your in-house specifications supported by complete tech-packs.

Today, SRL is not only known for its high quality laboratory chemicals, but it is also been recognized as an important supplier of various fine chemicals as raw materials. Our company is manufacturing reagents and powders in bulk scale to meet the critical requirements of several industries that we serve. As a supplier of key technologies, we want to grow along with our customers in the pharmaceutical and biopharmaceutical industries. This expansion of capacity and modernization is our response to the growing global demand for and high requirements placed on quality and product safety for final pharmaceutical and biopharmaceutical formulations. SRL has an extensive product range and supports its customers in all phases of the drug manufacturing process, from research, quality control and commercial production, through to providing service in concrete safety and regulatory issues.
SRL's Bulk Manufacturing and Custom Synthesis (BMCS) business has broadened its production at our Taloja MIDC site to include existing and new bulk fine chemicals which are being manufactured at commercial scales. Production of the raw materials have been on since 2011 at this site and complements the existing offering of highly regulated active and non-active pharmaceutical ingredients manufactured here. Most of the products manufactured at the Taloja MIDC bulk plant facility meet and exceed IP, BP, USP \& Ph. Eur regulation; follow Current Good Manufacturing Practices (cGMPs) for biopharmaceutical production; and comply with International Consortium for Innovation and Quality in Pharmaceutical Development.

Target Audience:

- Active Pharmaceutical Ingredients (API) (Human \& Veterinary)
- Antibodies
- Biosimilars
- Biocides, Insecticides \& Crop Sciences
- Bio-Fermentation (Upstream \& Downstream)
- Blood Plasma
- Diagnostic Kit
- Excipients \& Intermediates (Organic \& Inorganic)
- Formulations (New \& Generic)
- Home Care \& Sanitation
- Hormones
- Injectables
- Neutraceuticals
- Peptides
- Personal Care Products
- Protein Purification
- Vaccines (Human \& Veterinary)

Reaction Capabilities:

- Acid Chloride Preparations
- Aldol \& Crossed Aldol Reaction
- Assymetric Reduction
- Bromination
- Caroxylation
- Cryogenic Reaction
- Cyclization
- Cyclo Addition $(4+2,4+3)$ Reaction
- Dehydration
- Esterification
- Formylation
- Friedel - Craft
- Grignard Reaction
- Heck Reaction
- Hydrochloride preparation
- Iodination
- Ion exchange Reactions
- Jones Oxidation
- Lithiation Chemistry
- Mignonac Reaction
- Mitosonobu Esterification
- Nitration
- Nitrosation
- Oximination
- Pachmann Condensation
- Perkin Reaction
- Sandmeyer Reaction
- Sonogashira Coupling
- Sulfonation
- Suzuki Coupling
- Swern Oxidation
- Williamson's Ether Synthesis
- Writing-Homer Reaction

- 2

We offer:

The BMCS division at the MIDC Taloja facility include difficult-to-source materials available from research to commercial-scale volumes. The program takes advantage of SRL's purification, re-crystallization and distillation competencies to manufacture a short list of catalog products in the commercial product segment.
You will find our ExiPlus grade of products that are complying to the compendia specifications of Indian Pharmacopoeia (IP), British Pharmacopoeia (BP), United States Pharmacopoeia (USP), National Formulatory (NF) and European Pharmacopoeia (Ph. Eur). We are well versed in providing these products for production requirements. Alternately, our highly researched ACS and AR grades are anyway much better and stringent in their impurity limits and are also being used as raw materials in various industries. We also are highly skilled in providing additional value through quality documentation packages, readily-available inventory and multiple batches to support customer qualification activities

Tech-packs:

SRL not only provides the raw materials through its BMCS program, but we also cater to the strict documentation requirements which our customers ask. Since the last decade, India has become a hub for the regulated as well as the non-regulated pharmaceutical markets, and to serve them we offer complete vendor questionnaire documents with all the technical, commercial and ethical information that we can provide.

* Document support:

- Aflatoxin free statement
- Allergen free certificate
- Brief description of manufacturing locations, capabilities
- Certificate of analysis (COA) / Method of analysis (MOA)
- Company Organogram
- Dioxan free certificate
- GC, HPLC, NMR graphs
- Gluten free certificate
- Kosher \& Halal certificate
- Latex free statement
- List of equipment and instrumentation
- Material safety data sheet (MSDS)
- Melamine free certificate
- Metal catalyst statement
- Microbial contamination certificate
- Quality management certificate (QMS)
- Residual solvent \& impurity profiling
- Route of synthesis (ROS) / Process flow chart
- Stability data
- TSE/BSE Declaration
- Vendor Questionnaire (VQ)

Post Sales Support:

We at SRL take special care to value our customers with utmost seriousness post-sales. Customers requiring additional services of more document support, preshipment sampling for repeat orders, production planning for scale-up and addressing non-conformity issues are some of the areas which we address. In times of product rejections due to storage or any other issues, we provide a complete CAPA (Corrective And Preventive Action) analysis document and such documents are recorded for future product improvements.
Today we provide a helping hand to the world's top 100 pharmaceutical companies to file successful ANDA (Abbreviated New Drug Application) filings in both regulated and non-regulated markets. We are ready to partner with you, so do get in touch with us on marketing@srlchem.com

[^0] Not all documents are available for all BMCS products.

ExiPlus Range

（Products confirming to the reagent specifications of USP，BP \＆Ph．EUR）

Exiplus range of products has been carefully designed to meet the requirements of scientists working in the manufacture of drugs，active pharmaceutical ingredients，bio－pharmaceutical \＆neutraceutical products in semi－bulk or bulk scale．ExiPlus products are the safest and most reliable products to meet the needs of students，researchers working in quality control， research and development laboratories in premier institutions all over the world．
Offering more than 300 ExiPlus World－class reagents and biochemicals，that are manufactured in compliance with the reagent specifications of various pharmacopeia such as United States Pharmacopeia（USP），British Pharmacopeia（BP），European Pharmacopeia（Ph．Eur）．
Take the ExiPlus advantage，why loose a good chance：
－ExiPlus for use as an excipient
－ExiPlus for use as an active pharmaceutical ingredient
－ExiPlus for use in biopharmaceutical production
－ExiPlus for use in neutraceutical production
－ExiPlus for use in critical research and development
The quality of our raw materials and our extensive documentation support enable you to do your work quickly and cost－effectively．With ExiPlus SRL provides its customers with a high level of safety in QC，R\＆D and production activities．We provide you with all necessary technical documents such as Product Data Sheets，CoA， MoA and other documentary support can be made available upon request．

ExiPlus will simplify your life so let＇s make life simple．

ACS Grade Reagents

（Products confirming to the reagent specifications set by the American Chemical Society Committee）

Our ACS grade of reagents and chemicals are manufactured and tested to meet the specifications set by the American Chemical Society（ACS）Committee on Analytical Reagents．The specifications listed in this catalog are based on the ACS Reagent Chemicals Tenth Edition．
SRL offers more than 200 reagents and chemicals complying with ACS grade reagent specifications of very high quality for use in laboratory for both quality control in academics and industries．They are superior grade reagents that are contaminant－free that are being preferred world－wide because of the stringent specifications set by the American Chemical Society （ACS）committee．Many customers of SRL want to purchase an ACS grade product instead of an AR grade product，however both grades of products are considered to be superior for routine analytical testing applications．
Some common Application of ACS grade products：
－ACS reagents for industrial cleaning purposes
－ACS reagents for routine quality control
－ACS reagents for chemical process development
－ACS reagents for commercial scale－up of manufacture
－ACS reagents for analytical applications wherein UV absorption is not critical
－ACS reagents for the metal \＆steel industry
We provide you with all necessary technical documents such as Product Data Sheets，CoA，MoA and other documentary support can be made available upon request．We provide many products in various pack sizes and also at affordable prices so that students and scientists can benefit from the ultrapure purity of the ACS grade reagent manufactured，tested and packed for the most stress－free and reliable experience．
Come and try our ACS grade，because it＇s worth it！ New Introductions

Part A - General Laboratory Chemicals \& Solvents

Ammonium Hexafluorophosphate
Azocarmine G (C.I. 50085) for histology
tert-Butyl Acetate (TBAc)
Butyl Propionate
Calcium Phosphate Dibasic Anhydrous
Calcium Phosphate Dibasic Dihydrate
Ceramide ex. Chicken Egg
Chloroform-d (w/o TMS, Stab w/ Ag) for NMR spectroscopy
Chloroform-d (with 0.03\% TMS, Stab w/ Ag) for NMR spectroscopy
Chloroform-d (with 1\% TMS, Stab w/ Ag) for NMR spectroscopy
Cupric Sulphate Anhydrous
Cupric Sulphate Anhydrous ExiPlus
Cuprous Chloride ACS
L-Cystine ExiPlus
Diiodomethane (Stabilized with copper wire)
Diisopropanolamine (DIPOA)
Dimethyl Sulphoxide (DMSO) ULSI Semiconductor Grade
Propylene Glycol Monomethyl Ether 2Acetate (MPA)

Dodecane
Eosin Blue (C.I. No. 45400)
Ferric Ammonium Oxalate Trihydrate
Ferric Chloride Anhydrous ExiPlus
Ferric Phosphate
Guanidine Hydrochloride (GHC) ExiPlus
lodophor
Isooctane Fuel Grade for HPLC \& UV
Spectroscopy
Isopropanol (IPA) Dried
L-Leucine extrapure, ExiPlus
D-Maltose Monohydrate ExiPlus
Melamine
Methyl Isopropyl Ketone (MIPK)
N-Methyl-2-Pyrrolidone (NMP) VLSI
Semiconductor Grade
Mixed Cresol
b-Naphthol
Oleic Acid
Paraffin Wax w/ Ceresin Blocks
Perchloric Acid ACS, for Diamond Industry
Polyethylene Glycol 10000 (PEG 10000)

Part B - Bioreagents, Biochemicals \& Specialty Fine Chemicals

ACES Buffer
L-Alaninamide Hydrochloride
N-Allylthiourea
2-Amino-2-Methyl-1,3-Propanediol (AMPD Buffer)
Azomethine H Monosodium Salt
Bis(Dibenzylideneacetone) Palladium
1,1'-Bis(Diphenylphosphino)Ferrocene Palladium(II) Dichloride
1,1'-Bis(Diphenylphosphino) Ferrocene-Palladium(II) DichlorideDichloromethane Complex
Bis(Tricyclohexylphosphine) Palladium(II) Dichloride
Bis(Triphenylphosphine) Dichloropalladium (II)
Cacotheline Monohydrate
Cadaverin Dihydrochloride
Caffeic Acid
Cefotetan Disodium Salt
Cesium lodide
Cesium Nitrate
a-Chymotrypsin ex. Porcine

Cyanuric Chloride
Cyanogen Bromide Solution (5.0M in Acetonitrile)
1,10-Decanediol
Dextran ex. Leuconostoc Sp. - Tech 70 (65-75)
Dichloro[1,1'-bis(di-tButylphosphino)Ferrocene]Palladium(II)
Dichloro(1,2-bis(Diphenylphosphino) Ethane)

Palladium (II)
Dichloro(1,3bis(Diphenylphosphino)Propane) Palladium(II)
Dichloro[1,4-bis(Diphenylphosphino) Butane]Palladium(II)
Dichloro-[1,3-bis(Diisopropylphenyl)-2-Imidazolidinylidene]-(3Chloropyridyl) Palladium(II)
1,4-Dichloro-2-Butyne
Dichlorobis(Triphenylphosphine)Palladium(II)
Diethyl bis(hydroxymethyl)malonate
Diethyl Chlorophosphate

Polyvinylpyrrolidone K25 (Povidone, PVP K-25)
Polyvinylpyrrolidone K90 (Povidone, PVP K-90)
Salicylic Acid ACS, ExiPlus
Sodium Benzoate Exiplus
Sodium Citrate Dibasic Sesquihydrate
Sodium Hydroxide Flakes
Sodium Hypochlorite Solution
Sodium Percarbonate
Sodium Peroxide ACS
Sodium Phosphate Dibasic Dihydrate ExiPlus
Tetrabutylammonium Fluoride (TBAF) 1M Soln. in THF
Tetraheptyl Ammonium Bromide (THAB) for HPLC
Tetramethylammonium Hydroxide 25% aqueous solution, VLSI
Semiconductor Grade
Tiron Monohydrate
Triethyl Citrate
Water Distilled
Zinc Metal Granules, 3-8 mm
Zinc Metal Granules, $10-12 \mathrm{~mm}$

O,O-Diethyl Dithiophosphate
1,5-Difluoro-2,4-Dinitrobenzene (DFDNB)
N,N-Dimethyl-L-Phenylalanine
2-Ethylaniline
Furfural
Z-Glycyl-LProline-4-Nitroanilide (Z-Gly-Pro-4-Nitroanilide)
2-Heptanone (Methyl-n-Amyl Ketone, MAK)
Hexaammine Cobalt (III) Chloride
Hygromycin B (HGR Solution)
Kanamycin Acid Sulphate (KS)
Kanamycin Acid Sulphate (KS) for tissue culture
N-Lauroylsarcosine Sodium Salt (Sarkosyl Sodium Solution)
Linoleic Acid (Free Acid)
Meldrum's Acid
MES19: ICP Calibration Standard for Petroleum Mix 1
MES20: ICP Calibration Standard for EPA 6020

MES21: ICP 21 Calibration Standard
MES22: ICP 19 Calibration Standard
MES23: ICP 29 Calibration Standard
MES24: ICP Environmental Calibration
Standard A
MES25: ICP Calibration Standard for EPA 6010
MES26: ICP Water Pollution Standard 1
MES27: ICP Common \& Transition
Elements Standard ($1000 \mu \mathrm{~g} / \mathrm{mL}$)
L-Methionine Sulfoximine (MSX)
4-Methoxy-2,3,6-Trimethyl
Benzaldehyde
Mucin ex. Porcine Stomach, Type III

Niobium Chloride ultrapure
2-Nitrocyclohexanone
3,4-Dinitrophenol
Palmitic Acid
Palmitoyl Chloride
Pectinase ex. Aspergillus Niger
Phenyl Isothiocyanate (PITC) for HPLC \& Sequencing
Phleomycin (PLM) Solution
Phytosphingosine Hydrochloride
Poly-L-Lysine Hydrobromide (PLL HBr)
Poly-D-Lysine Hydrobromide (PDL HBr)

Poly-e-L-Lysine Hydrochloride (PLL HCI)
Protamine Sulfate for molecular biology
Pyrazinamide
Silicon Metal powder
Simazine
Spectinomycin Dihydrochloride
Pentahydrate
Styrene Monomer (Stab w/tBC)
N -Succinimidyl Ferrocenecarboxylate
Syringic Acid
p -Toluidine specially purified
2,2,2-Trichloroethanol
Tris(Dibenzylideneacetone)Dipalladium-
Chloroform Adduct

Part B1 - Animal Cell Culture

ACES Buffer
Blasticidin SHCl Solution in HEPES Buffer
Cephotaxime Sodium Salt (CFT)
L-Leucine for cell culture, 99\%, Endotoxin (BET) 1EU/ml
Phleomycin (PLM) ex. Streptomyces verticillus

Part C - Nanopowders \& Carbon Nanotubes

Formamidinium Bromide
Formamidinium lodide Methylammonium Bromide
Methylammonium lodide

Part D - Dehydrated Culture Media

Actidione Agar Base w/o Actidione Aleksandrow Agar
Ampicillin Dextrin Agar Base
Ampicillin Dextrin Broth Base
Ampicillin Dextrin Selective
Supplement
Anaerobic Blood Agar Base
Andrade Lactose Peptone Water
Andrade Peptone Water
Andrade Peptone Water BioVeg
Aspergillus Differentiation
Medium Base
Bacteroides Bile Esculin (BBE) Agar Base
Bile Salts Technical for bacteriology
Brain Heart CC Agar
Bryant and Burkey Agar
Bryant and Burkey Medium
CAL Agar (Cellobiose Arginine Lysine Agar)

Charcoal Agar w/ Niacin
Clostridium Difficile Agar Base
Dichloran Glycerol Medium Base
Dichloran Medium Base w/ Rose
Bengal
Doyle's Antibiotic Supplement
Doyle's Enrichment Broth Base
Doyle's Enrichment Broth Base BioVeg
IMViC Test Kit (Pre-Weighed
Media) w/ Reagents
Kanamycin Esculin Azide Broth
Base
KG Agar Base
Peptone BioVeg Sterile for bacteriology (Gamma Irradiated)
R2A Agar BioVeg
Tryptone Agar BioVeg
Tryptose Cycloserine Dextrose
Agar Base

Part E - BioLit (DNA \& Protein Tools)
Taq Mix (2X) (PCR Master Mix (2X)) (w/
o Tracking Dye)
QuickRxn BamHI (20U/mcl)
QuickRxn Kpnl $(20 \mathrm{U} / \mathrm{mcl})$

QuickRxn Ncol (20U/mcl)
QuickRxn Ndel (20U/mcl)
QuickRxn Notl (20U/mcl)
QuickRxn Pstl (20U/mcl)

QuickRxn Sall
QuickRxn Smal (20U/mcl)
QuickRxn Xhol (20u/mcl)
Onion Root Tip Mitosis Kit (Teaching)
BioLit Plasmid DNA Extraction
Miniprep Kit (Research)

Part L - Laboratory Accessories

PAP Pen Mini (Hydrophobic Barrier Pen, 1mm, Blue)
PAP Pen Regular (Hydrophobic Barrier Pen, 3mm, Blue)

Part A

General

Laboratory Chemicals \& Solvents

Amino Acids

- L-Alanine
- L-Arginine
- L-Asparagine Monohydrate
- L-Cysteine
- L-Cystine
- L-Glutamic Acid
- L-Lysine (free base) Anhydrous
- L-Proline
- L-Serine
- L-Threonine
- L-Tryptophan
- L-Tyrosine
- L-Valine

Antibiotics

- Ampicillin Sodium Salt (AMP-Na)
- Blasticidin S Hydrochloride
- Carbenicillin Disodium Salt
- Chloramphenicol (CFP)
- B-Cyclodextrin, base (BCD)
- Cycloheximide
- Erythromycin
- G-418 Sulphate (Geneticin)
- Gentamicin Sulphate (GM)
- Hygromycin B (HGR)
- Kanamycin Monosulphate (KM)
- Streptomycin Sulphate
- Tetracycline Hydrochloride (TC)

Buffers

- Glycine
- HEPES Buffer
- HEPES Sodium Salt
- Imidazole
- MES Hydrate Buffer
- PIPES Buffer
- Sodium Acetate Trihydrate

Carbohydrates \& Derivatives

- Agar powder
- D-Fructose
- Gelrite Gellan Gum
- Lactose Monohydrate
- D-Maltose
- D-Mannose
- D-Ribose
- D-Sorbitol Powder
- Sucrose
- D-Trehalose Dihydrate

Dyes, Stains \& Indicators

- Acridine Orange hemi (Zinc Chloride) Salt
- Alcian Blue
- Alizarin Red S
- DAPI Dihydrochloride (4,6-Diamidino-2 Phenylindole Dihydrochloride)
- New Methylene Blue N Zinc Chloride Double Salt
- Toluidine Blue O
- Trypan Blue
- Thiazolyl Blue Tetrazolium Bromide (MTT)

Enzyme Substrates

- 5-Bromo-4-Chloro-3-Indolyl-b-D Galactopyranoside (X-Gal)
- 5-Bromo-4-Chloro-3-Indolyl-B-D Glucuronide Cyclohexylammonium Salt
- 5-Bromo-4-Chloro-3-Indolyl-b-D Glucopyranoside (X-Glu, X-Glc)
- 5-Bromo-4-Chloro-3-Indolyl Phosphate Disodium Salt (BCIP)
- Nitro Blue Tetrazolium Chloride (Nitro BT) (NBT)

Inorganic Reagents

- Ammonium Chloride
- Ammonium Sulphate
- Calcium Chloride Dihydrate
- Ferrous Sulphate
- Magnesium Chloride Anhydrous
- Magnesium Chloride Hexahydrate
- Magnesium Sulphate Heptahydrate
- Potassium Acetate
- Potassium Chloride
- Potassium Dihydrogen Orthophosphate
- Potassium Phosphate Dibasic Anhydrous
- Potassium Sulphate
- Silver Nitrate
- Sodium Bicarbonate
- Sodium Chloride
- Sodium Phosphate Monobasic

Anhydrous

- Zinc Chloride
- Zinc Sulphate Heptahydrate

Organic Reagents

- Adenine Sulphate
- Citric Acid Anhydrous
- Ferric Citrate Trihydrate
- Glutathione Oxidized (GSSG)
- Glutathione Reduced (GSH)
- Lactic Acid
- Polysorbate 20 (Tween 20)
- Putrescine Dihydryochloride
- Urea

Plant Growth Regulators

- Abscisic Acid
- DICAMBA (3,6-Dichloro-2 Methoxybenzoic Acid; 3,6-Dichloro-o Anisic Acid)
- 2,4-Dichlorophenoxyacetic Acid (2,4-D)
- EDTA Disodium Salt Dihydrate
- Gibberellic Acid (Ga3)
- Indole-3-Acetic Acid (IAA)
- Indole-3-Butyric Acid (IBA)
- Kinetin
- Naphthalene-1-Acetic Acid extrapure
- Thidiazuron (TDZ)
- Zeatin mixed Isomers

Proteins \& Enzymes

- Albumin Bovine ($\mathrm{pH} 6.5-7.5$) fraction V for tissue culture (Bovine Serum
Albumin, BSA), 98\%
- r-Albumin Human - Type LL ex. Yeast, 99\% (Low Lipid)
- r-Albumin Human - Type Standard ACF ex. Plants, 97\%
(Animal Component Free)
- r-Albumin Human - Type EG ex. Yeast, 99\% (Excipient use)
- r-Albumin Human - Type LE ex. Yeast, 98\% (Low Endotoxin)
- r-CRP ex. E.Coli (Recombinant C-reactive protein)
- r-Insulin ex. Human
- r-Trypsin $1 \times$ Solution with EDTA in Phosphate Buffer for cell culture (AOF), 150U/ml
- r-Trypsin - Type Standard ACF ex. Porcine, 800U/mg

Vitamins

- L-Ascorbic Acid (Vitamin C)
- D-Biotin (Vitamin H)
- Folic Acid (Vitamin M)
- Inositol (Vitamin B8)
- Thiamine Hydrochloride (Vitamin B1 hydrochloride)
- DL-a-Tocopherol Acetate
(Vitamin E Acetate)
- Vitamin B12 (Cyanocobalamin)

Catalogue 2024-25

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 95237 \\ & {[60-35-5]} \end{aligned}$	Acetamide pure, 98\%	500 Gms	11.19	$\begin{gathered} 12972 \\ {[666-52-4]} \end{gathered}$	Acetone-d6 for NMR spectroscopy, 99.5 Atom \%D	10 ml	142.13
$\begin{aligned} & 81658 \\ & {[103-84-4]} \end{aligned}$	Acetanilide extrapure, 99\%	500 Gms	12.50	$\begin{gathered} 75185 \\ {[666-52-4]} \end{gathered}$	Acetone-d6 (with 1\% TMS) for NMR spectroscopy, 99.5 Atom \%D	10 ml	148.05
$\begin{aligned} & 68175 \\ & {[103-84-4]} \end{aligned}$	Acetanilide ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP	500 Gms	17.77	$\begin{aligned} & 49967 \\ & {[75-05-8]} \end{aligned}$	Acetonitrile (ACN) extrapure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	$\begin{array}{r} 8.82 \\ 39.22 \\ 361.64 \end{array}$
$\begin{aligned} & 18439 \\ & {[64-19-7]} \end{aligned}$	Acetic Acid 1N Aq. Solution	1000 ml	8.03	$\begin{aligned} & 84578 \\ & {[75-05-8]} \end{aligned}$	Acetonitrile (ACN) extrapure AR, 99.5\%		9.21
$\begin{aligned} & 72690 \\ & {[64-19-7]} \end{aligned}$	Acetic Acid 2.5M Aq. Solution	1000 ml	8.55			2500 ml	41.19 10.79
$\begin{aligned} & 90868 \\ & {[64-19-7]} \end{aligned}$	Acetic Acid Glacial extrapure, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	$\begin{array}{r} 3.16 \\ 14.48 \\ 118.44 \end{array}$	$\begin{aligned} & 82745 \\ & {[75-05-8]} \end{aligned}$	Acetonitrile (ACN) extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP, Ph.Eur	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{aligned} & 10.79 \\ & 43.03 \end{aligned}$
$\begin{aligned} & 85801 \\ & {[64-19-7]} \end{aligned}$	Acetic Acid Glacial ACS, 99.9\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 3.42 \\ 16.45 \end{array}$	$\begin{aligned} & 90135 \\ & {[75-05-8]} \end{aligned}$	Acetonitrile (ACN) GC-HS, 99.9\%	$\begin{aligned} & 250 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{array}{r} 9.08 \\ 13.69 \end{array}$
$\begin{aligned} & 93602 \\ & {[64-19-7]} \end{aligned}$	Acetic Acid Glacial ACS, ExiPlus, Multi-Compendial, 99.9\%	$500 \mathrm{ml}$	3.82			1000 ml	25.66
	meets compendial specs of USP, BP, Ph.Eur			$\begin{aligned} & 58209 \\ & {[75-05-8]} \end{aligned}$	Acetonitrile (ACN) for HPLC \& UV Spectroscopy, 99.9\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{aligned} & 12.11 \\ & 49.09 \end{aligned}$
$\begin{aligned} & 73215 \\ & {[64-19-7]} \end{aligned}$	Acetic Acid Dried, 99.9\%, water 0.05\%	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{aligned} & 5.00 \\ & 9.74 \end{aligned}$	$\begin{aligned} & 24899 \\ & {[75-05-8]} \end{aligned}$	Acetonitrile (ACN) Gradient grade for HPLC, 99.9\%	1000 ml 2500 ml	$\begin{array}{r} 25.66 \\ 55.80 \end{array}$
$\begin{aligned} & 32532 \\ & {[64-19-7]} \end{aligned}$	Acetic Acid for HPLC, 99.9\%	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	6.84 12.90	$\begin{aligned} & 62006 \\ & {[75-05-8]} \end{aligned}$	Acetonitrile (ACN) for molecular biology, 99.9\%	$\begin{aligned} & 250 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{array}{r} 9.48 \\ 14.21 \end{array}$
		2500 ml	27.64	$\begin{aligned} & 62076 \\ & {[75-05-8]} \end{aligned}$	Acetonitrile (ACN) for DNA synthesis, 99.9\%	1000 ml 2500 ml	$\begin{aligned} & 29.35 \\ & 69.22 \end{aligned}$
$\begin{aligned} & 59788 \\ & {[64-19-7]} \end{aligned}$	Acetic Acid Glacial for molecular biology, 99.9\%	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	6.84 21.06	$\begin{aligned} & 26483 \text { \& } \\ & {[2206-26-0]} \end{aligned}$	Acetonitrile-d3 for NMR spectroscopy, 99.8 Atom \%D	10 Gms	171.08
$\begin{aligned} & 31566 \\ & {[67-64-1]} \end{aligned}$	Acetone pure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 3.55 \\ 14.48 \end{array}$	67418	Aceto Orcein	100 ml	5.79
		25 Ltr	131.60	$\begin{aligned} & 15873 \\ & {[98-86-2]} \end{aligned}$	Acetophenone extrapure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 9.08 \\ 39.87 \end{array}$
66951	Acetone extrapure, 99\%	500 ml	3.75				
		2500 ml	15.13	$\begin{aligned} & 22506 \\ & {[98-86-2]} \end{aligned}$	Acetophenone extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{aligned} & 11.19 \\ & 46.98 \end{aligned}$
15168	Acetone ACS, 99.5\%	500 ml	4.08				
[67-64-1]		2500 ml	16.45	$\begin{aligned} & 96169 \\ & {[123-54-6]} \end{aligned}$	Acetylacetone extrapure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{aligned} & 11.84 \\ & 52.64 \end{aligned}$
27648	Acetone ACS, ExiPlus,	500 ml	4.47				
[67-64-1]	Multi-Compendial, 99.5\% meets compendial specs of USP, BP	2500 ml	17.77	$\begin{aligned} & 24212 \\ & {[123-54-6]} \end{aligned}$	Acetylacetone extrapure AR, 99.5\%	$\begin{gathered} 250 \mathrm{ml} \\ 1000 \mathrm{ml} \end{gathered}$	$\begin{array}{r} 7.90 \\ 23.03 \end{array}$
$\begin{aligned} & 35007 \\ & {[67-64-1]} \end{aligned}$	Acetone Dried, 99\%, water 0.005\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 5.00 \\ 19.74 \end{array}$	$\begin{aligned} & 39522 \\ & {[3244-88-0]} \end{aligned}$	Acid Fuchsin (C.I. No. 42685, Acid Violet 19, Fuchsin S, Fuchsin Acid, Rubine S)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 8.55 \\ 28.43 \\ 142.13 \end{array}$
89140	Acetone GC-HS, 99.9\%	250 ml	5.92				
[67-64-1]		$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{array}{r} 9.21 \\ 13.82 \end{array}$	$\begin{aligned} & 50190 \\ & {[123334-10-1]} \end{aligned}$	Acid Fuchsin Calcium Salt (Acid] Rubin), 60\% (C.I. No. 42685) (Acid Magenta, Rubin S)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 47.51 \\ 173.98 \end{array}$
11340	Acetone for HPLC \& UV	500 ml	6.58				
	Spectroscopy, 99.9\%	1000 ml	10.53	$\begin{gathered} 22794 \\ {[79-06-1]} \end{gathered}$	Acrylamide extrapure, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 5.53 \\ 46.06 \\ 197.40 \end{array}$
		2500 ml	20.40				
12312	Acetone electronic grade, 99.9\%	1000 ml	11.19				
[67-64-1]		2500 ml	25.00	$\underset{[79-06-1]}{15657}$	Acrylamide 3x cryst. extrapure AR, 99.9\%	100 Gms	9.21
$\begin{aligned} & 55245 \\ & {[67-64-1]} \end{aligned}$	Acetone VLSI Semiconductor Grade, 99.5\%	1000 ml 2500 ml	78.96 177.66			500 Gms 1 Kg	28.95 50.01
$\begin{aligned} & 27498 \\ & {[67-64-1]} \end{aligned}$	Acetone for molecular biology, 99.8\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 7.24 \\ 28.95 \end{array}$			5 Kg	171.08

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 23700 \\ & {[7784-13-6]} \end{aligned}$	Aluminium Chloride Hexahydrate extrapure AR, 99\%	500 Gms	10.53	$\begin{aligned} & 11820 \\ & {[569-58-4]} \end{aligned}$	Aluminon extrapure (Aurintricarboxylic Acid Ammonium	10 Gms 25 Gms	$\begin{array}{r} 5.53 \\ 12.63 \end{array}$
$\begin{aligned} & 35543 \\ & {[21645-51-2]} \end{aligned}$	Aluminium Hydroxide Gel extrapure AR, ExiPlus, Multi-Compendial meets compendial specs of IP	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 5.53 \\ 47.38 \end{array}$		Salt, ATA, Ammonium Aurintricarboxylate)		
				55745 [915-67-3]	Amaranth (Acid Red 27) (C.I. 16185), 85-95\%	25 Gms	2.37 8.29
$\begin{aligned} & 12283 \\ & {[555-31-7]} \end{aligned}$	Aluminium Isopropoxide (powder) extrapure, 98\% (AIP, Aluminum Isopropylate, Aluminum Triisopropoxide, 2-Propanol Aluminium Salt)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 11.19 \\ 107.91 \end{array}$			1 Kg	72.38
				$\begin{aligned} & 57432 \\ & {[83-07-8]} \end{aligned}$	4-Aminoantipyrine (Ampyrone) extrapure AR, 99\% (4-Amino-2,3-Dimethyl-1-Phenyl-3-Pyra	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 15.66 \\ & 56.59 \end{aligned}$
$\begin{aligned} & 57395 \\ & {[7429-90-5]} \end{aligned}$	Aluminium Metal powder, 99\%, -325 mesh	500 Gms	9.74		zolin-5-One)	250 Gms	8
				82623	6-Aminocaproic Acid extrapure,	25 Gms	15.66
$\begin{aligned} & 92309 \\ & {[7784-27-2]} \end{aligned}$	Aluminium Nitrate Nonahydrate extrapure, 98\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	5.00 42.11	[60-32-2]	99\% (6-Aminohexanoic Acid)	100 Gms 500 Gms	$\begin{array}{r} 49.74 \\ 241.62 \end{array}$
$\begin{aligned} & 19302 \\ & \text { [7784-27-2] } \end{aligned}$	Aluminium Nitrate Nonahydrate ACS, 98.5\%	500 Gms	10.53	$\begin{aligned} & 85996 \\ & {[60-32-2]} \end{aligned}$	Aminocaproic Acid IP (6-Aminohexanoic Acid,	$1 \mathrm{Kg}$	421.12 1974.00
$\begin{aligned} & 58095 \\ & {[24304-00-5]} \end{aligned}$	Aluminium Nitride (AIN) pure, 98\%, ~ 635 mesh	5 Gms	39.48		6-Aminocaproic Acid IP)		
		$\begin{gathered} 50 \mathrm{Gms} \\ 250 \mathrm{Gms} \end{gathered}$	53.69 252.67	$\begin{aligned} & 99093 \\ & {[60-32-2]} \end{aligned}$	Aminocaproic Acid BP, 98.5-101\% (6-Aminohexanoic Acid, 6-Aminocaproic Acid BP)	1 Kg 5 Kg	$\begin{array}{r} 421.12 \\ 1974.00 \end{array}$
$\begin{aligned} & 66289 \\ & {[1344-28-1]} \end{aligned}$	Aluminium Oxide Activated (Acidic) (Alumina)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 7.11 \\ 67.77 \\ 325.32 \end{array}$	$\begin{aligned} & 50445 \\ & {[60-32-2]} \end{aligned}$	Aminocaproic Acid USP, 98.5-101\% (6-Aminohexanoic Acid, 6-Aminocaproic Acid USP)	$\begin{aligned} & 1 \mathrm{Kg} \\ & 5 \mathrm{Kg} \end{aligned}$	$\begin{array}{r} 473.76 \\ 2105.60 \end{array}$
$\begin{aligned} & 71461 \\ & {[1344-28-1]} \end{aligned}$	Aluminium Oxide Activated (Acidic) (Alumina) ExiPlus, Multi-Compendial meets compendial specs of USP, BP	500 Gms 5 Kg	7.37 71.85	$\begin{aligned} & 78719 \\ & {[1336-21-6]} \end{aligned}$	Ammonia Solution extrapure AR, 25\% (Ammonium Hydroxide 25\%)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	$\begin{array}{r} 2.76 \\ 8.42 \\ 78.96 \end{array}$
				14388	Ammonia Solution extrapure AR,	500 ml	3.29
$\begin{aligned} & 34321 \\ & {[1344-28-1]} \end{aligned}$	Aluminium Oxide Activated (Basic) (Alumina)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	5.66 52.77	[1336-21-6]	30\% (Ammonium Hydroxide 30\%)	$\begin{array}{r} 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	9.34 85.54
61492	Aluminium Oxide Activated (Basic)	500 Gms	248.99 6.05	$\begin{aligned} & 44683 \\ & {[631-61-8]} \end{aligned}$	Ammonium Acetate extrapure AR, 98\%	500 Gms	4.08
[1344-28-1]	(Alumina) ExiPlus, Multi-Compendial meets compendial specs of BP, Ph.Eur	5 Kg	54.61	$\begin{aligned} & 62778 \\ & {[631-61-8]} \end{aligned}$	Ammonium Acetate ACS, ExiPlus, Multi-Compendial, 98\% meets compendial specs of USP, BP,	500 Gms	4.47
$\begin{aligned} & 39882 \\ & {[1344-28-1]} \end{aligned}$	Aluminium Oxide activated (Neutral) (Alumina)	500 Gms	5.92		Ph.Eur		
		$\begin{array}{r} 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 55.67 \\ 265.44 \end{array}$	$\begin{aligned} & 78844 \\ & {[631-61-8]} \end{aligned}$	Ammonium Acetate for HPLC, 99\%	500 Gms	8.29
$\begin{aligned} & 62690 \\ & {[1344-28-1]} \end{aligned}$	Aluminium Oxide G (Neutral) (Alumina G)	500 Gms 5 Kg	7.90 74.62	$\begin{aligned} & 37829 \\ & {[631-61-8]} \end{aligned}$	Ammonium Acetate for molecular biology, 98\%	100 Gms 500 Gms	$\begin{array}{r} 4.08 \\ 11.45 \end{array}$
$\begin{aligned} & 34641 \\ & \text { [7784-24-9] } \end{aligned}$	Aluminium Potassium Sulphate Dodecahydrate extrapure, 99\% (Potash Alum, Potassium Aluminium Sulphate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 2.5 \mathrm{Kg} \end{array}$	3.16 13.42	$\begin{aligned} & 26757 \\ & {[1066-33-7]} \end{aligned}$	Ammonium Bicarbonate extrapure AR (Ammonium Hydrogen Carbonate), 99\%	500 Gms	3.68 35.53
			13.42	38586	Ammonium Dichromate pure, 98\%	500 Gms	11.58
42889	Aluminium Potassium Sulphate	500 Gms	3.68	[7789-09-5]	(Ammonium Bichromate)	5 Kg	111.86
[7784-24-9]	Dodecahydrate ACS, 99.5\% (Potash Alum, Potassium Aluminium Sulphate)	2.5 Kg	17.37	$\begin{aligned} & 67077 \\ & \text { [7789-09-5] } \end{aligned}$	Ammonium Dichromate extrapure AR, ACS, 99.5\% (Ammonium Bichromate)	500 Gms 5 Kg	12.63 121.73
42550 [7784-24-9]	Aluminium Potassium Sulphate Dodecahydrate ACS, ExiPlus, Multi-Compendial, 99.5\% (Potash Alum, Potassium Aluminium Sulphate) meets compendial specs of USP, BP	$\begin{array}{r} 500 \mathrm{Gms} \\ 2.5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 4.28 \\ 21.06 \end{array}$	$\begin{aligned} & 13664 \\ & {[1341-49-7]} \end{aligned}$	Ammonium Bifluoride pure, 98\%	500 Gms 5 Kg	8.55 72.38
				$\begin{aligned} & 95407 \\ & {[31886-41-6]} \end{aligned}$	Ammonium Bismuth Citrate extrapure AR, 43-46\% Bi	100 Gms 500 Gms	9.21 36.85
$\begin{aligned} & 53016 \\ & \text { [7784-31-8] } \end{aligned}$	Aluminium Sulphate Octadecahydrate extrapure, 98\%	500 Gms	2.90	$\begin{aligned} & 46813 \\ & \text { [12124-97-9] } \end{aligned}$	Ammonium Bromide pure, 99\%	500 Gms	$\begin{array}{r} 14.48 \\ 138.18 \end{array}$

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 40553 \\ & \text { [16774-21-3] } \end{aligned}$	Ammonium Ceric Nitrate extrapure AR, 99\% (Ammonium Cerium (IV) Nitrate, Ceric	$\begin{aligned} & 100 \mathrm{Gms} \\ & 250 \mathrm{Gms} \end{aligned}$	14.48 31.98	$\begin{aligned} & 27858 \\ & {[540-69-2]} \end{aligned}$	Ammonium Formate extrapure AR, 98\% (Formic Acid Ammonium Salt)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	4.87 42.11
$\begin{aligned} & 42077 \\ & {[16774-21-3]} \end{aligned}$	Ammonium Ceric Nitrate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% (Ammonium Cerium (IV) Nitrate, Ceric Ammonium Nitrate) meets compendial specs of BP	100 Gms 250 Gms	19.21 39.87	$\begin{aligned} & 50504 \\ & {[540-69-2]} \end{aligned}$	Ammonium Formate extrapure AR, ExiPlus, Multi-Compendial, 98\% (Formic Acid Ammonium Salt) meets compendial specs of BP, Ph.Eur	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	5.40 46.06
				$\begin{aligned} & 14969 \\ & {[16941-11-0]} \end{aligned}$	Ammonium Hexafluorophosphate extrapure, 95\% (Ammonium Hexafluorophosphate V ,	$\begin{gathered} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{gathered}$	$\begin{aligned} & 23.69 \\ & 78.96 \end{aligned}$
$\begin{aligned} & 42725 \\ & \text { [16774-21-3] } \end{aligned}$	Ammonium Ceric Nitrate 0.05N Solution	500 ml	4.87		Ammonium Phosphorus Hexafluoride)	100 Gms	97
				51775	Ammonium lodide extrapure, 99\%	50 Gms	26.32
23757 [10378-47-9]	Ammonium Ceric Sulphate Dihydrate ACS, 99\% (Ammonium Cerium (IV) Sulphate Dihydrate)	100 Gms 500 Gms	21.19 58.96	[12027-06-4]		100 Gms 250 Gms	48.69 111.86
				23185	Ammonium Metavanadate	100 Gms	11.84
$\begin{aligned} & 25103 \\ & {[12125-02-9]} \end{aligned}$	Ammonium Chloride ACS, 99.5\%		3.82	[7803-55-6]	extrapure, 98\%	500 Gms	43.43
		$\begin{array}{r} 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 35.53 \\ 170.82 \end{array}$	15068 [7803-55-6]	Ammonium Metavanadate extrapure AR, 99\%	100 Gms 500 Gms	$\begin{aligned} & 13.82 \\ & 46.06 \end{aligned}$
$\begin{aligned} & 96452 \\ & {[12125-02-9]} \end{aligned}$	Ammonium Chloride ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP	500 Gms	4.47	$\begin{aligned} & 94314 \\ & {[7803-55-6]} \end{aligned}$	Ammonium Metavanadate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\%	100 Gms 500 Gms	15.27 48.69
$\begin{aligned} & 16992 \\ & \text { [12125-02-9] } \end{aligned}$	Ammonium Chloride for molecular biology, 99.5%	500 Gms	8.69		meets compendial specs of USP	100 Gm	1.
$\begin{aligned} & 35309 \\ & {[12125-02-9]} \end{aligned}$	Ammonium Chloride for tissue culture, 99.5%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 4.21 \\ 39.48 \end{array}$	[12054-85-2]	Tetrahydrate pure, 98\% (Ammonium Heptamolybdate)	250 Gms 500 Gms	51.98 81.59
$\begin{aligned} & 11505 \\ & {[3458-72-8]} \end{aligned}$	Ammonium Citrate Tribasic (Triammonium Hydrogen Citrate) extrapure AR, 98.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	9.87 92.12	$\begin{aligned} & 10299 \\ & {[12054-85-2]} \end{aligned}$	Ammonium Molybdate Tetrahydrate extrapure AR, 99\% (Ammonium Heptamolybdate)	100 Gms 250 Gms	23.69 56.59
$\begin{aligned} & 35442 \\ & {[1185-57-5]} \end{aligned}$	Ammonium Ferric Citrate pure, 16.5-22.5\% (Ammonium Iron (III) Citrate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	7.90 75.67	82615 [12054-85-2]	Ammonium Molybdate Tetrahydrate extrapure AR, ACS,	500 Gms 100 Gms 250 Gms	90.80 25.00 57.90
$\begin{aligned} & 63571 \\ & {[7783-83-7]} \end{aligned}$	Ammonium Ferric Sulphate Dodecahydrate extrapure, 98\% (Ammonium Iron (III) Sulphate Dodecahydrate, Ferric Alum)	500 Gms	4.08		ExiPlus, Multi-Compendial, 99\% (Ammonium Heptamolybdate) meets compendial specs of USP, BP, Ph.Eur	500 Gms	94.75
$\begin{aligned} & 29168 \\ & {[7783-83-7]} \end{aligned}$	Ammonium Ferric Sulphate Dodecahydrate extrapure AR, ACS, 99\% (Ammonium Iron (III) Sulphate Dodecahydrate, Ferric Alum)	500 Gms	4.87	$\begin{aligned} & 32910 \\ & {[27546-07-2]} \end{aligned}$	Ammonium Dimolybdate extrapure, 99\%, 56.5% Mo	100 Gms 250 Gms	$\begin{aligned} & 26.32 \\ & 65.80 \end{aligned}$
				85044 [7785-20-8]	Ammonium Nickel Sulphate Hexahydrate pure, 98\%	500 Gms	21.06
89944 [7783-85-9]	Ammonium Ferrous Sulphate Hexahydrate extrapure, 98\% (Diammonium Iron (II) Sulphate Hexahydrate)	$500 \mathrm{Gms}$ $1 \mathrm{Kg}$	2.90 5.13		(Diammonium Nickel (II) Sulphate Hexahydrate)		
		5 Kg	24.21	$\begin{aligned} & 55517 \\ & {[7785-20-8]} \end{aligned}$	Ammonium Nickel Sulphate Hexahydrate extrapure AR, 98\%	500 Gms	31.58
$\begin{aligned} & 61732 \\ & {[7783-85-9]} \end{aligned}$	Ammonium Ferrous Sulphate Hexahydrate extrapure AR, ACS, 99\% (Diammonium Iron (II) Sulphate Hexahydrate)	$500 \text { Gms }$	4.34 39.87		(di-Ammonium nickel (II) sulphate hexahydrate)		
				$\begin{aligned} & 85084 \\ & {[6009-70-7]} \end{aligned}$	Ammonium Oxalate Monohydrate extrapure, 98\%	500 Gms	4.61
11605 [13826-83-0]	Ammonium Fluoroborate pure, 98\% (Ammonium fluoroborate, Ammonium tetrafluoroborate)	100 Gms	6.58	[6009-70-7]	extrapure AR, 99\%	500 Gms	00
		500 Gms	18.42	$\begin{aligned} & 53621 \\ & {[6009-70-7]} \end{aligned}$	Ammonium Oxalate Monohydrate extrapure AR, ACS, ExiPlus,	500 Gms	5.79
$\begin{aligned} & 49813 \\ & {[12125-01-8]} \end{aligned}$	Ammonium Fluoride pure, 98\%	500 Gms	12.50		Multi-Compendial, 99\% meets compendial specs of USP, BP,		
$\begin{aligned} & 38431 \\ & {[12125-01-8]} \end{aligned}$	Ammonium Fluoride ACS, 98\%	500 Gms	14.48	82381	Ph.Eur	500 Gms	5.00
$\begin{aligned} & 25142 \\ & {[540-69-2]} \end{aligned}$	Ammonium Formate pure, 98\% (Formic Acid Ammonium Salt)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 4.54 \\ 39.48 \end{array}$		pure, 98\% (Ammonium Peroxodisulphate)	5 Kg	45.67

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 84569 \\ & {[7727-54-0]} \end{aligned}$	Ammonium Persulphate (APS) extrapure AR, 99\% (Ammonium Peroxodisulphate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	5.53 46.98	$\begin{aligned} & 82126 \\ & \text { [7783-20-2] } \end{aligned}$	Ammonium Sulphate for molecular biology, 99.5\% (Ammonium Sulfate)	250 Gms 500 Gms	9.48 18.56
$\begin{aligned} & 29534 \\ & {[7727-54-0]} \end{aligned}$	Ammonium Persulphate (APS) extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% (Ammonium Peroxodisulphate) meets compendial specs of BP, Ph.Eur	500 Gms 5 Kg	$\begin{array}{r} 5.92 \\ 57.25 \end{array}$	$\begin{aligned} & 95876 \\ & {[3164-29-2]} \end{aligned}$	Ammonium Tartrate Dibasic pure, 99\%	500 Gms	31.58
				$\begin{aligned} & 56357 \\ & {[3164-29-2]} \end{aligned}$	Ammonium Tartrate Dibasic extrapure AR, 99\%	250 Gms 500 Gms	$\begin{aligned} & 22.37 \\ & 39.48 \end{aligned}$
$\begin{aligned} & 28575 \text { \& } \\ & {[7727-54-0]} \end{aligned}$	Ammonium Persulphate (APS) for electrophoresis, 99% (Ammonium Peroxodisulphate)	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	$\begin{aligned} & 2.90 \\ & 8.95 \end{aligned}$	$\begin{aligned} & 81016 \\ & \text { [1762-95-4] } \end{aligned}$	Ammonium Thiocyanate ACS, 99\%	500 Gms	9.08
$\begin{aligned} & 65553 \text { \& } \\ & {[7727-54-0]} \end{aligned}$	Ammonium Persulphate (APS) for molecular biology, 99\% (Ammonium peroxodisulphate)	25 Gms 100 Gms 500 Gms	3.16 7.90 25.66	$\begin{aligned} & 70158 \\ & {[1762-95-4]} \end{aligned}$	Ammonium Thiocyanate ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP, BP, Ph.Eur	500 Gms	9.48
30468 [7783-28-0]	Ammonium Phosphate Dibasic extrapure ACS, 98\% (Diammonium Hydrogen Orthophosphate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 6.84 \\ 65.80 \end{array}$	$\begin{aligned} & 67550 \\ & {[123-92-2]} \end{aligned}$	Amyl Acetate pure, 98\% (Isoamyl Acetate)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 7.37 \\ 25.27 \end{array}$
				28605	n-Amyl Alcohol (1-Pentanol) pure,	500 ml	11.19
65984 [7783-28-0]	Ammonium Phosphate Dibasic extrapure AR, ACS, ExiPlus, Multi-Compendial, 98\% (Diammonium Hydrogen Orthophosphate) meets compendial specs of USP, Ph.Eur	500 Gms 5 Kg	$\begin{array}{r} 7.76 \\ 75.01 \end{array}$	[71-41-0]		2500 ml	50.01
				$\begin{aligned} & 31906 \\ & {[71-41-0]} \end{aligned}$	n-Amyl Alcohol (1-Pentanol) extrapure AR, ACS, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{aligned} & 14.48 \\ & 56.59 \end{aligned}$
				83344 [28983-56-4]	Aniline Blue (water soluble) (Methyl Blue) (Acid Blue 93)	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 9.21 \\ 31.98 \end{array}$
$\begin{aligned} & 61563 \\ & {[7722-76-1]} \end{aligned}$	Ammonium Phosphate Monobasic extrapure AR, 99\% (Ammonium Dihydrogen Orthophosphate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 6.58 \\ 63.83 \end{array}$				
				$\begin{aligned} & 22285 \\ & {[62-53-3]} \end{aligned}$	Aniline extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 7.37 \\ 33.69 \end{array}$
58611 [7722-76-1]	Ammonium Phosphate Monobasic extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% (Ammonium Dihydrogen Orthophosphate) meets compendial specs of USP	500 Gms 5 Kg	$\begin{array}{r} 7.50 \\ 72.38 \end{array}$	$\begin{aligned} & 46774 \\ & {[142-04-1]} \end{aligned}$	Aniline Hydrochloride pure, 99\%	250 Gms 500 Gms	9.34 16.58
				$\begin{aligned} & 69980 ~ \checkmark \\ & {[542-16-5]} \end{aligned}$	Aniline Sulphate pure, 98\% (Aminobenzene, Phenylamine, Benzenamine)	250 Gms 500 Gms	$\begin{aligned} & 10.26 \\ & 19.08 \end{aligned}$
$\begin{aligned} & 24678 \\ & {[7722-76-1]} \end{aligned}$	Ammonium Phosphate Monobasic for HPLC, 99\%	500 Gms	15.79	$\begin{aligned} & 36381 \\ & {[104-94-9]} \end{aligned}$	p-Anisidine pure, 98\% (4-Aminoanisole, 4-Methoxyaniline)	$\begin{aligned} & 100 \mathrm{Gms} \\ & 500 \mathrm{Gms} \end{aligned}$	$\begin{array}{r} 3.29 \\ 11.84 \end{array}$
$\begin{aligned} & 96648 \\ & {[5108-96-3]} \end{aligned}$	Ammonium Pyrrolidine Dithiocarbamate (APDC) extrapure, 98.5\% (1-Pyrrolidinecarbodithioic Acid Ammonium Salt, Ammonium pyrrolidinecarbodithioate, PDC)	10 Gms 25 Gms	$\begin{aligned} & 30.27 \\ & 67.12 \end{aligned}$	$\begin{aligned} & 41010 \\ & {[120-12-7]} \end{aligned}$	Anthracene extrapure, 99\%	25 Gms 100 Gms 500 Gms	11.05 34.74 162.53
				$\begin{aligned} & 61273 \\ & {[120-12-7]} \end{aligned}$	Anthracene (High Purity) scintillation grade, 99.7\% (Anthracene extrapure scintillation grade)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 250 \mathrm{Gms} \end{array}$	$\begin{array}{r} 20.40 \\ 76.33 \\ 187.00 \end{array}$
50012 [7773-06-0]	Ammonium Sulphamate (High Purity) ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP, Ph.Eur	100 Gms 500 Gms	$\begin{array}{r} 6.58 \\ 31.72 \end{array}$		(Anthracene extrapure scintillation grade)	100 Gms 250 Gms	$\begin{array}{r} 76.33 \\ 187.00 \end{array}$
				$\begin{aligned} & 78531 \\ & {[84-65-1]} \end{aligned}$	Anthraquinone pure, 98\% (9,10-Anthraquinone, Anthradione)	$\begin{array}{r} 25 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 4.47 \\ 13.16 \end{array}$
$\begin{aligned} & 62419 \\ & {[7773-06-0]} \end{aligned}$	Ammonium Sulphamate (High Purity) extrapure AR, 99.5\%	100 Gms 500 Gms	$\begin{array}{r} 8.55 \\ 39.09 \end{array}$	97400	Antimony AAS Standard Solution in 2N HCI (Traceable to NIST)	$\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned}$	$\begin{aligned} & 21.06 \\ & 34.22 \end{aligned}$
$\begin{aligned} & 88064 \\ & \text { [7783-20-2] } \end{aligned}$	Ammonium Sulphate ACS, 99.5\% (Ammonium Sulfate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 3.29 \\ 25.66 \\ 126.73 \end{array}$	$\begin{aligned} & 66105 \\ & {[7440-36-0]} \end{aligned}$	Antimony Metal Lumps, 98\%	100 Gms	11.84
				$\begin{aligned} & 12042 \\ & {[7440-36-0]} \end{aligned}$	Antimony Metal Powder extrapure, 99\%, -200 mesh	250 Gms	31.45
$\begin{aligned} & 88004 \\ & \text { [7783-20-2] } \end{aligned}$	Ammonium Sulphate for tissue culture, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 3.42 \\ 25.66 \end{array}$	67577 [7440-36-0]	Antimony Metal Ingots ultrapure, 99.999%	10 Gms 25 Gms	$\begin{array}{r} 73.30 \\ 150.68 \end{array}$
$\begin{aligned} & 26339 \\ & {[7783-20-2]} \end{aligned}$	Ammonium Sulphate ACS, ExiPlus, Multi-Compendial, 99.5\% (Ammonium Sulfate) meets compendial specs of USP, IP ,BP, Ph.	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$		$\begin{aligned} & 47448 \\ & {[28300-74-5]} \end{aligned}$	Antimony Potassium Tartrate Hemihydrate pure, 98\%	250 Gms 500 Gms	$\begin{aligned} & 16.32 \\ & 30.40 \end{aligned}$
				$\begin{aligned} & 83896 \\ & {[28300-74-5]} \end{aligned}$	Antimony Potassium Tartrate Hemihydrate extrapure AR, 99.5\%	100 Gms 500 Gms	8.16 33.43

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
60274 [10025-91-9]	Antimony Trichloride pure, 98\%	100 Gms 500 Gms	9.87 44.74	$\begin{aligned} & 84025 \\ & {[56-84-8]} \end{aligned}$	L-Aspartic Acid extrapure CHR, 99\%	100 Gms 500 Gms	5.26 19.74
$\begin{aligned} & 63365 \\ & {[10025-91-9]} \end{aligned}$	Antimony Trichloride extrapure AR, 99\%	100 Gms 500 Gms	10.79 46.72			1 Kg 5 Kg	31.58 144.76
$\begin{aligned} & 97628 \\ & {[10025-91-9]} \end{aligned}$	Antimony Trichloride extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP, BP, Ph.Eur	100 Gms 500 Gms	13.95 50.01	$\begin{aligned} & 81245 \\ & {[56-84-8]} \end{aligned}$	L-Aspartic Acid ExiPlus, Multi-Compendial, 99\% meets compendial specs of BP	$\begin{array}{r} 100 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	6.05 35.53
				$\begin{aligned} & 78087 \\ & {[2465-27-2]} \end{aligned}$	Auramine \mathbf{O} (C.I. No. 41000, Basic Yellow 2)	25 Gms	2.24
$\begin{aligned} & 37157 \\ & {[1309-64-4]} \end{aligned}$	Antimony Trioxide extrapure, 99\%	100 Gms 500 Gms	9.21 32.90			100 Gms 500 Gms	5.79 21.32
$\begin{aligned} & 98063 \\ & {[1309-64-4]} \end{aligned}$	Antimony Trioxide extrapure AR, 99\%	100 Gms 500 Gms	10.53 36.85	$\begin{aligned} & 41574 \\ & \text { [25641-18-3] } \end{aligned}$	Azocarmine G (C.I. 50085) for histology (Acid Red 101, Rosinduline)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	7.90 22.37
$\begin{aligned} & 82829 \\ & {[1345-04-6]} \end{aligned}$	Antimony Trisulfide pure, 98\%	500 Gms	48.30	$\begin{aligned} & 16411 \\ & {[67-52-7]} \end{aligned}$	Barbituric Acid extrapure, 99\% (2,4,6-Trihydroxypyrimidine,	$\begin{aligned} & 100 \mathrm{Gms} \\ & 500 \mathrm{Gms} \end{aligned}$	$\begin{aligned} & 10.53 \\ & 39.48 \end{aligned}$
24766 [68425-36-5]	Arachis Oil pure (Peanut Oil)	$\begin{aligned} & 250 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{aligned} & 16.84 \\ & 26.85 \end{aligned}$	$\begin{aligned} & 21154 \\ & {[67-52-7]} \end{aligned}$	Barbituric Acid extrapure AR, 99\% (2,4,6-Trihydroxypyrimidine, Malonylurea)	25 Gms	4.47
$\begin{aligned} & 66637 \\ & {[74-79-3]} \end{aligned}$	L-Arginine (free base) extrapure CHR, 99\%	100 Gms	7.90			100 G	17.77
		$\begin{aligned} & 1 \mathrm{Kg} \\ & 5 \mathrm{Kg} \end{aligned}$	$\begin{array}{r} 65.80 \\ 309.26 \end{array}$	$\begin{aligned} & 10013 \\ & {[543-80-6]} \end{aligned}$	Barium Acetate extrapure, 98\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 13.16 \\ 118.44 \end{array}$
$\begin{aligned} & 16178 \\ & {[74-79-3]} \end{aligned}$	L-Arginine for tissue culture, 99\%	$\begin{array}{r} 100 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{array}{r} 9.48 \\ 70.14 \end{array}$	$\begin{aligned} & 16985 \\ & {[543-80-6]} \end{aligned}$	Barium Acetate ACS, 99\%	500 Gms 5 Kg	$\begin{array}{r} 17.11 \\ 157.92 \end{array}$
$\begin{aligned} & 17863 \\ & {[74-79-3]} \end{aligned}$	L-Arginine (free base) ExiPlus, Multi-Compendial, 99\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 3.95 \\ 11.58 \\ 78.96 \end{array}$	$\begin{aligned} & 45569 \\ & {[543-80-6]} \end{aligned}$	Barium Acetate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of BP, Ph.Eur	500 Gms	19.74
		5 Kg	361.90	56009	Barium AAS Standard Solution in 0.5 N HNO3 (Traceable to NIST)	$\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned}$	$\begin{aligned} & 21.06 \\ & 34.22 \end{aligned}$
$\begin{aligned} & 55453 \\ & {[1119-34-2]} \end{aligned}$	L-Arginine Hydrochloride extrapure CHR, 99\%	100 Gms 1 Kg 5 Kg	$\begin{array}{r} 7.90 \\ 63.17 \\ 276.36 \end{array}$	$\begin{aligned} & 32005 \\ & {[7791-28-8]} \\ & 35145 \\ & {[513-77-9]} \end{aligned}$	Barium Bromide Dihydrate extrapure, 98\%	500 Gms	25.00
					Barium Carbonate pure, 98.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	9.87 95.41
$\begin{aligned} & 23006 \\ & {[50-81-7]} \end{aligned}$	L-Ascorbic Acid extrapure AR, 99.7\% (Vitamin C)	100 Gms 500 Gms 5 Kg	$\begin{array}{r} 2.63 \\ 7.90 \\ 73.70 \end{array}$	$\begin{aligned} & 58434 \\ & {[513-77-9]} \end{aligned}$	Barium Carbonate extrapure AR, 99\%	500 Gms	11.84
$\begin{aligned} & 40704 \\ & {[50-81-7]} \end{aligned}$	L-Ascorbic Acid extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.7\% (Vitamin C) meets compendial specs of BP	$\begin{array}{r} 5 \mathrm{Kg} \\ \hline 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	73.70 3.29 9.21	$\begin{aligned} & 66323 \\ & {[513-77-9]} \end{aligned}$	Barium Carbonate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of BP, Ph.Eur Barium Chloride Dihydrate pure, 99\%	500 Gms	13.82
		5 Kg	86.86	78118 [10326-27-9]		500 Gms 5 Kg	3.95 34.22
$\begin{aligned} & 14116 \\ & {[50-81-7]} \end{aligned}$	L-Ascorbic Acid for molecular biology, 99.7\% (Vitamin C)	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 3.16 \\ 5.92 \\ 11.84 \end{array}$	$\begin{aligned} & 68554 \\ & {[10326-27-9]} \end{aligned}$	Barium Chloride Dihydrate ACS, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	5.00 47.38
$\begin{aligned} & 32488 \\ & {[50-81-7]} \end{aligned}$	L-Ascorbic Acid for tissue culture, 99.7\% (Vitamin C)	100 Gms 500 Gms	5.92 16.45	$\begin{aligned} & 92996 \\ & {[10326-27-9]} \end{aligned}$	Barium Chloride Dihydrate ACS,Exiplus, Multi-Compendial,99\% meets compendial specs of USP, BP, Ph.Eur	500 Gms	5.53 51.32
12535 [5743-28-2]	L-Ascorbic Acid Calcium Salt Dihydrate extrapure, 99\% (Calcium-L-Ascorbate Dihydrate)	$\begin{aligned} & 100 \mathrm{Gms} \\ & 500 \mathrm{Gms} \end{aligned}$					
			46.06 5.00	$\begin{aligned} & 49669 \\ & {[10294-40-3]} \end{aligned}$	Barium Chromate extrapure, 98\%	500 Gms	9.87
$\begin{aligned} & 65265 \\ & {[134-03-2]} \end{aligned}$	L-Ascorbic Acid Sodium Salt extrapure, 99\% (Sodium-L-Ascorbate, Vitamin C Sodium Salt)	100 Gms 500 Gms	$\begin{array}{r} 5.00 \\ 24.35 \end{array}$	86732 [7787-32-8]	Barium Fluoride pure, 97\%	500 Gms	11.84
				$\begin{aligned} & 85499 \\ & {[12230-71-6]} \end{aligned}$	Barium Hydroxide Octahydrate pure, 98\%	500 Gms	3.95
$\begin{aligned} & 64848 \\ & {[617-45-8]} \end{aligned}$	DL-Aspartic Acid extrapure CHR, 99\%	100 Gms	7.37			5 Kg	36.85
		$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{aligned} & 34.22 \\ & 59.22 \end{aligned}$	$\begin{aligned} & 43469 \\ & {[12230-71-6]} \end{aligned}$	Barium Hydroxide Octahydrate extrapure AR, 98\%	500 Gms	5.66

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 84482 \\ & {[12230-71-6]} \end{aligned}$	Barium Hydroxide Octahydrate extrapure AR, ACS, ExiPlus, Multi-Compendial, 98\% meets compendial specs of USP, BP, Ph.Eur	500 Gms	7.63	$\begin{aligned} & 31332 \\ & {[1076-43-3]} \end{aligned}$	Benzene-d6 for NMR spectroscopy, 99.5 Atom \%D	10 ml	125.02
				$\begin{aligned} & 27094 \\ & {[121-54-0]} \end{aligned}$	Benzethonium Chloride extrapure, 98\% (Hyamine 1622, (Diisobutylphenoxyethoxyethyl)dimethyl benzylammonium Chloride, Phemerol Chloride)	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	10.53 31.58 65.80
$\begin{aligned} & 10290 \\ & {[10022-31-8]} \end{aligned}$	Barium Nitrate extrapure, 98\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 7.90 \\ 73.70 \end{array}$				65.80
$\begin{aligned} & 88030 \\ & {[10022-31-8]} \end{aligned}$	Barium Nitrate ACS, 99\%	500 Gms	11.19	$\begin{aligned} & 36805 \\ & {[65-85-0]} \end{aligned}$	Benzoic Acid pure, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	5.79 46.06
$\begin{aligned} & 80355 \\ & {[7727-43-7]} \end{aligned}$	Barium Sulphate extrapure, 97\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 3.55 \\ 31.58 \end{array}$	$\begin{aligned} & 64239 \\ & {[65-85-0]} \end{aligned}$	Benzoic Acid ACS, 99.5\%	500 Gms	9.48 89.49
$\begin{aligned} & 90115 \\ & {[7727-43-7]} \end{aligned}$	Barium Sulphate extrapure AR, 98\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 5.40 \\ 51.32 \end{array}$	$\begin{aligned} & 10105 \\ & {[65-85-0]} \end{aligned}$	Benzoic Acid ACS, ExiPlus, Multi-Compendial, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 18.42 \\ 157.92 \end{array}$
$\begin{aligned} & 40251 \\ & {[7727-43-7]} \end{aligned}$	Barium Sulphate extrapure AR, ExiPlus, Multi-Compendial, 98\% meets compendial specs of Ph.Eur	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 6.32 \\ 59.22 \end{array}$		meets compendial specs of BP		
				$\begin{aligned} & 56626 \\ & {[93-97-0]} \end{aligned}$	Benzoic Anhydride pure, 98\%	100 Gms 500 Gms	$\begin{aligned} & 23.69 \\ & 98.70 \end{aligned}$
$\begin{aligned} & 24031 \\ & \text { [8012-89-3] } \end{aligned}$	Bees Wax pure	500 Gms	10.53	$\begin{aligned} & 56518 \\ & {[119-53-9]} \end{aligned}$	Benzoin extrapure, 99\%	$\begin{aligned} & 100 \mathrm{Gms} \\ & 250 \mathrm{Gms} \end{aligned}$	6.58
82949	Benedict`s Reagent Quantitative} & \multirow[t]{2}{*}{\[\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array} \]} & \multirow[t]{2}{*}{\[\begin{array}{r} 5.00 \\ 23.03 \end{array} \]} & & & & 10.13 \\ \hline & & & & \multirow[t]{2}{*}{\[\begin{aligned} & 51448 \\ & {[119-61-9]} \end{aligned} \]} & \multirow[t]{2}{*}{Benzophenone extrapure, 99\% (Diphenylketone)} & \multirow[t]{2}{*}{\[\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array} \]} & 7.90 \\ \hline \multirow[t]{2}{*}{35003} & \multirow[t]{2}{*}{Benedict`s Reagent Qualitative	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{aligned} & 3.68 \\ & 9.87 \end{aligned}$				76.33
				$\begin{aligned} & 42810 \\ & {[119-61-9]} \end{aligned}$	Benzophenone ExiPlus, Multi-Compendial, 99\% (Diphenylketone) meets compendial specs of USP, BP, Ph.Eur	500 Gms	9.21
92118 [1302-78-9]	Bentonite pure (Aluminium Silicate Hydrate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	2.90 27.37				
$\begin{aligned} & 37278 \\ & {[100-52-7]} \end{aligned}$	Benzaldehyde pure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	$\begin{array}{r} 6.58 \\ 28.95 \\ 236.88 \end{array}$				
				$\begin{aligned} & 98101 \\ & {[95-14-7]} \end{aligned}$	Benzotriazole pure, 97\%	100 Gms 250 Gms	5.92 11.84
$\begin{aligned} & 34087 \\ & {[100-52-7]} \end{aligned}$	Benzaldehyde extrapure AR, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 8.16 \\ 32.90 \end{array}$			1 Kg	39.48
				$\begin{aligned} & 92300 \\ & {[100-51-6]} \end{aligned}$	Benzyl Alcohol extrapure, 99\%	500 ml	6.58
$\begin{aligned} & 82149 \\ & {[100-52-7]} \end{aligned}$	Benzaldehyde extrapure AR, ExiPlus, Multi-Compendial, 99\% meets compendial specs of BP, Ph.Eur	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 9.87 \\ 36.85 \end{array}$			$\begin{array}{r} 1000 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	$\begin{array}{r} 11.84 \\ 26.32 \\ 250.04 \end{array}$
$\begin{aligned} & 43648 \\ & {[68391-01-5]} \end{aligned}$	Benzalkonium Chloride (BKC), 50\% soln in water	$500 \mathrm{ml}$ $5 \mathrm{Ltr}$	$\begin{array}{r} 5.53 \\ 42.11 \end{array}$	$\begin{aligned} & 97005 \\ & {[100-51-6]} \end{aligned}$	Benzyl Alcohol extrapure AR, 99\%	500 ml 1000 ml	8.16 13.82
$\begin{aligned} & 87688 \\ & {[55-21-0]} \end{aligned}$	Benzamide pure, 98\%	100 Gms 500 Gms	$\begin{array}{r} 3.95 \\ 15.79 \end{array}$			2500 ml	28.95
				$\begin{gathered} 84758 \text { (i) } \\ {[100-51-6]} \end{gathered}$	Benzyl Alcohol extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.7\%, aldehyde 100ppm meets compendial specs of USP, Ph.Eur	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	13.69
$\begin{aligned} & 99515 \\ & {[71-43-2]} \end{aligned}$	Benzene extrapure (Sulphur free), 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	$\begin{array}{r} 2.76 \\ 11.19 \\ 107.91 \end{array}$				52.64
				$\begin{aligned} & 84199 \\ & {[120-51-4]} \end{aligned}$	Benzyl Benzoate pure, 99\%	500 ml	9.21
$\begin{aligned} & 16410 \\ & {[71-43-2]} \end{aligned}$	Benzene ACS, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 3.29 \\ 13.42 \end{array}$			2500 ml	42.11
				$\begin{aligned} & 28482 \\ & {[100-44-7]} \end{aligned}$	Benzyl Chloride extrapure, 99\%	500 ml	6.19
$\begin{aligned} & 58857 \\ & {[71-43-2]} \end{aligned}$	Benzene ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP, Ph.Eur	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 3.68 \\ 15.53 \end{array}$			2500 ml	24.87
				$\begin{aligned} & 41322 \\ & {[5892-10-4]} \end{aligned}$	Bismuth (III) Carbonate Basic pure, 80\% (Bismuth Subcarbonate)	100 Gms	14.87
$\begin{aligned} & 95582 \\ & {[71-43-2]} \end{aligned}$	Benzene GC-HS, 99.9\%	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{array}{r} 6.58 \\ 12.50 \end{array}$	51451 [7787-60-2]	Bismuth (III) Chloride pure, 99\% (Bismuth Trichloride)	100 Gms	24.61 55.27
$\begin{aligned} & 36823 \\ & {[71-43-2]} \end{aligned}$	Benzene for HPLC \& UV Spectroscopy, 99.8\%	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{aligned} & 5.00 \\ & 9.21 \end{aligned}$	$\begin{aligned} & 82797 \\ & {[99-26-3]} \end{aligned}$	Bismuth (III) Gallate Basic ExiPlus, Multi-Compendial, 52-57\% (Bismuth Subgallate, Gallic Acid Bismuth Basic Salt) meets compendial specs of USP	100 Gms 500 Gms	18.42 78.96
$\begin{aligned} & 69981 \\ & {[71-43-2]} \end{aligned}$	Benzene Dried, 99.7\%, water 0.005\%	1000 ml	10.13				

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 80053 \\ & {[7440-69-9]} \end{aligned}$	Bismuth Metal Lumps, 99.5\%	100 Gms 500 Gms	8.55 32.90	82076	Bouins Picro Formal Fixing Solution (Bouins Fluid \& Reagent)	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	3.16 8.16
$\begin{aligned} & 24008 \\ & {[7440-69-9]} \end{aligned}$	Bismuth Metal Ingots ultrapure, 99.99\%	10 Gms 50 Gms	23.69 78.96	$\begin{aligned} & 98188 \\ & {[3844-45-9]} \end{aligned}$	Brilliant Blue FCF (Erioglaucine Disodium Salt)	25 Gms 100 Gms	6.58 23.69
$\begin{aligned} & 72217 \\ & \text { [7440-69-9] } \end{aligned}$	Bismuth Metal Powder extrapure, 99\%, -325 mesh	100 Gms	21.06		Alphazurine FG)	500 Gms	78.96
		500 Gms	78.96	$\begin{aligned} & 49617 \\ & {[633-03-4]} \end{aligned}$	Brilliant Green (CI No. 42040)	25 Gms	3.16
29444	Bismuth AAS Standard Solution in 0.5 N HNO3 (Traceable to NIST)	$100 \mathrm{ml}$	21.06			100 Gms	9.21
		$250 \mathrm{ml}$	34.22			1 Kg	78.83
72918 [10035-06-0]	Bismuth (III) Nitrate Pentahydrate extrapure, 98\% (Bismuth Trinitrate Pentahydrate)	100 Gms 500 Gms	6.97 30.27	$\begin{aligned} & 93883 \\ & \text { [9002-92-0] } \end{aligned}$	Brij-30® (Polyethylene Glycol Dodecyl Ether, Brij-L4)	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	16.45 30.27
$\begin{aligned} & 19737 \\ & {[10035-06-0]} \end{aligned}$	Bismuth (III) Nitrate Pentahydrate extrapure AR, 98.5\% (Bismuth Trinitrate Pentahydrate)	100 Gms 500 Gms	8.55 38.16	$\begin{aligned} & 89429 \\ & {[9002-92-0]} \end{aligned}$	Brij-35® (Main Component) (Polyoxyethylene Lauryl Ether, Brij-L23)	250 Gms 500 Gms	9.87 17.11
$\begin{aligned} & 84869 \\ & {[10035-06-0]} \end{aligned}$	Bismuth (III) Nitrate Pentahydrate extrapure AR, ACS, ExiPlus, Multi-Compendial, 98.5\% (Bismuth Trinitrate Pentahydrate) meets compendial specs of BP, Ph.Eur	100 Gms 500 Gms	9.48 42.11	$\begin{aligned} & 97698 \\ & {[9002-92-0]} \end{aligned}$	Brij-35® (30\% Aq. solution) (Polyoxyethylene Lauryl Ether, Brij-L23)	100 ml	8.03 12.77
				$\begin{aligned} & 43808 \\ & {[9004-95-9]} \end{aligned}$	Brij-58® (Polyethylene Glycol Cetyl Ether, Cetomacrogol 1000, C16H2O)	500 Gms	15.79
$\begin{aligned} & 89049 \\ & {[1304-76-3]} \end{aligned}$	Bismuth (III) Oxide extrapure, 99\% (Dibismuth Trioxide)	100 Gms 500 Gms	9.21 32.90	$\begin{aligned} & 64062 \\ & {[76-60-8]} \end{aligned}$	Bromocresol Green (BCG) extrapure AR	5 Gms	10.00
$\begin{aligned} & 32915 \\ & {[1304-85-4]} \end{aligned}$	Bismuth (III) Nitrate Basic extrapure AR, 79\% BiNO3 (Bismuth (III) Subnitrate, Bismuth (III) Oxynitrate)	500 Gms	55.27			100 Gms 500 Gms	131.60 592.20
				$\begin{aligned} & 52512 \\ & {[76-60-8]} \end{aligned}$	Bromocresol Green (BCG) ACS, ExiPlus, Multi-Compendial	5 Gms	10.79
$\begin{aligned} & 18473 \\ & \text { [7787-68-0] } \end{aligned}$	Bismuth (III) Sulphate pure, 90% (Bismuth Trisulphate)	100 Gms 500 Gms	9.87 42.11			25 Gms 100 Gms	43.43 144.76
$\begin{aligned} & 17798 \\ & {[108-19-0]} \end{aligned}$	Biuret extrapure AR, 97\% (Allophanic Acid Amide, Carbamoylurea)	25 Gms	15.13			500 Gms	631.68
		100 Gms	53.96		meets compendial specs of BP, Ph.Eur		
$\begin{aligned} & 18952 \\ & {[10043-35-3]} \end{aligned}$	Boric Acid extrapure, 99.5\%	500 Gms 5 Kg	$\begin{array}{r}4.61 \\ 43.43 \\ \hline 6.58\end{array}$	$\begin{aligned} & 11456 \\ & {[62625-32-5]} \end{aligned}$	Bromocresol Green Sodium Salt (water soluble) ACS ($3^{\prime}, 3^{\prime \prime}, 5$ ', 5-Tetrabromo-m-Cresolsulfonp hthalein Sodium Salt)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	9.21 38.69
80266 [10043-35-3]	Boric Acid extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 6.58 \\ 58.17 \end{array}$	$\begin{aligned} & 17375 \\ & {[115-40-2]} \end{aligned}$	Bromocresol Purple	$5 \mathrm{Gms}$	3.95 13.42
$\begin{aligned} & 61871 \\ & {[10043-35-3]} \end{aligned}$	Boric Acid extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 7.24 \\ 65.80 \end{array}$	$\begin{aligned} & 24836 \\ & {[62625-30-3]} \end{aligned}$	Bromocresol Purple Sodium Salt for molecular biology (5,5-Dibromo-o-Cresolsulfonphthalein Sodium Salt)	5 Gms 25 Gms	3.95 9.87
$\begin{aligned} & 22311 \\ & {[10043-35-3]} \end{aligned}$	Boric Acid for molecular biology, 99.5\%	250 Gms	7.76				
		500 Gms 1 Kg	12.90 23.95	$\begin{aligned} & 55551 \\ & {[115-40-2]} \end{aligned}$	Bromocresol Purple ACS, ExiPlus, Multi-Compendial	5 Gms 25 Gms	5.13 15.13
64765	Boron AAS Standard Solution in H2O (Traceable to NIST)	$\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned}$	21.06		meets compendial specs of BP, Ph.Eur		
				$\begin{aligned} & 77644 \\ & {[75-25-2]} \end{aligned}$	Bromoform extrapure, 98\% (Tribromomethane)	250 ml	92.12
$\underset{[109-63-7]}{52519}$	Boron Trifluoride Diethyl Etherate pure, 45-50\% BF3 (Boron Trifluoride Ethyl Etherate)	$\begin{array}{r} 250 \mathrm{ml} \\ 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 14.48 \\ 23.69 \\ 111.86 \end{array}$	$\begin{aligned} & 44669 \\ & {[75-25-2]} \end{aligned}$	Bromoform Specially Purified extrapure, 99\% (Tribromomethane)	250 ml	98.70
$\begin{aligned} & 25529 \\ & {[1303-86-2]} \end{aligned}$	Boron Trioxide Anhydrous (Boric Anhydride) extrapure AR, 98.5\% (di-Boron Trioxide, Boric Oxide)		23.69	$\begin{aligned} & 11458 \\ & {[115-39-9]} \end{aligned}$	Bromophenol Blue extrapure AR	5 Gms	2.90
		$\begin{array}{r} 250 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	23.60 46.06 157.92			25 Gms 100 Gms	10.66 31.58
$\begin{aligned} & 24167 \\ & {[1303-86-2]} \end{aligned}$		100 Gms	20.40			500 Gms	144.76
	Boron Trioxide Anhydrous Granular (Boric Anhydride) extrapure, 97\%, -60 mesh (di-Boron Trioxide, Boric Oxide)	$\begin{aligned} & 250 \mathrm{Gms} \\ & 500 \mathrm{Gms} \end{aligned}$	36.85 68.43	$\begin{aligned} & 93676 \\ & {[115-39-9]} \end{aligned}$	Bromophenol Blue ACS, ExiPlus, Multi-Compendial meets compendial specs of BP, Ph.Eur	5 Gms 25 Gms 100 Gms	3.68 12.90 34.22

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 42888 \\ & {[16574-43-9]} \end{aligned}$	Bromopyrogallol Red extrapure AR (Dibromopyrogallolsulfonphthaleine)	1 Gms 5 Gms	10.79 42.11	$\begin{aligned} & 83903 \\ & {[71-36-3]} \end{aligned}$	n-Butyl Alcohol (1-butanol, n-butanol) GC-HS, 99.9\%	$\begin{array}{r} 250 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	5.26 14.48
		10 Gms	80.67	$\begin{aligned} & 43706 \\ & {[71-36-3]} \end{aligned}$	n-Butyl Alcohol (1-butanol, n-butanol) for HPLC \& UV Spectroscopy, 99.9\%	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{array}{r} 6.58 \\ 12.50 \end{array}$
$\begin{aligned} & 48214 \\ & {[76-59-5]} \end{aligned}$	Bromothymol Blue	5 Gms 25 Gms	4.61 15.13				
		100 Gms 500 Gms	53.96 250.04	$\begin{aligned} & 95725 \\ & {[78-92-2]} \end{aligned}$	sec-Butyl Alcohol extrapure, 99\% (2-Butanol, sec-Butanol)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	$\begin{array}{r} 5.92 \\ 23.03 \\ 215.17 \end{array}$
$\begin{aligned} & 72752 \\ & {[76-59-5]} \end{aligned}$	Bromothymol Blue ACS, ExiPlus, Multi-Compendial	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	5.26 16.45 57.90	$\begin{aligned} & 58308 \\ & {[78-92-2]} \end{aligned}$	sec-Butyl Alcohol extrapure AR, 99.5\% (2-Butanol, sec-Butanol)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 6.58 \\ 25.93 \end{array}$
	meets compendial specs of BP, Ph.Eur			$\begin{aligned} & 99336 \\ & {[78-92-2]} \end{aligned}$	Sec-Butyl Alcohol extrapure AR, ExiPlus, Multi-Compendial, 99.5\% (2-Butanol, sec-Butanol) meets compendial specs of BP, Ph.Eur	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 7.24 \\ 28.69 \end{array}$
$\begin{aligned} & 44798 \\ & {[76-59-5]} \end{aligned}$	Bromothymol Blue Solution	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	1.84 5.53				
45899	Buffer solution pH 4	500 ml	4.61	$\begin{aligned} & 21835 \\ & {[75-65-0]} \end{aligned}$	tert-Butyl Alcohol extrapure, 99\% (2-Methyl-2-Propanol Trimethyl Carbinol)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	$\begin{array}{r} 3.42 \\ 14.48 \\ 131.60 \end{array}$
97409	Buffer solution pH 7	500 ml	4.61				
52031	Buffer solution pH 9.2	500 ml	4.61	$\begin{aligned} & 70816 \\ & {[75-65-0]} \end{aligned}$	tert-Butyl Alcohol extrapure AR, 99.5\% (2-Methyl-2-Propanol Trimethyl Carbinol)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 3.95 \\ 15.79 \end{array}$
$\begin{aligned} & 74887 \\ & {[2386-54-1]} \end{aligned}$	Butane Sulphonic Acid Sodium Salt Anhydrous for HPLC, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 250 \mathrm{Gms} \end{array}$	$\begin{array}{r} 15.79 \\ 57.38 \\ 140.68 \end{array}$				
				$\begin{aligned} & 41609 \\ & {[75-65-0]} \end{aligned}$	Tert-Butyl Alcohol extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% (2-Methyl-2-Propanol Trimethyl Carbinol) meets compendial specs of USP	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 4.47 \\ 18.42 \end{array}$
$\begin{aligned} & 99919 \\ & {[2386-54-1]} \end{aligned}$	Butane Sulphonic Acid Sodium Salt Monohydrate for HPLC, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 250 \mathrm{Gms} \end{array}$	$\begin{array}{r} 15.79 \\ 57.38 \\ 140.68 \end{array}$				
$\begin{aligned} & 28118 \\ & {[123-86-4]} \end{aligned}$	Butyl Acetate pure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	4.61 18.42	$\begin{aligned} & 90248 \\ & {[75-65-0]} \end{aligned}$	tert-Butyl Alcohol for HPLC, 99.7\%	$\begin{array}{r} 250 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{array}{r} 7.24 \\ 14.48 \end{array}$
		25 Ltr	171.08	$\begin{aligned} & 76035 \\ & {[109-73-9]} \end{aligned}$	n-Butylamine pure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 5.92 \\ 26.32 \end{array}$
$\begin{aligned} & 80870 \\ & {[123-86-4]} \end{aligned}$	Butyl Acetate extrapure AR, 99.5\%	500 ml	5.92				
		2500 ml	22.37	$\begin{aligned} & 54997 \\ & {[109-73-9]} \end{aligned}$	n-Butylamine extrapure AR, 99\%	$500 \mathrm{ml}$	7.63
$\begin{aligned} & 30389 \\ & {[123-86-4]} \end{aligned}$	Butyl Acetate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP, Ph.Eur	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 6.84 \\ 25.66 \end{array}$			2500 ml	32.90
				$\begin{aligned} & 12302 \\ & {[75-64-9]} \end{aligned}$	tert-Butylamine pure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 7.90 \\ 35.53 \end{array}$
$\begin{aligned} & 78487 \\ & {[123-86-4]} \end{aligned}$	Butyl Acetate GC-HS, 99.9\%	$\begin{array}{r} 250 \mathrm{ml} \\ 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{array}{r} 9.21 \\ 16.45 \\ 28.95 \end{array}$	$\begin{aligned} & 55005 \\ & {[75-64-9]} \end{aligned}$	tert-Butylamine extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 9.21 \\ 42.11 \end{array}$
				$\begin{aligned} & 60004 \\ & {[25013-16-5]} \end{aligned}$	Butylated Hydroxyanisole (BHA) ExiPlus, Multi-Compendial, 98\% (2-tert-Butyl-4-Methoxyphenol) meets compendial specs of USP, BP	100 Gms 500 Gms	11.19 34.48
$\begin{aligned} & 47364 \\ & {[141-32-2]} \end{aligned}$	n-Butyl Acrylate pure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	7.24 32.90				34.48
$\begin{aligned} & 90527 \\ & {[540-88-5]} \end{aligned}$	tert-Butyl Acetate (TBAc) extrapure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	15.79 65.14	$\begin{aligned} & 32227 \\ & {[109-69-3]} \end{aligned}$	n-Butyl Chloride (1-Chlorobutane) extrapure, 99\%	500 ml 2500 ml	$\begin{aligned} & 10.53 \\ & 51.32 \end{aligned}$
$\begin{aligned} & 19147 \\ & {[71-36-3]} \end{aligned}$	n-Butyl Alcohol (1-butanol, n-butanol) pure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	2.90 14.48	$\begin{aligned} & 95594 \\ & {[109-69-3]} \end{aligned}$	n-Butyl Chloride (1-Chlorobutane) for HPLC \& UV Spectroscopy, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{aligned} & 36.85 \\ & 68.43 \end{aligned}$
		25 Ltr	131.60	$\begin{aligned} & 38033 \\ & {[128-37-0]} \end{aligned}$	Butylated Hydroxytoluene (BHT) pure, 99\% (2,6-di-tert-Butyl-p-Cresol)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 12.24 \\ 117.65 \end{array}$
$\begin{aligned} & 72768 \\ & {[71-36-3]} \end{aligned}$	n-Butyl Alcohol (1-butanol, n-butanol) extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 3.68 \\ 17.11 \end{array}$				
				$\begin{aligned} & 82010 \\ & {[128-37-0]} \end{aligned}$	Butylated Hydroxytoluene (BHT) ExiPlus, Multi-Compendial, 99\% (2,6-di-tert-Butyl-p-Cresol) meets compendial specs of BP	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 13.29 \\ 129.10 \end{array}$
$\begin{aligned} & 15612 \\ & {[71-36-3]} \end{aligned}$	n-Butyl Alcohol (1-butanol, n-butanol) extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of BP, Ph.Eur	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 4.34 \\ 20.40 \end{array}$				
				32701 [1948-33-0]	tert-Butyl Hydroquinone (TBHQ) extrapure AR, 98\%	$\begin{array}{r} 250 \mathrm{Gms} \\ 2.5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 18.03 \\ 172.13 \end{array}$

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 79927 \\ & {[1634-04-4]} \end{aligned}$	tert-Butyl Methyl Ether pure, 98\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 4.47 \\ 18.42 \end{array}$	98002 [1306-23-6]	Cadmium Sulphide Orange extrapure, 99%	100 Gms 500 Gms	6.58 21.06
		25 Ltr	157.92	$\begin{aligned} & 22905 \\ & {[1306-23-6]} \end{aligned}$	Cadmium Sulphide Orange ultrapure, 99.995\%	5 Gms	52.64
$\begin{aligned} & 19465 \\ & \text { [1634-04-4] } \end{aligned}$	tert-Butyl Methyl Ether extrapure AR, 99.5\%	500 ml	5.26			25 Gms	118.44
		2500 ml	22.37	19267	Caffeine anhydrous pure, 98\%	100 Gms	10.26
$\begin{aligned} & 65701 \\ & {[1634-04-4]} \end{aligned}$	tert-Butyl Methyl Ether extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP	500 ml	6.32	[58-08-2]		250 Gms	19.74
		2500 ml	26.98			500 Gms 5 Kg	32.90 302.68
$\begin{aligned} & 91087 \\ & {[1634-04-4]} \end{aligned}$	tert-Butyl Methyl Ether for HPLC, 99.5\%	$\begin{aligned} & 1000 \mathrm{ml} \\ & 2500 \mathrm{ml} \end{aligned}$	13.82 31.58	$\begin{aligned} & 47633 \\ & {[58-08-2]} \end{aligned}$	Caffeine Anhydrous ExiPlus, Multi-Compendial, 98.5\%	100 Gms 250 Gms	$\begin{aligned} & 11.84 \\ & 21.06 \end{aligned}$
$\begin{aligned} & 63952 \\ & {[590-01-2]} \end{aligned}$	Butyl Propionate extrapure, 99\% (Propionic Acid Butyl Ester)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	19.74 94.75		meets compendial specs of BP, Ph.Eur, USP	2.5 Kg	164.50
$\begin{aligned} & 81503 \\ & {[107-92-6]} \end{aligned}$	n-Butyric Acid extrapure, C4-99\% (GC)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	6.97 28.29	$\begin{aligned} & 44509 \\ & \text { [8011-96-9] } \end{aligned}$	Calamine pure, 98\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{array}{r} 8.55 \\ 16.19 \end{array}$
$\begin{aligned} & 55964 \\ & {[107-92-6]} \end{aligned}$	n-Butyric Acid extrapure AR, C4-99.5\% (GC)	$\begin{array}{r} 250 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{array}{r} 4.21 \\ 13.03 \end{array}$	$\begin{aligned} & 28162 \\ & \text { [8011-96-9] } \end{aligned}$	Calamine ExiPlus, Multi-Compendial, 98\%	500 Gms	11.98
$\begin{aligned} & 82749 \\ & {[5743-04-4]} \end{aligned}$	Cadmium Acetate Dihydrate pure, 98\%	100 Gms	5.92		meets compendial specs of BP, USP		
		500 Gms	22.37	70214 [5743-26-0]	Calcium Acetate Monohydrate extrapure AR, 99\%	500 Gms	15.79
$\begin{aligned} & 84627 \\ & {[5743-04-4]} \end{aligned}$	Cadmium Acetate Dihydrate extrapure AR, 99\%	100 Gms 500 Gms	$\begin{array}{r} 6.97 \\ 26.06 \end{array}$	$\begin{aligned} & 21606 \\ & {[5743-26-0]} \end{aligned}$	Calcium Acetate Monohydrate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP	500 Gms	17.11
98469	Cadmium AAS Standard Solution in 0.5 N HNO3 (Traceable to NIST)	$\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned}$	21.06 34.22				
$\begin{aligned} & 25442 \\ & {[513-78-0]} \end{aligned}$	Cadmium Carbonate pure, 97\%	100 Gms 500 Gms	7.90 31.58	$\begin{aligned} & 58056 \\ & {[114460-21-8]} \end{aligned}$	Calcium Acetate Hydrate extrapure AR, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	5.53 52.64
$\begin{aligned} & 15411 \\ & {[10108-64-2]} \end{aligned}$	Cadmium Chloride Dried Anhydrous pure, 97\%	100 Gms	19.74	$\begin{aligned} & 60934 \\ & {[114460-21-8]} \end{aligned}$	Calcium Acetate Hydrate ultrapure, 99.9965\%	5 Gms	65.80
		500 Gms	85.54	96493	Calcium Alginate ex. Brown Algae	100 Gms	4.61
$\begin{aligned} & 99643 \\ & {[10108-64-2]} \end{aligned}$	Cadmium Chloride Dried Anhydrous ACS, 99\%	100 Gms 500 Gms	26.32 105.28	[9005-35-0]	pure, 15\% moisture (Alginic Acid Calcium Salt)	500 Gms 5 Kg	17.11 144.76
48076 [35658-65-2]	Cadmium Chloride Monohydrate extrapure, 99%	100 Gms 500 Gms	6.71 30.00	36920	Calcium AAS Standard Solution in 0.5N HNO3 (Traceable to NIST)	$\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned}$	21.06 34.22
$\begin{aligned} & 87355 \\ & \text { [7790-80-9] } \end{aligned}$	Cadmium lodide pure, 99\%	25 Gms	15.79	$\begin{aligned} & 67162 \\ & {[471-34-1]} \end{aligned}$	Calcium Carbonate extrapure, 98\%	500 Gms	2.63
		100 Gms	57.25			5 Kg	19.21
		500 Gms	276.36			25 Kg	92.12
$\begin{aligned} & 48392 \\ & \text { [7440-43-9] } \end{aligned}$	Cadmium Metal Rods, 99\%	100 Gms	7.24	$\begin{aligned} & 87293 \\ & {[471-34-1]} \end{aligned}$	Calcium Carbonate extrapure AR, 99.5\%	500 Gms 5 Kg	3.29 22.24
$\begin{aligned} & 85545 \\ & {[7440-43-9]} \end{aligned}$	Cadmium Metal Powder extrapure, 99.5\%, -200 mesh	25 Gms	15.79			25 Kg	92.38
$\begin{aligned} & 70434 \\ & \text { [10022-68-1] } \end{aligned}$	Cadmium Nitrate Tetrahydrate extrapure AR, ACS, 99\%	500 Gms	52.64 17.11	$\begin{aligned} & 37683 \\ & {[471-34-1]} \end{aligned}$	Calcium Carbonate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	6.58 51.72
$\begin{aligned} & 29996 \\ & {[1306-19-0]} \end{aligned}$	Cadmium Oxide pure, 99\%	100 Gms	5.66		meets compendial specs of USP, BP		
		250 Gms 500 Gms	11.84 18.42	$\begin{aligned} & 70650 \\ & {[10035-04-8]} \end{aligned}$	Calcium Chloride Dihydrate extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	4.74 36.85
$\begin{aligned} & 39818 \\ & {[1306-19-0]} \end{aligned}$	Cadmium Oxide extrapure AR, 99.7\%	100 Gms 250 Gms	7.90 14.48	31944 [10035-04-8]	Calcium Chloride Dihydrate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	7.37 57.90
$\begin{aligned} & 15806 \\ & {[7790-84-3]} \end{aligned}$	Cadmium Sulphate 8/3Hydrate pure, 98\%	100 Gms	6.84				
		500 Gms	27.64	97080	Calcium Chloride Dihydrate for	100 Gms	4.08
$\begin{aligned} & 43019 \\ & {[7790-84-3]} \end{aligned}$	Cadmium Sulphate 8/3Hydrate ACS, 98\%	100 Gms	8.69	[10035-04-8]	molecular biology, 99.5\%	500 Gms	18.69
		500 Gms	32.90	56949	Calcium Chloride Dihydrate for	500 Gms	6.05
				[10035-04-8]	tissue culture, 99.5\%	5 Kg	55.27

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 84336 \\ & {[10043-52-4]} \end{aligned}$	Calcium Chloride Fused pure, 90-95\%	500 Gms 5 Kg	2.76 19.74	23764 [334-48-5]	Capric Acid (n -Decanoic Acid) pure, C10-99\% (n-Capric Acid, n-Decoic Acid)	$\begin{aligned} & 250 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{array}{r} 9.21 \\ 17.11 \end{array}$
$\begin{aligned} & 77838 \\ & {[5785-44-4]} \end{aligned}$	Calcium Citrate Tribasic Tetrahydrate pure, 98\%	500 Gms	5.26	$\begin{aligned} & 51840 \\ & {[110-42-9]} \end{aligned}$		2500 ml	78.96 23.95
$\begin{aligned} & 97388 \\ & {[5785-44-4]} \end{aligned}$	Calcium Citrate Tribasic Tetrahydrate ExiPlus,	500 Gms	6.58		Capric Acid Methyl Ester (Methyl Decanoate) extrapure, 99% (Methyl Caprate)	1000 ml	76.72
	Multi-Compendial, 98\% meets compendial specs of USP			$\begin{aligned} & 89028 \\ & {[142-62-1]} \end{aligned}$	Caproic Acid extrapure, C6-99\% (n-Hexanoic Acid)	100 ml 500 ml	3.95 12.50
57055 [7789-75-5]	Calcium Fluoride extrapure, 97\% (Fluorite, Fluorospar)	$\begin{aligned} & 100 \mathrm{Gms} \\ & 500 \mathrm{Gms} \end{aligned}$	$\begin{array}{r} 4.08 \\ 15.00 \end{array}$			2500 ml	52.64
$\begin{aligned} & 52434 \\ & {[544-17-2]} \end{aligned}$	Calcium Formate pure, 98\% (Formic Acid Calcium Salt)	500 Gms	7.50	$\begin{aligned} & 88889 \\ & {[124-07-2]} \end{aligned}$	Caprylic Acid pure, C8-99\% (GC)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	8.55 39.48
$\begin{aligned} & 85610 \\ & {[1305-62-0]} \end{aligned}$	Calcium Hydroxide extrapure AR, 96\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	6.97 54.61	$\begin{aligned} & 15343 \\ & {[67-56-1]} \end{aligned}$	Carbinol pure, 99\%	$500 \mathrm{ml}$ $2500 \text { ml }$	$\begin{aligned} & 3.29 \\ & 8.82 \end{aligned}$
74471	Calcium Hydroxide extrapure AR,	500 Gms	9.87			25 Ltr	75.67
[1305-62-0]	ACS, ExiPlus, Multi-Compendial, 96\% meets compendial specs of USP, BP, Ph.Eur	5 Kg	73.17	$\begin{aligned} & 82911 \\ & {[67-56-1]} \end{aligned}$	Carbinol extrapure AR, 99.8\%	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{aligned} & 3.55 \\ & 6.84 \\ & 9.61 \end{aligned}$
31549 [7789-80-2]	Calcium lodate Anhydrous (Lautarite) pure, 98\%	100 Gms 250 Gms	$\begin{aligned} & 30.27 \\ & 63.17 \end{aligned}$	$\begin{aligned} & 85902 \\ & {[67-56-1]} \end{aligned}$	Carbinol GC-HS, 99.9\%	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{array}{r} 9.61 \\ 18.42 \end{array}$
$\begin{aligned} & 96342 \\ & {[7440-70-2]} \end{aligned}$	Calcium Metal Granular extrapure, 98\%, 10-20 mesh	100 Gms 500 Gms	5.26 25.00	$\begin{aligned} & 63713 \\ & {[67-56-1]} \end{aligned}$	Carbinol for HPLC \& UV Spectroscopy, 99.8\%	$\begin{gathered} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{gathered}$	4.87 6.58
94212	Calcium lodide Tetrahydrate pure,	10 Gms	39.48			2500 ml	12.77
[10102-68-8]	98\%	25 Gms	52.64	$\begin{aligned} & 68990 \\ & {[67-56-1]} \end{aligned}$	Carbinol electronic grade, 99.8\%	2500 ml	15.66
56571 [71626-98-7]	Calcium lodide Hydrate pure, 98\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 42.11 \\ 109.23 \end{array}$	$\begin{aligned} & 12903 \\ & {[67-56-1]} \end{aligned}$	Carbinol Dried extrapure AR, 99.8\%	$\begin{gathered} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{gathered}$	
$\begin{aligned} & 79225 \\ & \text { [13477-34-4] } \end{aligned}$	Calcium Nitrate Tetrahydrate extrapure AR, ACS, 99\%	500 Gms	4.08	$\begin{aligned} & 34883 \\ & {[67-56-1]} \end{aligned}$	Carbinol for molecular biology,99.5%	500 ml 1000 ml	11.98 21.58
$\begin{aligned} & 16807 \\ & {[1305-78-8]} \end{aligned}$	Calcium Oxide Powder pure, 95\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 3.16 \\ 22.24 \end{array}$			2500 ml	21.58 46.19
$\begin{aligned} & 51007 \\ & {[10031-30-8]} \end{aligned}$	Calcium Phosphate Monobasic Monohydrate extrapure, 95\%	500 Gms 5 Kg	6.58 59.22	$\begin{aligned} & 39058 \\ & {[4197-24-4]} \end{aligned}$	Carbol Fuchsin	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	5.00 13.42
	(Calcium Tetrahydrogen Diorthophosphate Monohydrate)			$\begin{aligned} & 93049 \\ & {[9003-01-4]} \end{aligned}$	Carbopol 934 (Carboxy Vinyl Polymer 934) extrapure	500 Gms 1 Kg	16.45 31.58
$\begin{aligned} & 93239 \\ & {[7757-93-9]} \end{aligned}$	Calcium Phosphate Dibasic Anhydrous extrapure, 98\%	500 Gms 5 Kg	$\begin{array}{r} 4.61 \\ 32.90 \end{array}$			5 Kg	144.76
	(Calcium Hydrogen Phosphate Anhydrous, di-Calcium Phosphate Anhydrous)			$\begin{aligned} & 51159 \\ & {[9003-01-4]} \end{aligned}$	Carbopol 940 (Carboxy Vinyl Polymer 940) extrapure	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	16.45 31.58
77793	Calcium Phosphate Dibasic	500 Gms	5.59			5 Kg	44.76
[7789-77-7]	Dihydrate extrapure, 98\% (Calcium Hydrogen Phosphate Dihydrate, di-Calcium Phosphate Dihydrate)	5 Kg	52.64	$\begin{aligned} & 93797 \\ & {[9004-32-4]} \end{aligned}$	Carboxymethyl Cellulose Sodium Salt (CMC Sodium), Medium Viscosity 250-350CPS (Carmellose Sodium)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	9.87 85.54
34878 [7758-87-4]	Calcium Phosphate Tribasic, 90\% (Tricalcium Phosphate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	6.97 65.14	$\begin{aligned} & 59938 \\ & {[9004-32-4]} \end{aligned}$	Carboxymethyl Cellulose Sodium Salt (CMC Sodium), High Viscosity 400-800 CPS (Carmellose Sodium)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	10.53 98.70
59781 [4075-81-4]	Calcium Propionate pure, 97\%	500 Gms	6.45			500	0
$\begin{aligned} & 94044 \\ & {[10101-41-4]} \end{aligned}$	Calcium Sulphate Dihydrate pure, 98\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r}4.08 \\ 36.85 \\ \hline 5.70\end{array}$	$\begin{aligned} & 35298 \\ & {[9004-32-4]} \end{aligned}$	Carboxymethyl Cellulose Sodium Salt (CMC Sodium), High Viscosity 1100-1900 CPS (Carmellose Sodium)	5 Kg	121.07
69095 [10101-41-4]	Calcium Sulphate Dihydrate extrapure AR, ACS, 99\%	500 Gms $5 \mathrm{Kg}$	5.79 53.96	$\begin{aligned} & 97048 \\ & {[1390-65-4]} \end{aligned}$	Carmine (C.I. No. 75470)	5 Gms 25 Gms	9.87 46.45
$\begin{aligned} & 64813 \\ & {[76-22-2]} \end{aligned}$	Camphor pure, 96\%	$\begin{aligned} & 100 \mathrm{Gms} \\ & 500 \mathrm{Gms} \end{aligned}$	$\begin{array}{r} 7.37 \\ 35.93 \end{array}$				

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Code \& Name \& Packing \& \$ Price \& Code \& Name \& Packing \& \$ Price \\
\hline \[
\begin{aligned}
\& 32385 \\
\& {[11114-20-8]}
\end{aligned}
\] \& \begin{tabular}{l}
Carrageenan (Kappa) Refined ex. \\
Eucheuma Cottonii \\
(k-Carrageenan, Irish Moss)
\end{tabular} \& 25 Gms
100 Gms
500 Gms \& 17.11
34.22
106.60 \& \[
\begin{aligned}
\& 64905 \\
\& {[7080-50-4]}
\end{aligned}
\] \& \begin{tabular}{l}
Chloramine-T Trihydrate extrapure AR, 98\% \\
(N-Chloro-p-Toluenesulphonamide Sodium Salt)
\end{tabular} \& \begin{tabular}{l}
100 Gms \\
250 Gms \\
500 Gms
\end{tabular} \& 5.92
11.84
23.03 \\
\hline \[
\begin{aligned}
\& 16145 \\
\& {[8001-79-4]}
\end{aligned}
\] \& Castor Oil pure \& \[
\begin{array}{r}
500 \mathrm{ml} \\
2500 \mathrm{ml}
\end{array}
\] \& 8.95
42.11 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 29611 \\
\& {[95-51-2]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{o-Chloroaniline extrapure, 99\% (2-Chloroaniline)} \& 2.5 Kg \& 105.28
9.34 \\
\hline \[
\begin{aligned}
\& 26080 \\
\& {[120-80-9]}
\end{aligned}
\] \& Catechol (Pyrocatechol) extrapure, 99\% \& 100 Gms
500 Gms \& 5.92
14.21 \& \& \& 2500 ml \& 44.74
5.79 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 31018 \\
\& \text { [8000-27-9] }
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Cedarwood Oil Natural for microscopy \\
(Immersion Oil)
\end{tabular}} \& \[
\begin{array}{r}
30 \mathrm{ml} \\
125 \mathrm{ml}
\end{array}
\] \& 9.61
26.06 \& [108-90-7] \& \begin{tabular}{l}
99\% \\
(Monochlorobenzene)
\end{tabular} \& 2500 ml 25 Ltr \& 24.35
217.14 \\
\hline \& \& 500 ml \& 51.98 \& 46364 \& Chlorobenzene (MCB) extrapure \& 500 ml \& 7.90 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
60705 \\
[1562-90-9]
\end{tabular}} \& \multirow[t]{2}{*}{Celestine Blue B, 98\%-102\% (Mordant Blue 14, C.I. 51050)} \& \multirow[t]{2}{*}{\begin{tabular}{l}
5 Gms \\
25 Gms
\end{tabular}} \& 56.59

269.78 \& [108-90-7] \& | AR, 99.5\% |
| :--- |
| (Monochlorobenzene) | \& 2500 ml \& 27.64

\hline \& \& \& 269.78 \& \multirow[t]{3}{*}{\[
$$
\begin{aligned}
& 10124 \\
& {[108-90-7]}
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{| Chlorobenzene (MCB) extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% |
| :--- |
| (Monochlorobenzene) meets compendial specs of USP, BP |} \& 500 ml \& 8.69

\hline | 82523 |
| :--- |
| [91053-39-3] | \& Celite 545, size 20-40 micrometer \& 500 Gms

1 Kg \& 6.58
12.37 \& \& \& 2500 ml \& 32.90

\hline \multirow[t]{3}{*}{\[
$$
\begin{gathered}
61767 \\
{[477243-06-4]}
\end{gathered}
$$

\]} \& \multirow[t]{3}{*}{| Ceramide ex. Chicken Egg 99\% |
| :--- |
| (C16 Ceramide, N-(Hexadecanoyl) |
| -Sphing-4-Enine), |
| n-Hexadecanoyl-d-Erythro-Sphingosin e |} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
5 \mathrm{Mg} \\
25 \mathrm{Mg}
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
73.70 \\
368.48
\end{array}
$$
\]} \& \& \& \&

\hline \& \& \& \& $$
\begin{aligned}
& 35680 \\
& {[3114-55-4]}
\end{aligned}
$$ \& Chlorobenzene-d5 for NMR spectroscopy, 99 Atom \%D \& \[

$$
\begin{aligned}
& 1 \mathrm{ml} \\
& 5 \mathrm{ml}
\end{aligned}
$$
\] \& 56.59

236.88

\hline \& \& \& \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 33023 \\
& {[59-50-7]}
\end{aligned}
$$} \& \multirow[t]{2}{*}{p-Chloro-m-Cresol (PCMC) pure, 98\%} \& 250 Gms \& 14.34

\hline $$
\begin{aligned}
& 23505 \\
& {[1306-38-3]}
\end{aligned}
$$ \& Ceric Oxide extrapure AR, 99.9\% (Cerium (IV) Oxide) \& \[

$$
\begin{aligned}
& 100 \mathrm{Gms} \\
& 500 \mathrm{Gms}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14.81 \\
& 52.64
\end{aligned}
$$
\] \& \& \& 500 Gms \& 23.95

\hline \multirow[t]{2}{*}{| 92425 |
| :--- |
| [10294-42-5] |} \& \multirow[t]{2}{*}{| Ceric Sulphate Tetrahydrate extrapure AR, 80\% |
| :--- |
| (Ceric (IV) Sulfate Tetrahydrate, Cerium Disulfate Tetrahydrate) |} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
25 \mathrm{Gms} \\
100 \mathrm{Gms} \\
500 \mathrm{Gms}
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
7.24 \\
17.11 \\
68.43
\end{array}
$$

\]} \& | 80908 |
| :--- |
| [88-04-0] | \& 4-Chloro-3,5-Dimethylphenol (PCMX) extrapure, 99\% (4-Chloro-3,5-Xylenol, Chloroxylenol, p-Chloro-m-Xylenol) \& 500 Gms \& 40.27

\hline \& \& \& \& 96712 \& \multirow[t]{2}{*}{Chloroform extrapure, 99\%} \& 500 ml \& 3.95

\hline \multirow[t]{2}{*}{\[
$$
\begin{aligned}
& 10731 \\
& {[10294-42-5]}
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{| Ceric Sulphate Tetrahydrate |
| :--- |
| specially purified, 98\% |
| (Ceric (IV) Sulfate Tetrahydrate, Cerium |
| Disulfate Tetrahydrate) |} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
25 \mathrm{Gms} \\
100 \mathrm{Gms}
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 102.65 \\
& 315.84
\end{aligned}
$$

\]} \& [67-66-3] \& \& \[

$$
\begin{array}{r}
2500 \mathrm{ml} \\
25 \mathrm{Ltr}
\end{array}
$$
\] \& 12.90

98.70

\hline \& \& \& \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 84155 \\
& {[67-66-3]}
\end{aligned}
$$} \& \multirow[t]{2}{*}{Chloroform extrapure AR, 99.5\%} \& 500 ml \& 4.47

\hline $$
\begin{aligned}
& 61414 \\
& {[13590-82-4]}
\end{aligned}
$$ \& Ceric Sulphate 0.1N Solution \& 500 ml \& 8.16 \& \& \& 2500 ml \& 14.48

\hline | 66676 |
| :--- |
| [18618-55-8] | \& | Cerous Chloride Heptahydrate extrapure AR, 99\% |
| :--- |
| (Cerium (III) Chloride Heptahydrate) | \& \[

$$
\begin{array}{r}
25 \mathrm{Gms} \\
100 \mathrm{Gms} \\
500 \mathrm{Gms}
\end{array}
$$
\] \& 9.08

22.37

78.96 \& \[
$$
\begin{aligned}
& 32022 \\
& {[67-66-3]}
\end{aligned}
$$

\] \& | Chloroform extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.8\% |
| :--- |
| meets compendial specs of USP, BP, Ph.Eur | \& \[

$$
\begin{array}{r}
500 \mathrm{ml} \\
2500 \mathrm{ml}
\end{array}
$$
\] \& 5.26

15.79

\hline \[
$$
\begin{aligned}
& 57320 \\
& {[10294-41-4]}
\end{aligned}
$$

\] \& | Cerous Nitrate Hexahydrate extrapure AR, 99.9\% |
| :--- |
| (Cerium (III) Nitrate Hexahydrate, Cerium Trinitrate Hexahydrate) | \& \[

$$
\begin{aligned}
& 100 \mathrm{Gms} \\
& 500 \mathrm{Gms}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 18.42 \\
& 72.38
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 96764 \\
& {[67-66-3]}
\end{aligned}
$$

\] \& Chloroform for molecular biology, 99.8\% \& \[

$$
\begin{aligned}
& 100 \mathrm{ml} \\
& 500 \mathrm{ml}
\end{aligned}
$$
\] \& 5.92

23.69
5.92

\hline \multirow[t]{2}{*}{\[
$$
\begin{aligned}
& 81586 \\
& {[1119-97-7]}
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{| Cetrimide extrapure AR |
| :--- |
| (Tetradecyltrimethyl ammonium bromide), 99\% |
| (Tetradecyltrimethyl Ammonium Bromide) |} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
100 \mathrm{Gms} \\
500 \mathrm{Gms} \\
5 \mathrm{Kg}
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
8.95 \\
27.64 \\
236.88
\end{array}
$$

\]} \& [67-66-3] \& Spectroscopy, 99.8\% \& \[

$$
\begin{aligned}
& 1000 \mathrm{ml} \\
& 2500 \mathrm{ml}
\end{aligned}
$$
\] \& 8.55

18.42

\hline \& \& \& \& $$
\begin{aligned}
& 14423 \\
& {[67-66-3]}
\end{aligned}
$$ \& Chloroform GC-HS, 99.9\% \& \[

$$
\begin{aligned}
& 250 \mathrm{ml} \\
& 500 \mathrm{ml}
\end{aligned}
$$
\] \& 7.24

11.84

\hline $$
\begin{aligned}
& 33001 \\
& {[8005-44-5]}
\end{aligned}
$$ \& Cetostearyl Alcohol pure \& \[

$$
\begin{array}{r}
500 \mathrm{Gms} \\
5 \mathrm{Kg}
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
10.79 \\
105.28
\end{array}
$$
\] \& \& \& 1000 ml \& 19.74

\hline $$
\begin{aligned}
& 40629 \\
& {[36653-82-4]}
\end{aligned}
$$ \& Cetyl Alcohol pure, 98\% (1-Hexadecanol) \& \[

$$
\begin{array}{r}
500 \mathrm{Gms} \\
5 \mathrm{Kg}
\end{array}
$$
\] \& 6.58

59.22 \& $$
\begin{aligned}
& 51126 \\
& {[67-66-3]}
\end{aligned}
$$ \& Chloroform Dried, 99.5\%, water 0.005\% \& \[

$$
\begin{array}{r}
500 \mathrm{ml} \\
1000 \mathrm{ml} \\
2500 \mathrm{ml}
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
6.58 \\
12.77 \\
28.69
\end{array}
$$
\]

\hline \multirow[t]{2}{*}{\[
$$
\begin{aligned}
& 83438 \\
& {[7440-44-0]}
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{| Charcoal Activated (280) extrapure AR, ACS, ExiPlus, Multi-Compendial |
| :--- |
| (Activated Carbon) meets compendial specs of USP, BP, Ph.Eur |} \& \multirow[t]{2}{*}{| 100 Gms |
| :--- |
| 500 Gms |
| 5 Kg |} \& 3.16

6.71

57.38 \& \multirow[t]{2}{*}{$$
\begin{gathered}
90603 \\
{[865-49-6]} \\
\hline 20996 \\
{[865-49-6]}
\end{gathered}
$$} \& Chloroform-d (w/o TMS, Stab w/ Ag) for NMR spectroscopy, 99.8 Atom \%D \& 100 ml \& 115.81

\hline \& \& \& \& \& Chloroform-d (with 1\% TMS, Stab w/ Ag) for NMR spectroscopy, 99.8 Atom \%D \& 100 ml \& 123.70

\hline \[
$$
\begin{aligned}
& 48088 \\
& {[7440-44-0]}
\end{aligned}
$$

\] \& | Charcoal Activated (950) Granular extrapure |
| :--- |
| (Activated Carbon) | \& \[

$$
\begin{array}{r}
500 \mathrm{Gms} \\
5 \mathrm{Kg}
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
7.24 \\
64.62
\end{array}
$$

\] \& \[

$$
\begin{gathered}
57034 \\
{[865-49-6]}
\end{gathered}
$$
\] \& Chloroform-d (with 0.03\% TMS, Stab w/ Ag) for NMR spectroscopy,99.8 Atom \%D \& 100 ml \& 119.76

\hline
\end{tabular}

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 42752 \\ & {[10026-24-1]} \end{aligned}$	Cobalt (II) Sulphate Heptahydrate extrapure AR, 99\% (Cobaltous Sulphate Heptahydrate)	100 Gms 250 Gms 500 Gms	10.53 25.00 48.69	$\begin{aligned} & 57060 \\ & {[6046-93-1]} \end{aligned}$	Cupric Acetate Monohydrate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% (Copper (II) Acetate Monohydrate) meets compendial specs of BP, Ph.Eur	250 Gms	24.87
46069	Cocktail 'O' scintillation grade	1000 ml	11.98				
		2500 ml	23.95	11204 [7789-45-9]	Cupric Bromide pure, 99\% (Copper (II) Bromide)	100 Gms	18.16
48656	Cocktail 'T' scintillation grade	1000 ml	11.19			500 Gms	77.25
		2500 ml	23.16	$\begin{aligned} & 13945 \\ & \text { [12069-69-1] } \end{aligned}$	Cupric Carbonate Basic pure, 95\% (Copper (II) Carbonate Basic, Copper (II) Hydroxide Carbonate)	500 Gms	20.53
38087	Cocktail 'W' scintillation grade	1000 ml	24.48			5 Kg	189.50
		2500 ml	57.11	92315 [7447-39-4]	Cupric Chloride pure, 98\% (Copper (II) Chloride)	500 Gms	14.48
36672	Collodion Flexible pure	500 ml	26.58			1 Kg	27.64
57380	Copper AAS Standard Solution in 1N HNO3 (Traceable to NIST)	$\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned}$	21.06 34.22	89797 [10125-13-0]	Cupric Chloride Dihydrate ACS, ExiPlus, Multi-Compendial, 99\% (Copper (II) Chloride Dihydrate) meets compendial specs of USP	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	12.90 25.66
$\begin{aligned} & 72033 \\ & \text { [7440-50-8] } \end{aligned}$	Copper Metal powder extrapure, 99.5\%, - 200 mesh	500 Gms	28.69				
				$\begin{aligned} & 92272 \\ & {[10125-13-0]} \end{aligned}$	Cupric Chloride 0.3M Solution	500 ml	9.21
$\begin{aligned} & 42577 \\ & {[7440-50-8]} \end{aligned}$	Copper Metal Turnings, 99.5\%, 40-100 mesh	100 Gms	6.58			1000 ml	16.45
		500 Gms	26.32	$\begin{aligned} & 87367 \\ & \text { [10031-43-3] } \end{aligned}$	Cupric Nitrate Trihydrate extrapure, 98\% (Copper (II) Nitrate Trihydrate)	250 Gms	7.24
$\begin{aligned} & 28007 \\ & {[95-48-7]} \end{aligned}$	o-Cresol pure, 98\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	7.24 32.90			500 Gms	12.90
$\begin{aligned} & 77744 \\ & {[108-39-4]} \end{aligned}$	m-Cresol pure, 98\% (3-Methylphenol)	500 ml 2500 ml	18.42 82.91	$\begin{aligned} & 46704 \\ & \text { [10031-43-3] } \end{aligned}$	Cupric Nitrate Trihydrate ACS, 99.5\% (Copper (II) Nitrate Trihydrate)	500 Gms	15.13
$\begin{aligned} & 48620 \\ & {[108-39-4]} \end{aligned}$	m-Cresol extrapure AR, 99\% (3-Methylphenol)	500 ml	23.69	$\begin{aligned} & 51120 \\ & {[1317-38-0]} \end{aligned}$	Cupric Oxide pure, 79\% Cu (Copper (II) Oxide)	100 Gms 500 Gms	$\begin{array}{r} 5.53 \\ 22.37 \end{array}$
$\begin{aligned} & 63997 \\ & {[106-44-5]} \end{aligned}$	p-Cresol pure, 98.5\%	500 ml	12.50			5 Kg	210.56
		2500 ml	57.90	35119	Cupric Sulphate Anhydrous extrapure, 99\% (Copper (II) Sulphate Anhydrous)	100 Gms	7.24
$\begin{aligned} & 89599 \\ & {[1733-12-6]} \end{aligned}$	Cresol Red	5 Gms	3.03	[7758-98-7]		500 Gms	23.69
		$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	7.90 28.95	$\begin{aligned} & 61103 \\ & {[7758-98-7]} \end{aligned}$	Cupric Sulphate Anhydrous extrapure AR, 99\%	100 Gms 500 Gms	$\begin{array}{r} 9.21 \\ 26.32 \end{array}$
$\begin{aligned} & 21442 \\ & {[10510-54-0]} \end{aligned}$	Cresyl Violet Acetate, 70\%	1 Gms	8.95		(Copper (II) Sulphate Anhydrous)		
		5 Gms	39.48	58352 [7758-98-7]	Cupric Sulphate Anhydrous ExiPlus, Multi-Compendial, 99\% (Copper (II) Sulphate Anhydrous) meets compendial specs of USP,Eu Ph	100 Gms	15.79
$\begin{aligned} & 28376 \\ & {[548-62-9]} \end{aligned}$	Crystal Violet (Gentian Violet) (Methyl Violet 10B, C.I. No. 42555)	25 Gms 100 Gms	8.69 33.03			500 Gms	34.22
		500 Gms	157.79	38869	Cupric Sulphate Pentahydrate	500 Gms	9.21
$\begin{aligned} & 17610 \\ & {[548-62-9]} \end{aligned}$	Crystal Violet (Gentian Violet) ACS, ExiPlus, Multi-Compendial (Methyl Violet 10B, C.I. No. 42555) meets compendial specs of BP, Ph.Eur	25 Gms	10.13	7758-99-89	pure, 99\% (Copper (II) Sulphate Pentahydrate)	5 Kg	85.54
		100 Gms 500 Gms	37.37 179.37	61298 [7758-99-8]	Cupric Sulphate Pentahydrate extrapure AR, 99.5\% (Copper (II) Sulphate Pentahydrate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{aligned} & 10.00 \\ & 96.07 \end{aligned}$
$\begin{aligned} & 94666 \\ & {[17455-13-9]} \end{aligned}$	18-Crown-6-Ether pure, 98\%	25 Gms 100 Gms 500 Gms	$\begin{array}{r} 10.53 \\ 32.90 \\ 144.76 \end{array}$	$\begin{aligned} & 71244 \\ & {[7758-99-8]} \end{aligned}$	Cupric Sulphate Pentahydrate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% (Copper (II) Sulphate Pentahydrate) meets compendial specs of BP, Ph.Eur	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	10.53 100.02
$\begin{aligned} & 74472 \\ & \text { [8014-13-9] } \end{aligned}$	Cumin Seed Oil extrapure, aldehyde 28\%	100 ml	21.06				
		500 ml	78.96	90445 [7758-99-8]	Cupric Sulphate 0.1M Solution	1000 ml	6.97
$\begin{aligned} & 87431 \\ & {[6046-93-1]} \end{aligned}$	Cupric Acetate Monohydrate pure, 98\% (Copper (II) Acetate Monohydrate)	100 Gms 500 Gms	4.74 20.92	$\begin{aligned} & 29497 \\ & {[7787-70-4]} \end{aligned}$	Cuprous Bromide pure, 98.5\% (Copper (I) Bromide)	100 Gms 500 Gms	8.82 42.11
67912 [6046-93-1]	Cupric Acetate Monohydrate extrapure AR, 99\% (Copper (II) Acetate Monohydrate)	250 Gms	18.03	26375 [7758-89-6]	Cuprous Chloride pure, 97\% (Copper (I) Chloride , Copper Monochloride)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 14.48 \\ 164.50 \end{array}$
				21136 [7758-89-6]	Cuprous Chloride ACS, 97\% (Copper (I) Chloride, Copper Monochloride)	250 Gms	18.42

Catalogue 2024-25

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 93095 \\ & {[7681-65-4]} \end{aligned}$	Cuprous lodide extrapure AR, 99\% (Copper (I) lodide)	25 Gms	9.21	$\begin{aligned} & 35751 \\ & {[56-89-3]} \end{aligned}$	L-Cystine extrapure CHR, 99\%	25 Gms	5.92
		100 Gms	32.90			100 Gms	14.48
		500 Gms	157.92			1 Kg	111.86
$\begin{aligned} & 83086 \\ & {[1317-39-1]} \end{aligned}$	Cuprous Oxide pure, $\mathbf{8 6 \%} \mathrm{Cu}$ (Copper (I) Oxide)	100 Gms	8.69			5 Kg	526.40
		500 Gms	33.16	$\begin{aligned} & 83172 \\ & {[56-89-3]} \end{aligned}$	L-Cystine for tissue culture, 99\%	25 Gms	6.84
$\begin{aligned} & 97461 \\ & {[458-37-7]} \end{aligned}$	Curcumin (Turmeric Yellow)	5 Gms	4.61			100 Gms	15.66
		10 Gms	8.55			500 Gms	70.27
		25 Gms	12.90	$\begin{aligned} & 38779 \\ & {[56-89-3]} \end{aligned}$	L-Cystine ExiPlus, Multi-Compendial, 99\%	250 Gms	39.48
		100 Gms	42.77			1 Kg	134.23
$\begin{aligned} & 20259 \\ & {[110-82-7]} \end{aligned}$	Cyclohexane extrapure, 99\%	500 ml	3.42			5 Kg	631.68
		2500 ml	12.90		Meets compendial specs of USP		
		25 Ltr	121.07	$\begin{aligned} & 10323 \\ & {[71-30-7]} \end{aligned}$	Cytosine ExiPlus, Multi-Compendial, 99\%	25 Gms	9.21
$\begin{aligned} & 46616 \\ & {[110-82-7]} \end{aligned}$	Cyclohexane ACS, 99.5\%	500 ml	3.95			100 Gms	32.90
		2500 ml	14.21			500 Gms	105.28
$\begin{aligned} & 23292 \\ & {[110-82-7]} \end{aligned}$	Cyclohexane GC-HS, 99.9\%	250 ml	6.58		meets compendial specs of BP, Ph.Eur		
		1000 ml	11.84	$\begin{aligned} & 56096 \\ & {[13419-61-9]} \end{aligned}$	Decane Sulphonic Acid Sodium Salt Anhydrous for HPLC, 99\%	25 Gms	15.79
$\begin{aligned} & 46300 \\ & {[110-82-7]} \end{aligned}$	Cyclohexane for HPLC \& UV Spectroscopy, 99.9\%		5.92			250 Gms	140.68
			19.74	$\begin{aligned} & 71801 \\ & {[13419-61-9]} \end{aligned}$	Decane Sulphonic Acid Sodium Salt Monohydrate for HPLC, 99\%	25 Gms	15.79
$\begin{aligned} & 92604 \\ & {[110-82-7]} \end{aligned}$	Cyclohexane Dried, 99.5\%, water 0.005\%		5.26			250 Gms	140.68
				$\begin{aligned} & 93995 \\ & {[8049-11-4]} \end{aligned}$	Devardas Alloy (45\% AI, 50\% Cu, $5 \% \mathrm{Zn}$) extrapure	100 Gms	7.76
$\begin{aligned} & 34781 \\ & {[110-82-7]} \end{aligned}$	Cyclohexane ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP, Ph.Eur	500 ml 2500 ml	$\begin{array}{r} 4.47 \\ 15.13 \end{array}$			500 Gms	31.06
				$\begin{aligned} & 37163 \\ & {[8049-11-4]} \end{aligned}$	Devardas Alloy (45\% Al, 50\% Cu, 5\% Zn) extrapure AR, ACS	100 Gms 250 Gms	$\begin{aligned} & 10.40 \\ & 22.24 \end{aligned}$
$\begin{aligned} & 31726 \\ & {[108-94-1]} \end{aligned}$	Cyclohexanone extrapure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	4.61 21.06	$\begin{aligned} & 61500 \\ & {[9004-53-9]} \end{aligned}$	Dextrin (White) practical	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 3.95 \\ 36.85 \end{array}$
$\begin{aligned} & 89635 \\ & {[108-94-1]} \end{aligned}$	Cyclohexanone extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	5.53 26.32	$\begin{aligned} & 42738 \\ & {[50-99-7]} \end{aligned}$	Dextrose extrapure (D-Glucose)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	3.82 31.19
$\begin{aligned} & 12183 \\ & {[108-91-8]} \end{aligned}$	Cyclohexylamine pure, 99\% (Aminocyclohexane)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	5.26 23.69	$\begin{aligned} & 51758 \\ & {[50-99-7]} \end{aligned}$	Dextrose ACS (D-Glucose)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	4.08 37.51
$\begin{aligned} & 45658 \\ & {[108-91-8]} \end{aligned}$	Cyclohexylamine extrapure AR, 99.5\% (Aminocyclohexane)	500 ml	5.66			25 Kg	162.79
		2500 ml	27.64	$\begin{aligned} & 16191 \\ & {[14431-43-7]} \end{aligned}$	Dextrose Monohydrate extrapure AR, ACS, ExiPlus,	500 Gms 5 Kg	3.55 32.77
85606 [91771-62-9]	Cypriol Oil extrapure, 99\% (Cyperus Root Oil (Cyperus Scariosus), Nagarmotha Oil)	100 ml	105.28		Multi-Compendial, 99.5\% (D-Glucose Monohydrate) meets compendial specs of USP, BP	25 Kg	143.31
$\begin{aligned} & 95322 \\ & {[52-90-4]} \end{aligned}$	L-Cysteine extrapure CHR, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	5.40 17.90 76.33	$\begin{aligned} & 40799 \\ & {[3012-65-5]} \end{aligned}$	Diammonium Hydrogen Citrate Anhydrous (Ammonium Citrate Dibasic) ACS, 98\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 9.87 \\ 454.81 \end{array}$
		5 Kg	710.64	$\begin{aligned} & 81434 \\ & {[84-74-2]} \end{aligned}$	Dibutyl Phthalate pure, 98\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	5.26 23.69
$\begin{aligned} & 25961 \\ & {[52-90-4]} \end{aligned}$	L-Cysteine for tissue culture, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 7.90 \\ 18.42 \\ 85.54 \end{array}$	$\begin{aligned} & 12088 \\ & {[79-43-6]} \end{aligned}$	Dichloroacetic Acid pure, 99\%	$\begin{array}{r} 100 \mathrm{ml} \\ 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 31.06 \\ 79.62 \\ 355.32 \end{array}$
$\begin{aligned} & 69029 \\ & \text { [7048-04-6] } \end{aligned}$	L-Cysteine Hydrochloride Monohydrate ExiPlus, Multi-Compendial, 99\%	$\begin{array}{r} 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{aligned} & 12.50 \\ & 46.98 \\ & 82.25 \end{aligned}$ 394.80	$\begin{aligned} & 52153 \\ & {[95-50-1]} \end{aligned}$	1,2-Dichlorobenzene pure, 99\% (o-Dichlorobenzene)	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	5.26 9.87 23.03
	meets compendial specs of USP			$\begin{aligned} & 61012 \\ & {[95-50-1]} \end{aligned}$	1,2-Dichlorobenzene extrapure AR, 99\% (o-Dichlorobenzene)	250 ml 2500 ml	4.21 26.32

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 79510 \\ & {[107-06-2]} \end{aligned}$	1,2-Dichloroethane extrapure, 99% (Ethylene Dichloride)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	3.95 11.84	$\begin{aligned} & 71164 \\ & {[111-42-2]} \end{aligned}$	Diethanolamine pure, 98\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	4.61 18.42
$\begin{aligned} & 69566 \\ & {[107-06-2]} \end{aligned}$	1,2-Dichloroethane extrapure AR, 99.5\% (Ethylene Dichloride)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	4.34 13.42 8.16	$\begin{aligned} & 47001 \\ & {[111-42-2]} \end{aligned}$	Diethanolamine ACS, ExiPlus, Multi-Compendial, 98.5\% meets compendial specs of BP, Ph.Eur	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	5.92 23.69
$\begin{aligned} & 87988 \\ & {[107-06-2]} \end{aligned}$	1,2-Dichloroethane for HPLC \& UV Spectroscopy, 99.9\% (Ethylene Dichloride)	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{array}{r} 8.16 \\ 14.48 \end{array}$	59161	5M Diethanolamine Substrate Buffer(5M DEA w/ 2.5mM MgCl2) for phosphatase	100 ml	29.61
$\begin{aligned} & 63462 \\ & {[107-06-2]} \end{aligned}$	1,2-Dichloroethane Dried, 99.5\%, water 0.005\% (Ethylene Dichloride)	1000 ml	12.50	$\begin{aligned} & 31255 \\ & {[109-89-7]} \end{aligned}$	Diethylamine pure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	4.61 19.74
$\begin{aligned} & 79126 \\ & {[76-54-0]} \end{aligned}$	2,7-Dichlorofluorescein (DCF) extrapure AR, ACS, 90\%					25 Ltr	177.66
		25 Gms	32.90	$\begin{aligned} & 64912 \\ & {[109-89-7]} \end{aligned}$	Diethylamine extrapure AR, 99.5\%	500 ml	5.00
$\begin{aligned} & 56825 \\ & {[75-09-2]} \end{aligned}$	Dichloromethane (DCM) pure, 99\% (Methylene Chloride)	500 ml	3.16			2500 ml	23.69
		$\begin{array}{r} 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	11.84 85.54	$\begin{aligned} & 28298 \\ & {[109-89-7]} \end{aligned}$	Diethylamine for HPLC, 99.5\%	1000 ml	21.06
$\begin{aligned} & 24532 \\ & {[75-09-2]} \end{aligned}$	Dichloromethane (DCM) extrapure AR, 99.5\% (Methylene Chloride)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	3.55 13.42	$\begin{aligned} & 77141 \\ & {[100-37-8]} \end{aligned}$	2-Diethylaminoethanol (DEAE) extrapure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	7.63 36.85
		25 Ltr	94.75	59351	N,N-Diethylaniline pure, 98\%	500 ml	10.53
$\begin{aligned} & 45368 \\ & {[75-09-2]} \end{aligned}$	Dichloromethane (DCM) extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% (Methylene Chloride) meets compendial specs of USP, BP	500 ml	3.95	[91-66-7]		2500 ml	48.69
		2500 ml	15.13	$\begin{aligned} & 44369 \\ & {[91-66-7]} \end{aligned}$	N, N-Diethylaniline extrapure AR, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	13.16 60.54
				36303	Diethyl Carbonate extrapure, 99\%	500 ml	6.58
$\begin{aligned} & 29103 \\ & {[75-09-2]} \end{aligned}$	Dichloromethane (DCM) GC-HS, 99.9\% (Methylene Chloride)	250 ml	5.66	[105-58-8]		2500 ml	30.27
		$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{array}{r} 9.21 \\ 14.48 \end{array}$	$\begin{aligned} & 83040 \\ & {[111-46-6]} \end{aligned}$	Diethylene Glycol (Digol) pure, 98\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	3.95 13.16
$\begin{aligned} & 58628 \\ & {[75-09-2]} \end{aligned}$	Dichloromethane (DCM) for HPLC \& UV Spectroscopy, 99.9\%	500 ml	5.40			25 Ltr	115.81
		1000 ml	7.90	68811	Diethylene Glycol (Digol) extrapure	500 ml	4.61
		2500 ml	17.11	[111-46-6]	AR, 99\%	2500 ml	14.48
$\begin{aligned} & 43551 \\ & {[75-09-2]} \end{aligned}$	Dichloromethane (DCM) Dried, 99.5\%, water 0.005\% (Methylene Chloride)	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	4.47 8.95	$\begin{aligned} & 93616 \\ & {[112-36-7]} \end{aligned}$	Diethylene Glycol Diethyl Ether (Ethyl Diglyme, DEGDEE) pure, 99\%	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	9.87 42.11
$\begin{aligned} & 41512 \\ & {[75-09-2]} \end{aligned}$	Dichloromethane (DCM) for molecular biology, 99.9\% (Methylene Chloride)	250 ml	6.19		(2-Ethoxy Ethyl Ether)		
		500 ml	10.53	$\begin{aligned} & 44284 \\ & {[111-96-6]} \end{aligned}$	Diethylene Glycol Dimethyl Ether (Diglyme, DEGDME) pure, 99\%	$500 \mathrm{ml}$ $2500 \mathrm{ml}$	11.84 52.64
$\begin{aligned} & 93075 \\ & {[1665-00-5]} \end{aligned}$	Dichloromethane-d2 (DCM-d2) for NMR spectroscopy, 99.5 Atom \%D (Methylene Chloride)	10 ml	236.75		(2-Methoxy Ethyl Ether)		500.08
				20882	Diethylene Glycol Monoethyl Ether	500 ml	5.79
$\begin{aligned} & 55287 \\ & {[620-45-1]} \end{aligned}$	2,6-Dichlorophenol Indophenol Sodium Salt extrapure AR, 98\%	1 Gms 5 Gms	4.08 15.79	[111-90-0]	(DGMEE) pure, 98\% (Carbitol, Ethyldiglycol)	2500 ml	25.00
		25 Gms	64.62	$\begin{aligned} & 53422 \\ & {[96-22-0]} \end{aligned}$	Diethyl Ketone (3-Pentanone) extrapure, 99\%	500 ml	15.79
$\begin{aligned} & 35551 \\ & {[620-45-1]} \end{aligned}$	2,6-Dichlorophenol Indophenol Sodium Salt ACS, ExiPlus, Multi-Compendial, 98\% meets compendial specs of USP	1 Gms 5 Gms	$\begin{array}{r} 4.34 \\ 17.63 \end{array}$	$\begin{aligned} & 98389 \\ & {[105-53-3]} \end{aligned}$	Diethyl Malonate extrapure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	7.90 36.85
				$\begin{aligned} & 39378 \\ & {[105-53-3]} \end{aligned}$	Diethyl Malonate extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	9.21 43.43
$\begin{aligned} & 31499 \\ & {[94-75-7]} \end{aligned}$	2,4-Dichlorophenoxyacetic Acid (2,4-D) for tissue culture, 98\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 8.95 \\ 16.45 \\ 66.59 \end{array}$	$\begin{aligned} & 61252 \\ & {[95-92-1]} \end{aligned}$	Diethyl Oxalate pure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	7.90 35.53
$\begin{aligned} & 77833 \\ & {[461-58-5]} \end{aligned}$	Dicyandiamide pure, 98\% (1-Cyanoguanidine, Dicyanodiamide)	500 Gms	9.87	$\begin{aligned} & 75995 \\ & {[6283-63-2]} \end{aligned}$	N,N-Diethyl-p-Phenylenediamine Sulphate Salt (DEPPDA Sulphate) extrapure, 98%	25 Gms 100 Gms	28.95 110.54
$\begin{aligned} & 61335 \\ & {[77-73-6]} \end{aligned}$	Dicyclopentadiene extrapure (Stabilized with BHT), 93\%	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	3.16 11.84		(4-Amino-N,N-Diethylaniline Sulfate Salt)		
		2500 ml	50.01	$\begin{aligned} & 16150 \\ & {[84-66-2]} \end{aligned}$	Diethyl Phthalate pure, 99\%	$500 \mathrm{ml}$	4.74

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price																							
$\begin{aligned} & 66444 \\ & {[67-68-5]} \end{aligned}$	Dimethyl Sulphoxide (DMSO) ACS, ExiPlus, Multi-Compendial, 99.9\% meets compendial specs of Ph.Eur, USP	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	17.11 71.06	$\begin{aligned} & 98342 \\ & {[122-39-4]} \end{aligned}$	Diphenylamine extrapure AR, 99\%	100 Gms 500 Gms	$\begin{array}{r} 3.42 \\ 10.53 \end{array}$																							
				$\begin{aligned} & 41149 \\ & {[122-39-4]} \end{aligned}$	Diphenylamine extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP, BP, Ph.Eur	100 Gms	4.21																							
$\begin{aligned} & 12767 \\ & {[67-68-5]} \end{aligned}$	Dimethyl Sulphoxide (DMSO) GC-HS, 99.9\%	250 ml	12.50			500 Gms	11.84																							
		500 ml	23.69																											
		1000 ml	42.11																											
$\begin{aligned} & 30239 \\ & {[67-68-5]} \end{aligned}$	Dimethyl Sulphoxide (DMSO) for HPLC \& UV Spectroscopy, 99.8\%	500 ml 1000 ml	22.37 39.48	$\begin{aligned} & 62567 \\ & {[538-62-5]} \end{aligned}$	1,5-Diphenylcarbazone (mixture with Diphenylcarbazide) extrapure AR, ACS (Phenylazoformic Acid-2-Phenylhydrazide)	5 Gms 25 Gms	$\begin{array}{r} 7.24 \\ 31.85 \end{array}$																							
$\begin{aligned} & 71545 \\ & {[67-68-5]} \end{aligned}$	Dimethyl Sulphoxide (DMSO) ULSI Semiconductor Grade, 99.9\%	1000 ml 2500 ml	$\begin{aligned} & 118.44 \\ & 236.88 \end{aligned}$			100 Gms	115.41																							
$\begin{aligned} & 66120 \\ & {[67-68-5]} \end{aligned}$	Dimethyl Sulphoxide (DMSO) Dried, 99.5\%, water 0.005\%	500 ml	24.48	$\begin{aligned} & 75522 \\ & {[92-71-7]} \end{aligned}$	2,5-Diphenyloxazole scintillation grade (PPO), 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 22.37 \\ & 81.59 \end{aligned}$																							
$\begin{aligned} & 24075 \\ & {[67-68-5]} \end{aligned}$	Dimethyl Sulphoxide (DMSO) for molecular biology, 99.8\%	100 ml	8.55			500 Gms	342.16																							
		250 ml	17.11	89595	2,5-Diphenyloxazole scintillation	100 Gms	95.41																							
		500 ml	30.27	[92-71-7]	grade (PPO) ExiPlus, Multi-Compendial, 99\%	500 Gms	454.02																							
$\begin{aligned} & 47809 \\ & {[2206-27-1]} \end{aligned}$	Dimethyl Sulphoxide-d6 (DMSO-d6) for NMR spectroscopy, 99.8 Atom \%D	10 Gms	82.91		meets compendial specs of BP																									
		25 Gms	157.92	94777	Propylene Glycol Monomethyl	$500 \mathrm{ml}$	15.79																							
$\begin{aligned} & 69545 \\ & {[2206-27-1]} \end{aligned}$	Dimethyl Sulphoxide-d6 (with 0.03\% TMS) (DMSO-d6 w/ 0.03\% TMS) for NMR spectroscopy, 99.8 Atom \%D	10 Gms 25 Gms	88.17 173.71	[108-65-6]	Ether 2-Acetate (MPA) extrapure, 98\% (1-Methoxy-2-Propyl Acetate, PGMEA, 2-Acetoxy-1-Methoxypropane 1,2-Propanediol 1-Monomethyl Ether 2-	2500 ml	76.33																							
$\begin{aligned} & 42009 \\ & {[96-31-1]} \end{aligned}$	N, N-Dimethylurea (1,3-Dimethylurea) extrapure, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 5.26 \\ 46.06 \\ 210.56 \end{array}$	$\begin{aligned} & 43478 \\ & {[34590-94-8]} \end{aligned}$	Dipropylene Glycol Monomethyl Ether (Mixture of Isomers) extrapure, 99% (DPM, Dowanol)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	5.92 26.32																							
$\begin{aligned} & 43981 \\ & {[117-81-7]} \end{aligned}$	Dioctyl Phthalate pure, 98\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 6.05 \\ 26.32 \end{array}$	$\begin{aligned} & 88738 \\ & {[6106-24-7]} \end{aligned}$	Disodium Tartrate Dihydrate extrapure, 99\%	500 Gms	10.53																							
$\begin{aligned} & 56353 \\ & {[577-11-7]} \end{aligned}$	Dioctyl Sodium Sulfosuccinate (DOSS) ExiPlus, Multi-Compendial, 98\% (Aerosol OT, Ducusate Sodium) meets compendial specs of USP, BP	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 25.00 \\ 236.88 \end{array}$	$\begin{aligned} & 16261 \\ & {[6106-24-7]} \end{aligned}$	Disodium Tartrate Dihydrate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP, BP, Ph.Eur	250 Gms 500 Gms	7.90 13.16																							
$\begin{aligned} & 43324 \\ & {[123-91-1]} \end{aligned}$	1,4-Dioxane pure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	$\begin{array}{r} 5.53 \\ 23.69 \\ 223.72 \end{array}$	12852 [6106-24-7]	Disodium Tartrate Dihydrate Calibration Standard (For Karl Fischer Titration), 99.5\%	100 Gms	76.20																							
				$\begin{aligned} & 88283 \\ & {[112-40-3]} \end{aligned}$	Dodecane extrapure, 99\% (n-Dodecane)	100 ml	17.11																							
$\begin{aligned} & 88797 \\ & {[123-91-1]} \end{aligned}$	1,4-Dioxane extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 6.58 \\ 26.32 \end{array}$			500 ml	72.38																							
$\begin{aligned} & 95536 \\ & {[123-91-1]} \end{aligned}$	1,4-Dioxane extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of BP, Ph.Eur	500 ml 2500 ml	7.90 31.58	$\begin{aligned} & 25821 \\ & {[2386-53-0]} \end{aligned}$	Dodecane Sulphonic Acid Sodium Salt Anhydrous for HPLC, 99\% (Sodium 1-Dodecanesulfonate)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 10.79 \\ & 27.37 \\ & 93.30 \end{aligned}$																							
$\begin{aligned} & 29469 \\ & {[123-91-1]} \end{aligned}$	1,4-Dioxane Dried, 99.5\%, water 0.005\%	500 ml	8.29	56085 [112-53-8]	1-Dodecanol (Dodecyl Alcohol, Lauryl Alcohol) pure, 98\%	500 ml 2500 ml	8.82 40.27																							
$\begin{aligned} & 79218 \\ & {[123-91-1]} \end{aligned}$	1,4-Dioxane GC-HS, 99.9\%	$\begin{array}{r} 250 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{array}{r} 8.03 \\ 28.82 \end{array}$	$\begin{aligned} & 93498 \\ & {[112-53-8]} \end{aligned}$	1-Dodecanol (Dodecyl Alcohol, Lauryl Alcohol) ACS, ExiPlus, Multi-Compendial, 98\% (Lauryl Alcohol) meets compendial specs of USP, BP	500 ml	10.92																							
$\begin{aligned} & 43294 \\ & {[123-91-1]} \end{aligned}$	1,4-Dioxane for HPLC \& UV Spectroscopy, 99.9\%	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	14.48 22.11																											
$\begin{aligned} & 65679 \\ & {[123-91-1]} \end{aligned}$	1,4-Dioxane scintillation grade, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	8.82 16.84 38.30	88147	DPX Mountant for histology	$\begin{array}{r} 250 \mathrm{ml} \\ 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	5.00 9.48 16.32																							
$\begin{aligned} & 82736 \\ & {[646-06-0]} \end{aligned}$	1,3-Dioxolane extrapure AR, 99\%	500 ml	12.37	85675	Dragendorff`s Reagent & 125 ml & 22.37 \\ \hline & & 2500 ml & 55.27 & 1867 & Emulsifying Wax pure & 500 Gms & 5.92 \\ \hline & & & & & & 5 Kg & 55.27 \\ \hline \end{tabular} \begin{tabular}{\|c	c	c	c	c	c	c	c	} \hline Code & Name & Packing & \$ Price & Code & Name & Packing & \$ Price \\ \hline \[\begin{aligned} & 37323 \\ & {[14634-91-4]} \end{aligned} \] & Ferroin Solution AR, ExiPlus, Multi-Compendial meets compendial specs of BP, Ph.Eur & 100 ml & 12.77 & \begin{tabular}{l} \[13142 \] \\ [5995-86-8] \end{tabular} & \begin{tabular}{l} Gallic Acid pure, 98\% \\ (3,4,5-Trihydroxy Benzoic Acid) \end{tabular} & 100 Gms 500 Gms & \[\begin{aligned} & 11.19 \\ & 39.48 \end{aligned} \] \\ \hline \[\begin{aligned} & 82984 \\ & {[13478-10-9]} \end{aligned} \] & Ferrous Chloride Tetrahydrate extrapure, 98\% (Iron (II) Chloride Tetrahydrate) & \[\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array} \] & 7.90 71.72 & \[\begin{aligned} & 42306 \\ & {[5995-86-8]} \end{aligned} \] & Gallic Acid ACS, ExiPlus, Multi-Compendial, 98\% (3,4,5-Trihydroxy Benzoic Acid) meets compendial specs of BP & \begin{tabular}{l} 100 Gms \\ 500 Gms \end{tabular} & 14.48 44.74 \\ \hline \begin{tabular}{l} 94185 \\ [1317-37-9] \end{tabular} & \begin{tabular}{l} Ferrous Sulphide Fused Sticks, 23-27\% S \\ (Iron(II) Sulfide, Ferrous Sulfide) \end{tabular} & \[\begin{aligned} & 1 \mathrm{Kg} \\ & 5 \mathrm{Kg} \end{aligned} \] & 10.53 50.67 & \[\begin{aligned} & 83740 \\ & {[9000-70-8]} \end{aligned} \] & Gelatin Powder ex. Porcine (Type B), \(\mathbf{1 2 0 g}\) Bloom & \[\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array} \] & \[\begin{array}{r} 19.74 \\ 171.08 \end{array} \] \\ \hline \begin{tabular}{l} 93668 \\ [7782-63-0] \end{tabular} & \begin{tabular}{l} Ferrous Sulphate Heptahydrate for tissue culture, 99.5\% \\ (Iron (II) Sulphate Heptahydrate) \end{tabular} & 500 Gms & 5.40 & \multirow[t]{2}{*}{\[\begin{aligned} & 95110 \\ & {[77-06-5]} \end{aligned} \]} & \multirow[t]{2}{*}{Gibberellic Acid (GA3), 90\%} & \[\begin{gathered} 1 \mathrm{Gms} \\ 10 \mathrm{Gms} \end{gathered} \] & \[\begin{array}{r} 1.84 \\ 17.50 \end{array} \] \\ \hline 31929 & Ferrous Sulphate Heptahydrate & 500 Gms & 3.03 & & & 100 Gms & 138.44 \\ \hline [7782-63-0] & \begin{tabular}{l} pure, \(98 \%\) \\ (Iron (II) Sulphate Heptahydrate) \end{tabular} & \[\begin{array}{r} 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array} \] & 18.42 78.96 & \[\begin{aligned} & 24367 \\ & {[468-44-0,} \\ & 510-75-8] \end{aligned} \] & Gibberellic Acid (GA4+7), 90\% & \begin{tabular}{l} 1 Gms \\ 5 Gms \end{tabular} & \[\begin{aligned} & 10.53 \\ & 34.22 \end{aligned} \] \\ \hline \begin{tabular}{l} 97868 \\ [7782-63-0] \end{tabular} & Ferrous Sulphate Heptahydrate extrapure ACS, 99\% (Iron (II) Sulphate Heptahydrate) & \[\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array} \] & \[\begin{array}{r} 3.82 \\ 34.48 \end{array} \] & \multirow[t]{2}{*}{\[\begin{aligned} & 94857 \\ & {[77-06-5]} \end{aligned} \]} & \multirow[t]{2}{*}{Gibberellic Acid (GA3) for tissue culture, 90\%} & \[\begin{array}{r} 25 \mathrm{Gms} \\ 1 \mathrm{Gms} \\ 10 \mathrm{Gms} \end{array} \] & 144.76 2.11 19.61 \\ \hline \[\begin{aligned} & 53072 \\ & {[75-12-7]} \end{aligned} \] & Formamide pure, 98.5\% (Methanamide) & 500 ml 2500 ml & \[\begin{array}{r} 5.79 \\ 27.64 \end{array} \] & & & 100 Gms & 148.44 \\ \hline & & & & \multirow[t]{2}{*}{\[\begin{aligned} & 45881 \\ & {[51811-82-6]} \end{aligned} \]} & \multirow[t]{2}{*}{Giemsa Stain} & \[\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array} \] & 7.90 30.14 \\ \hline \[\begin{aligned} & 71714 \\ & {[75-12-7]} \end{aligned} \] & Formamide extrapure AR, 99.5\% (Methanamide) & \[\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array} \] & \[\begin{array}{r} 7.63 \\ 32.90 \end{array} \] & & & 500 Gms & 144.76 \\ \hline \[\begin{aligned} & 74841 \\ & {[75-12-7]} \end{aligned} \] & \begin{tabular}{l} Formamide extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% \\ meets compendial specs of BP, Ph.Eur \end{tabular} & \[\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array} \] & 8.55 36.85 & 72402 & \begin{tabular}{l} Giemsa Stain Solution \\ (Giemsa Azur-Eosin-Methylene Blue Solution) \end{tabular} & \[\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned} \] & 4.08 8.03 14.48 \\ \hline \[\begin{aligned} & 30349 \\ & {[75-12-7]} \end{aligned} \] & \begin{tabular}{l} Formamide for molecular biology, 99.5\% \\ (Methanamide) \end{tabular} & \[\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array} \] & 11.19 18.42 & \[\begin{aligned} & 20149 \\ & {[56-86-0]} \end{aligned} \] & L-Glutamic Acid extrapure CHR, 99\% & \[\begin{aligned} & 1 \mathrm{Kg} \\ & 5 \mathrm{Kg} \end{aligned} \] & \[\begin{array}{r} 27.64 \\ 118.44 \end{array} \] \\ \hline \[\begin{aligned} & 83256 \\ & {[75-12-7]} \end{aligned} \] & \begin{tabular}{l} Formamide for UV Spectroscopy, 99\% \\ (Methanamide) \end{tabular} & \[\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array} \] & \[\begin{aligned} & 15.79 \\ & 27.64 \end{aligned} \] & \[\begin{aligned} & 50277 \\ & {[56-86-0]} \end{aligned} \] & L-Glutamic Acid for tissue culture, 99\% & \begin{tabular}{l} 100 Gms \\ 500 Gms \end{tabular} & 5.92 19.74 \\ \hline \[\begin{aligned} & 62673 \\ & {[64-18-6]} \end{aligned} \] & Formic Acid extrapure AR, 98\% & 500 ml & 6.58 & \multirow[t]{2}{*}{\[\begin{aligned} & 18376 \\ & {[56-86-0]} \end{aligned} \]} & L-Glutamic Acid ExiPlus, Multi-Compendial, 99\% & \begin{tabular}{l} 100 Gms \\ 250 Gms \end{tabular} & 5.00 9.87 \\ \hline \[\begin{aligned} & 42868 \\ & {[57-48-7]} \end{aligned} \] & \begin{tabular}{l} D-Fructose extrapure \\ (D Fructose, D (-) Fructose) \end{tabular} & \[\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array} \] & \[\begin{array}{r} 7.24 \\ 68.43 \end{array} \] & & \multicolumn{2}{	l	}{meets compendial specs of BP} & 36.85 \\ \hline & & 25 Kg & 329.00 & \multirow[t]{3}{*}{\[\begin{aligned} & 23229 \\ & {[6106-04-3]} \end{aligned} \]} & \multirow[t]{3}{*}{\begin{tabular}{l} L-Glutamic Acid Monosodium Salt Monohydrate (MSG) extrapure, 99\% \\ (Monosodium Glutamate, Monosodium L-Glutamate) \end{tabular}} & 500 Gms & 6.19 \\ \hline \[\begin{aligned} & 68823 \\ & {[57-48-7]} \end{aligned} \] & \begin{tabular}{l} D-Fructose for tissue culture \\ (D Fructose, D (-) Fructose) \end{tabular} & 500 Gms & 12.50 & & & \[\begin{array}{r} 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array} \] & \[\begin{array}{r} 57.38 \\ 258.20 \end{array} \] \\ \hline 86364 & Fumaric Acid pure, 99\% & 500 Gms & 5.26 & & & & \\ \hline [110-17-8] & & \[\begin{array}{r} 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array} \] & \[\begin{array}{r} 50.01 \\ 197.40 \end{array} \] & \multirow[t]{2}{*}{\[\begin{aligned} & 42595 \\ & {[56-81-5]} \end{aligned} \]} & \multirow[t]{2}{*}{Glycerol (Glycerine) Anhydrous pure, 99\%} & \[\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array} \] & \[\begin{array}{r} 3.42 \\ 14.48 \end{array} \] \\ \hline 79503 & Fumaric Acid extrapure AR, 99\% & 500 Gms & 7.90 & & & 25 Ltr & 131.60 \\ \hline [110-17-8] & & 5 Kg & 75.01 & \multirow[t]{2}{*}{\[\begin{aligned} & 77453 \\ & {[56-81-5]} \end{aligned} \]} & \multirow[t]{2}{*}{Glycerol (Glycerine) Anhydrous ACS, 99.5\%} & 500 ml & 3.82 \\ \hline \[97328 \] & \begin{tabular}{l} Fumaric Acid extrapure AR, \\ ExiPlus, Multi-Compendial, 99\% \end{tabular} & 500 Gms & \[10.53 \] & & & 2500 ml & 15.79 \\ \hline & meets compendial specs of BP, Ph.Eur & 5 Kg & 98.70 & \multirow[t]{2}{*}{\[\begin{aligned} & 59991 \\ & {[56-81-5]} \end{aligned} \]} & \multirow[t]{2}{*}{Glycerol (Glycerine) Anhydrous ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP} & \[\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array} \] & 4.34 17.77 \\ \hline \[\begin{aligned} & 14277 \\ & {[632-99-5]} \end{aligned} \] & \begin{tabular}{l} Fuchsin Basic \\ (Basic Fuchsin) (C.I. No. 42510) \end{tabular} & \[25 \text { Gms } \] & 3.68 10.13 & & & & \\ \hline & & 500 Gms & 44.74 & \[\begin{aligned} & 62417 \\ & {[56-81-5]} \end{aligned} \] & Glycerol (Glycerine) for molecular biology, 99.5\% & \[\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned} \] & 3.95 13.82 \\ \hline 62967 & Fusion Mixture extrapure & 500 Gms & 5.66 & \multirow[t]{2}{*}{\[\begin{aligned} & 85916 \\ & {[60-01-5]} \end{aligned} \]} & \multirow[t]{2}{*}{Glycerol Tributyrate (Tributyrin) pure, 97\%} & 100 ml & 15.79 \\ \hline 24016 & Fusion Mixture extrapure AR & 500 Gms & 7.11 & & & 500 ml & 65.80 \\ \hline \end{tabular} \begin{tabular}{	c	c	c	c	c	c	c	c	} \hline Code & Name & Packing & \$ Price & Code & Name & Packing & \$ Price \\ \hline \multirow[t]{2}{*}{\[\begin{aligned} & 25853 \\ & {[56-40-6]} \end{aligned} \]} & \multirow[t]{2}{*}{Glycine pure, 99\%} & \[\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array} \] & \[\begin{array}{r} 7.63 \\ 72.38 \end{array} \] & \[\begin{aligned} & 19123 \\ & {[7782-42-5]} \end{aligned} \] & Graphite Synthetic (Type 2) pure, 97\% C, 100mesh & \[\begin{array}{r} 500 \mathrm{Gms} \\ 2.5 \mathrm{Kg} \end{array} \] & 5.92 27.64 \\ \hline & & 25 Kg & 348.74 & \multirow[t]{2}{*}{\[\begin{aligned} & 26870 \\ & {[7782-42-5]} \end{aligned} \]} & \multirow[t]{2}{*}{Graphite Synthetic (Type 3) pure, 96\% C, 325mesh} & 500 Gms & 7.24 \\ \hline \multirow[t]{2}{*}{\[\begin{aligned} & 66327 \\ & {[56-40-6]} \end{aligned} \]} & \multirow[t]{2}{*}{Glycine extrapure AR, 99.5\%} & 500 Gms & 8.55 & & & 2.5 Kg & 32.90 \\ \hline & & \[\begin{array}{r} 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array} \] & \[\begin{array}{r} 81.59 \\ 381.64 \end{array} \] & \multirow[t]{2}{*}{\[\begin{aligned} & 86601 \\ & {[593-85-1]} \end{aligned} \]} & Guanidine Carbonate extrapure, 99\% & 100 Gms 500 Gms & 5.53 16.45 \\ \hline \multirow[t]{4}{*}{\[\begin{aligned} & 64072 \\ & {[56-40-6]} \end{aligned} \]} & \multirow[t]{4}{*}{Glycine for molecular biology, \[99.5 \% \]} & 100 Gms & 3.16 & & & 5 Kg & 144.76 \\ \hline & & 500 Gms & 14.48 & \multirow[t]{4}{*}{\[\begin{aligned} & 54542 \\ & {[50-01-1]} \end{aligned} \]} & \multirow[t]{4}{*}{Guanidine Hydrochloride (GHC) pure, 99\%} & 100 Gms & 5.79 \\ \hline & & 1 Kg & 26.32 & & & 500 Gms & 18.69 \\ \hline & & 5 Kg & 107.91 & & & 1 Kg & 35.93 \\ \hline \multirow[t]{2}{*}{\[\begin{aligned} & 72938 \\ & {[56-40-6]} \end{aligned} \]} & \multirow[t]{2}{*}{Glycine for tissue culture, 99.5\%} & 500 Gms & 10.53 & & & 5 Kg & 172.13 \\ \hline & & 5 Kg & 97.38 & \multirow[t]{4}{*}{\[\begin{aligned} & 45539 \\ & {[50-01-1]} \end{aligned} \]} & \multirow[t]{4}{*}{Guanidine Hydrochloride (GHC) for molecular biology, 99.5\%} & 100 Gms & 9.21 \\ \hline \multirow[t]{2}{*}{\[\begin{aligned} & 52574 \\ & {[56-40-6]} \end{aligned} \]} & \multirow[t]{2}{*}{Glycine for electrophoresis, 99.5\%} & 100 Gms & 18.42 & & & 500 Gms & 36.85 \\ \hline & & 500 Gms & 78.96 & & & 1 Kg & 60.54 \\ \hline \multirow[t]{2}{*}{\[\begin{aligned} & 69422 \\ & {[56-40-6]} \end{aligned} \]} & \multirow[t]{2}{*}{Glycine extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of BP} & 500 Gms & 9.48 & & & 5 Kg & 289.52 \\ \hline & & & 89.49 & \multirow[t]{3}{*}{\[\begin{aligned} & 80272 \\ & {[593-84-0]} \end{aligned} \]} & \multirow[t]{3}{*}{Guanidine Thiocyanate (GTC) for molecular biology, 99\%} & \begin{tabular}{l} 100 Gms \\ 500 Gms \end{tabular} & 10.53 42.11 \\ \hline \multirow[t]{3}{*}{\[\begin{aligned} & 40682 \\ & {[56-40-6]} \end{aligned} \]} & \multirow[t]{3}{*}{Glycine IP} & 1 Kg & 15.79 & & & 1 Kg & 71.06 \\ \hline & & 5 Kg & 65.80 & & & 5 Kg & 342.16 \\ \hline & & 25 Kg & 296.10 & \multirow[t]{4}{*}{\[\begin{aligned} & 68413 \\ & {[50-01-1]} \end{aligned} \]} & \multirow[t]{3}{*}{Guanidine Hydrochloride (GHC) ExiPlus, Multi-Compendial, 99\%} & 250 Gms & 19.74 \\ \hline \multirow[t]{3}{*}{\[\begin{aligned} & 74072 \\ & {[56-40-6]} \end{aligned} \]} & \multirow[t]{3}{*}{Glycine BP} & 1 Kg & 15.79 & & & 1 Kg & 56.59 \\ \hline & & 5 Kg & 65.80 & & & 5 Kg & 263.20 \\ \hline & & 25 Kg & 296.10 & & Meets compendial specs of BP, USP & & \\ \hline \multirow[t]{3}{*}{\[\begin{aligned} & 37449 \\ & {[56-40-6]} \end{aligned} \]} & \multirow[t]{3}{*}{Glycine USP} & 1 Kg & 18.42 & \multirow[t]{2}{*}{\[\begin{aligned} & 20222 \\ & {[9000-30-0]} \end{aligned} \]} & \multirow[t]{2}{*}{Guar Gum extrapure} & 500 Gms & 5.53 \\ \hline & & 5 Kg & 82.25 & & & 5 Kg & 46.06 \\ \hline & & 25 Kg & 394.80 & \multirow[t]{3}{*}{\[\begin{aligned} & 90970 \\ & {[9000-01-5]} \end{aligned} \]} & \multirow[t]{3}{*}{Acacia (Gum Acacia) extrapure (Gum Arabic)} & 500 Gms & 7.37 \\ \hline 38063 & Glycolic Acid extrapure, 70\% soln & 500 ml & 12.50 & & & 5 Kg & 63.56 \\ \hline [79-14-1] & in water & 2500 ml & 56.59 & & & 25 Kg & 310.31 \\ \hline 27194 & Gold AAS Standard Solution in 0.5 N HCl (Traceable to NIST) & \[\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned} \] & \[\begin{array}{r} 55.27 \\ 103.96 \end{array} \] & \[\begin{aligned} & 90938 \\ & {[9000-01-5]} \end{aligned} \] & \begin{tabular}{l} Acacia (Gum Acacia) (enzyme free) extrapure AR \\ (Gum Arabic) \end{tabular} & 500 Gms & 11.19 \\ \hline \multirow[t]{2}{*}{\[\begin{aligned} & 59611 \text { \& } \\ & {[16961-25-4]} \end{aligned} \]} & \multirow[t]{2}{*}{Gold Chloride Hydrate (Tetrachloroauric Acid) ultrapure, 99.99\%, ~49\% Au} & \begin{tabular}{l} 500 Mg \\ 1 Gms \end{tabular} & \[\begin{aligned} & 136.34 \\ & 235.17 \end{aligned} \] & 39758 & Hematoxylin solution (Delafield`s) for microscopy	125 ml	6.45				
		5 Gms	1052.80	78631	Hematoxylin solution (Ehrlich) for microscopy	125 ml	6.45																							
		1 Gms	111.33 210.56	40362	Hematoxylin solution (Harris) for microscopy	125 ml	8.55																							
		5 Gms	921.20	48441	Hematoxylin solution (Mayer`s) for & 100 ml & 3.55 \\ \hline \multirow[t]{2}{*}{\[\begin{aligned} & 81173 \text { \& } \\ & {[13874-02-7]} \end{aligned} \]} & \multirow[t]{2}{*}{Gold Chloride Sodium} & 1 Gms & 184.24 & & microscopy & & \\ \hline & & 5 Gms & 815.92 & \multirow[t]{2}{*}{\[\begin{aligned} & 19241 \\ & {[142-82-5]} \end{aligned} \]} & \multirow[t]{2}{*}{n-Heptane extrapure, 99\%} & 500 ml & 4.74 \\ \hline \[\begin{aligned} & 84763 \\ & {[16903-35-8]} \end{aligned} \] & Gold Chloride Solution 30\% in HCI, 17\% Au & \[\begin{array}{r} 5 \mathrm{ml} \\ 10 \mathrm{ml} \end{array} \] & 302.68 526.40 & & & \[\begin{array}{r} 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array} \] & 19.74 184.24 \\ \hline \[\begin{aligned} & 93281 \text { (i) } \\ & {[13682-61-6]} \end{aligned} \] & \begin{tabular}{l} Gold Potassium Chloride \\ (Potassium Tetrachloroaurate (III)) extrapure, 99.99\% \\ (Gold Potassium Chloride) \end{tabular} & \[\begin{array}{r} 500 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{array} \] & \[\begin{aligned} & 130.55 \\ & 250.04 \end{aligned} \] & \[\begin{aligned} & 94979 \\ & {[142-82-5]} \end{aligned} \] & n-Heptane extrapure AR, 99\% & \[\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array} \] & \[\begin{array}{r} 5.66 \\ 23.69 \\ 223.72 \end{array} \] \\ \hline \multirow[t]{2}{*}{10436} & \multirow[t]{2}{*}{Gram`s lodine, 33\% I}	5 Gms 25 Gms 100 Gms	$\begin{array}{r} 4.34 \\ 11.84 \\ 46.06 \end{array}$	$\begin{aligned} & 96979 \\ & {[142-82-5]} \end{aligned}$	n-Heptane extrapure AR, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP, BP, Ph.Eur	500 ml 2500 ml	6.05 27.64																			
		500 Gms	217.14	90731	n-Heptane for HPLC \& UV	500 ml	7.90																							
$\begin{aligned} & 59538 \\ & {[7782-42-5]} \end{aligned}$	Graphite Synthetic (Type 1) pure, 98\% C, 50mesh	$\begin{array}{r} 500 \mathrm{Gms} \\ 2.5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 4.61 \\ 19.74 \end{array}$	[142-82-5]	Spectroscopy, 99.5\%	1000 ml	14.48																							

Catalogue 2024-25

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
94373 [22767-50-6]	Heptane Sulphonic Acid Sodium Salt Anhydrous for HPLC, 99\%	25 Gms	15.79	$\begin{aligned} & 70389 \\ & {[107-41-5]} \end{aligned}$	Hexylene Glycol pure, 99\%	500 ml	10.53
		100 Gms	57.38			2500 ml	48.69
		250 Gms	140.68			25 Ltr	460.60
$\begin{aligned} & 55272 \\ & {[207300-90-1]} \end{aligned}$	Heptane Sulphonic Acid Sodium Salt Monohydrate for HPLC, 99\%	25 Gms	15.79	$\begin{aligned} & 38885 \\ & {[351-50-8]} \end{aligned}$	D-Histidine extrapure, 99\%	5 Gms	39.87
		100 Gms	57.38			25 Gms	105.28
		250 Gms	140.68	$\begin{aligned} & 94495 \\ & {[71-00-1]} \end{aligned}$	L-Histidine (base) extrapure CHR, 99\%	25 Gms	10.53
$\begin{aligned} & 55120 \\ & {[111-70-6]} \end{aligned}$	1-Heptanol extrapure, 98\% (n-Heptanol, n-Heptyl Alcohol)	500 ml	18.42			100 Gms	36.85
		2500 ml	85.54			500 Gms	171.08
$\begin{aligned} & 60805 \\ & {[67-72-1]} \end{aligned}$	Hexachloroethane pure, 99\%	500 Gms	8.55			1 Kg	322.42
		5 Kg	78.96			5 Kg	1526.56
$\begin{aligned} & 36027 \text { \& } \\ & {[18497-13-7]} \end{aligned}$	Hexachloroplatinic Acid Hexahydrate (Platinum Chloride Hexahydrate) ACS, 38-40\% Pt (Platinic Chloride Hexahydrate)	250 Mg	32.90	$\begin{aligned} & 42437 \\ & {[71-00-1]} \end{aligned}$	L-Histidine ExiPlus, Multi-Compendial, 99\%	25 Gms	13.16
		1 Gms	76.33			100 Gms	44.61
		5 Gms	342.16			1 Kg	342.16
		25 Gms	1579.20		meets compendial specs of USP, BP,		
$\begin{aligned} & 37465 \\ & {[629-73-2]} \end{aligned}$	1-Hexadecene (Cetene) extrapure, 95\%	250 ml 500 ml	37.51		Ph.Eur		
			59.22	$\begin{aligned} & 28061 \\ & {[5934-29-2]} \end{aligned}$	L-Histidine Hydrochloride Monohydrate extrapure CHR, 99\%	25 Gms	9.34
$\begin{aligned} & 81451 \\ & {[100-97-0]} \end{aligned}$	Hexamine pure, 99\% (Hexamethylenetetramine, HMTA)	500 Gms	3.95			500 Gms	105.28
		5 Kg	34.22			1 Kg	186.87
$\begin{aligned} & 92391 \\ & {[100-97-0]} \end{aligned}$	Hexamine extrapure AR, 99.5\%	500 Gms	4.61			5 Kg	894.88
		5 Kg	39.48	$\begin{aligned} & 51565 \\ & {[4998-57-6]} \end{aligned}$	DL-Histidine extrapure, 99\%	5 Gms	26.32
$\begin{aligned} & 91454 \\ & {[110-54-3]} \end{aligned}$	n-Hexane pure, 95\%	500 ml	6.58			25 Gms	105.28
		2500 ml	30.27			100 Gms	394.80
		25 Ltr	250.04	$\begin{aligned} & 40599 \\ & {[12055-62-8]} \end{aligned}$	Holmium (III) Oxide ultrapure, 99.9\%	5 Gms	26.32
$\begin{aligned} & 65764 \\ & {[110-54-3]} \end{aligned}$	n-Hexane for HPLC, 95\%	500 ml	8.16			10 Gms	46.06
		1000 ml	15.79			25 Gms	98.70
		2500 ml	36.85	59764 [68514-28-3]	Humic Acid Potassium Salt (Potassium Humate) pure, 70\% Humic, 15\% Fulvic	500 Gms	5.00
$\begin{aligned} & 77045 \\ & {[110-54-3]} \end{aligned}$	n-Hexane pure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	7.90 34.22			5 Kg	46.06
		25 Ltr	315.84	53931	Hydrazine Hydrate extrapure, 80\%	500 ml	11.84
$\begin{aligned} & 12534 \\ & {[110-54-3]} \end{aligned}$	n-Hexane extrapure AR, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 8.95 \\ 36.85 \end{array}$			2500 ml	52.64 493.50
$\begin{aligned} & 27226 \\ & {[110-54-3]} \end{aligned}$	n-Hexane extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP, BP, Ph.Eur	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 9.74 \\ 39.48 \end{array}$	99313 [10034-93-2]	Hydrazine Sulphate extrapure, 99\%	100 Gms 500 Gms	5.79 25.66
				$\begin{aligned} & 33243 \\ & {[10034-93-2]} \end{aligned}$	Hydrazine Sulphate extrapure AR, 99.5\%	100 Gms 500 Gms	7.24 30.27
$\begin{aligned} & 33823 \\ & {[110-54-3]} \end{aligned}$	n-Hexane for HPLC, 99\%	500 ml	10.53	$\begin{aligned} & 78110 \\ & {[10034-93-2]} \end{aligned}$	Hydrazine Sulphate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP, Ph.Eur	100 Gms	9.34
		1000 ml	19.74			500 Gms	34.35
		2500 ml	46.06				
$\begin{aligned} & 40501 \\ & {[110-54-3]} \end{aligned}$	n-Hexane GC-HS, 99.9\%	250 ml	10.79				
		1000 ml	35.53	21435	Hydrobromic Acid pure, 48-49\% in	500 ml	12.50
$\begin{aligned} & 29114 \\ & {[110-54-3]} \end{aligned}$	n-Hexane Dried, 99\%, water 0.005\%	500 ml	13.82	[10035-10-6]	water	2500 ml	57.90
		1000 ml	26.32	30106	Hydrobromic Acid, 31-34\% in	500 ml	13.82
$\begin{aligned} & 49346 \\ & {[2832-45-3]} \end{aligned}$	Hexane Sulphonic Acid Sodium Salt Anhydrous for HPLC, 99\%	25 Gms	15.79	[10035-10-6]	Glacial Acetic Acid	2500 ml	68.43
		100 Gms	57.38	99790	Hydrochloric Acid 0.1N Aq.	500 ml	2.11
		250 Gms	140.68	[7647-01-0]	Solution	1000 ml	3.82
$\begin{aligned} & 78597 \\ & {[207300-91-2]} \end{aligned}$	Hexane Sulphonic Acid Sodium Salt Monohydrate for HPLC, 99\%	25 Gms	15.79	$\begin{aligned} & 62889 \\ & {[7647-01-0]} \end{aligned}$	Hydrochloric Acid 1N Aq. Solution	500 ml	3.95
		100 Gms	57.38			1000 ml	7.24
		250 Gms	140.68	$\begin{aligned} & 30988 \\ & {[7647-01-0]} \end{aligned}$	Hydrochloric Acid 0.5N Aq.	500 ml	2.37
					Solution	1000 ml	4.34

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price																												
87039	Hydrochloric Acid 2N Aq. Solution	500 ml	4.34	$\begin{aligned} & 65712 \\ & {[288-32-4]} \end{aligned}$	Imidazole pure, 99\%	100 Gms	4.87																												
[7647-01-0]		1000 ml	8.16			500 Gms	19.21																												
$\begin{aligned} & 80096 \\ & \text { [7647-01-0] } \end{aligned}$	Hydrochloric Acid 3N Aq. Solution	500 ml	4.74			5 Kg	157.92																												
		1000 ml	8.69			25 Kg	658.00																												
$\begin{aligned} & 65955 \\ & {[7647-01-0]} \end{aligned}$	Hydrochloric Acid 4N Aq. Solution	500 ml	5.13	$\begin{aligned} & 32822 \\ & {[288-32-4]} \end{aligned}$	Imidazole extrapure AR, 99\%	100 Gms	8.55																												
		1000 ml	9.61			500 Gms	27.24																												
$\begin{aligned} & 72775 \\ & {[7647-01-0]} \end{aligned}$	Hydrochloric Acid 4M Solution in Dioxane	1000 ml	18.42			5 Kg	250.04																												
		2500 ml	45.53			25 Kg	1117.02																												
$\begin{aligned} & 34472 \\ & {[7647-01-0]} \end{aligned}$	Hydrochloric Acid 5N Aq. Solution	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	5.53 10.13	$\begin{aligned} & 78496 \\ & {[288-32-4]} \end{aligned}$	Imidazole extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP, BP, Ph.Eur	100 Gms 500 Gms	8.82 30.66																												
$\begin{aligned} & 17560 \\ & {[7647-01-0]} \end{aligned}$	Hydrochloric Acid 6N Aq. Solution	$\begin{gathered} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{gathered}$	$\begin{array}{r} 5.79 \\ 10.66 \end{array}$																																
				$\begin{aligned} & 61510 \\ & {[288-32-4]} \end{aligned}$	Imidazole for molecular biology,99.5\%	25 Gms	6.58																												
$\begin{aligned} & 79661 \\ & {[7647-01-0]} \end{aligned}$	Hydrochloric Acid 0.05N Aq. Solution	500 ml	2.63			100 Gms	18.42																												
		1000 ml	4.74			500 Gms	68.43																												
$\begin{aligned} & 40918 \\ & {[7647-01-0]} \end{aligned}$	Hydrochloric Acid 0.01M Aq. Solution	500 ml	2.63	10722	Imidazole for tissue culture, 99.5\%	100 Gms	10.53																												
		1000 ml	4.74	[288-32-4]																															
$\begin{aligned} & 56059 \\ & {[5470-11-1]} \end{aligned}$	Hydroxylamine Hydrochloride pure, 98\%	100 Gms	3.29	$\begin{aligned} & 73017 \\ & \text { [8000-27-9] } \end{aligned}$	Immersion Oil Synthetic for microscopy (Cedarwood Oil Synthetic, Immersion Oil Thickened)		4.21																												
		500 Gms	9.87			125 ml	9.61																												
66164 [5470-11-1]	Hydroxylamine Hydrochloride extrapure AR, 99\%	100 Gms	4.61			500	26.32																												
		500 Gms	14.48			5 Ltr	243.46																												
$\begin{aligned} & 65508 \\ & {[5470-11-1]} \end{aligned}$	Hydroxylamine Hydrochloride extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of BP, Ph.Eur, USP	100 Gms	5.26	63214	Indium AAS Standard Solution in 1N HCI (Traceable to NIST)																														
		500 Gms	16.45			250 ml	34.22																												
				88318	Indole-3-Acetic Acid (IAA) pure,	5 Gms	5.66																												
				[87-51-4]		25 Gms	18.29																												
$\begin{aligned} & 47748 \\ & {[7803-49-8]} \end{aligned}$	Hydroxylamine 50\% Soln. in Water	$\begin{array}{r} 50 \mathrm{ml} \\ 100 \mathrm{ml} \\ 500 \mathrm{ml} \end{array}$	26.32			100 Gms	64.48																												
			46.06	96788	Indole-3-Acetic Acid (IAA) for		8.55																												
			171.08	[87-51-4]	tissue culture, 98%	25 Gms	31.58																												
$\begin{aligned} & 13877 \\ & {[10039-54-0]} \end{aligned}$	Hydroxylamine Sulphate pure, 99\%	100 Gms	3.03			100 Gms	94.75																												
		500 Gms	8.55	$18676 \text { \& }$	Indole-3-Acetonitrile pure, 98\%	5 Gms	20.92																												
$\begin{aligned} & 83032 \\ & {[10039-54-0]} \end{aligned}$	Hydroxylamine Sulphate extrapure AR, ACS, 99\%	100 Gms	3.42	[771-51-7]		25 Gms	78.17																												
		500 Gms	10.92	40407	Indole-3-Butyric Acid (IBA) pure,		6.84																												
$\begin{gathered} 44439 \\ {[622-40-2]} \end{gathered}$	4-(2-Hydroxyethyl)morpholine (4-HEM) extrapure, 99% (2-Morpholinoethanol, 4-Morpholineethanol)	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{array}{r} 5.13 \\ 18.69 \end{array}$			25 Gms 100 Gms	23.16 72.77																												
				$\begin{aligned} & 60289 \\ & {[133-32-4]} \end{aligned}$	Indole-3-Butyric Acid (IBA) for tissue culture, 98%	5 Gms 25 Gms	9.87 34.48																												
$\begin{aligned} & 91113 \\ & {[148-24-3]} \end{aligned}$	8-Hydroxyquinoline (8-Quinolinol) extrapure, 99.5\%	100 Gms				100 Gms	107.65																												
		500 Gms	46.06																																
$\begin{aligned} & 23264 \\ & {[148-24-3]} \end{aligned}$	8-Hydroxyquinoline (8-Quinolinol) extrapure AR, ACS, 99.5\%	100 Gms 500 Gms	$\begin{aligned} & 12.90 \\ & 52.64 \end{aligned}$	[771-50-6]	Indole-3-Carboxylic Acid pure, 99\%	25Gms	16.58 66.19																												
				67892 [7790-99-0]	lodine Monochloride extrapure,	25 Gms	11.71																												
$\begin{aligned} & 26356 \\ & \text { [6303-21-5] } \end{aligned}$	Hypophosphorous Acid pure, 30-32\% in water (Phosphinic Acid)	500 ml	15.79		98\%	100 Gms	36.85																												
						250 Gms	85.54																												
$\begin{aligned} & 92379 \\ & {[6303-21-5]} \end{aligned}$	Hypophosphorous Acid extrapure AR, $\mathbf{5 0 \%}$ in water (Phosphinic Acid)	500 ml	18.42	$\begin{aligned} & 66098 \\ & {[7790-99-0]} \end{aligned}$	Iodine Monochloride Solution (1M in Acetic Acid) (Wij`s Solution) extrapure & \[\begin{aligned} & 250 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned} \] & 21.06 39.48 \\ \hline \multirow[t]{5}{*}{\[\begin{aligned} & 64556 \\ & {[8029-68-3]} \end{aligned} \]} & \multirow[t]{5}{*}{Ichthammol pure, 50\%} & 500 Gms & 65.80 & & (Chloroiodide Solution) & & \\ \hline & & 1 Kg & 118.44 & 40415 & lodine Pentoxide (lodopentoxide) & 25 Gms & 18.42 \\ \hline & & & & [12029-98-0] & extrapure AR, 99\% & 100 Gms & 60.54 \\ \hline & & & & 52539 & lodine Resublimed AR, 99.8\% & 100 Gms & 42.11 \\ \hline & & & & & & 500 Gms & 203.98 \\ \hline \end{tabular} \begin{tabular}{\|c	c	c	c	c	c	c	c	} \hline Code & Name & Packing & \$ Price & Code & Name & Packing & \$ Price \\ \hline \[\begin{aligned} & 13627 \\ & {[108-22-5]} \end{aligned} \] & Isopropenyl Acetate extrapure, 99\% & \[\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned} \] & 9.87 40.80 & 19459 & Lanthanum AAS Standard Solution in 2N HNO3 (Traceable to NIST) & \[\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned} \] & \[\begin{aligned} & 25.00 \\ & 38.16 \end{aligned} \] \\ \hline \[\begin{aligned} & 35858 \\ & {[75-31-0]} \end{aligned} \] & \begin{tabular}{l} Isopropylamine (MIPA) extrapure, 99\% \\ (Monoisopropylamine) \end{tabular} & \[\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array} \] & 6.84 28.69 & \[\begin{aligned} & 70514 \\ & {[143-07-7]} \end{aligned} \] & Lauric Acid pure, C12-99\% (Dodecanoic Acid) & \[\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array} \] & 5.92 55.27 \\ \hline \[\begin{aligned} & 73716 \\ & {[110-27-0]} \end{aligned} \] & Isopropyl Myristate pure, 90\% & \[\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array} \] & 11.32 51.85 & \multirow[t]{2}{*}{\[\begin{aligned} & 90346 \\ & {[1335-32-6]} \end{aligned} \]} & \multirow[t]{2}{*}{\begin{tabular}{l} Lead Subacetate extrapure, Pb content 33\% \\ (Lead (II) Acetate Basic, Lead Hydroxide Acetate, Horne's Compound) \end{tabular}} & \multirow[t]{2}{*}{\[\begin{array}{r} 500 \mathrm{Gms} \\ 2.5 \mathrm{Kg} \\ 5 \mathrm{Kg} \end{array} \]} & \multirow[t]{2}{*}{\[\begin{array}{r} 12.24 \\ 59.61 \\ 114.76 \end{array} \]} \\ \hline \[\begin{aligned} & 32009 \\ & {[110-27-0]} \end{aligned} \] & Isopropyl Myristate ExiPlus, Multi-Compendial, 90\% & \begin{tabular}{l} 500 ml \\ 2500 ml \end{tabular} & 12.63 55.80 & & & & \\ \hline & meets compendial specs of USP, Ph.Eur & & & \multirow[t]{2}{*}{\[\begin{aligned} & 72518 \\ & {[6080-56-4]} \end{aligned} \]} & \multirow[t]{2}{*}{\begin{tabular}{l} Lead (II) Acetate Trihydrate pure, 99\% \\ (Plumbous Acetate Trihydrate, Lead Diacetate) \end{tabular}} & \multirow[t]{2}{*}{\[\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array} \]} & \multirow[t]{2}{*}{\[\begin{array}{r} 6.97 \\ 65.80 \end{array} \]} \\ \hline \[\begin{aligned} & 42822 \\ & {[110-27-0]} \end{aligned} \] & Isopropyl Myristate extrapure AR (0.2um filtered), 98\% & \[\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array} \] & \[\begin{array}{r} 23.95 \\ 103.83 \end{array} \] & & & & \\ \hline \[\begin{aligned} & 36494 \\ & {[9002-13-5]} \end{aligned} \] & Jack Bean Meal ex. Urease extrapure & 100 Gms 500 Gms & 3.55 16.06 & \[\begin{aligned} & 69586 \\ & {[10099-74-8]} \end{aligned} \] & Lead AAS Standard Solution in 0.5N HNO3 (Traceable to NIST) & \[\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned} \] & \[\begin{aligned} & 21.06 \\ & 34.22 \end{aligned} \] \\ \hline & (Crude Urease) & & & \multirow[t]{2}{*}{\[\begin{aligned} & 69789 \\ & {[7758-95-4]} \end{aligned} \]} & \multirow[t]{2}{*}{Lead (II) Chloride Anhydrous extrapure, 98\%} & \multirow[t]{2}{*}{500 Gms} & \multirow[t]{2}{*}{9.21} \\ \hline 20489 & Janus Green B (JG-B), 65\% & 5 Gms & 10.00 & & & & \\ \hline [2869-83-2] & (Diazin Green, Union Green B) & 25 Gms & 40.01 & \multirow[t]{2}{*}{\[\begin{aligned} & 87373 \\ & {[1309-60-0]} \end{aligned} \]} & \multirow[t]{2}{*}{Lead Dioxide (Lead Peroxide) extrapure, \(95 \%\)} & \multirow[t]{2}{*}{\[\begin{aligned} & 100 \mathrm{Gms} \\ & 500 \mathrm{Gms} \end{aligned} \]} & \multirow[t]{2}{*}{\[\begin{array}{r} 6.45 \\ 26.32 \end{array} \]} \\ \hline 86543 & Jenners Stain (Eosin-methylene & 25 Gms & 8.29 & & & & \\ \hline [62851-42-7] & blue) & 100 Gms & 31.45 & \multirow[t]{2}{*}{\[\begin{aligned} & 60843 \\ & \text { [7783-46-2] } \end{aligned} \]} & \multirow[t]{2}{*}{Lead (II) Fluoride pure, 98\% (Plumbous Fluoride)} & \multirow[t]{2}{*}{500 Gms} & \multirow[t]{2}{*}{15.79} \\ \hline 57080 & Kaolin Light extrapure & 500 Gms & 2.63 & & & & \\ \hline [1332-58-7] & & 5 Kg & 11.84 & \[\begin{aligned} & 64972 \\ & {[10099-74-8]} \end{aligned} \] & Lead (II) Nitrate extrapure, 99\% (Plumbous Nitrate, Lead Dinitrate) & \[\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array} \] & \[\begin{array}{r} 7.90 \\ 72.38 \end{array} \] \\ \hline 34469 & Karl Fischer Reagent (Pyridine free, Single Solution) & \[\begin{array}{r} 500 \mathrm{ml} \\ 2 \times 250 \mathrm{ml} \end{array} \] & 42.64 42.64 & \[\begin{aligned} & 68030 \\ & \text { [10099-74-8] } \end{aligned} \] & \begin{tabular}{l} Lead (II) Nitrate ACS, 99\% \\ (Plumbous nitrate, lead dinitrate) \end{tabular} & \[\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array} \] & \[\begin{array}{r} 9.87 \\ 94.75 \end{array} \] \\ \hline \[\begin{aligned} & 62878 \\ & {[79-33-4]} \end{aligned} \] & \begin{tabular}{l} L-Lactic Acid for tissue culture, 88\% \\ (L-(+)-Lactic Acid) \end{tabular} & 100 ml & 7.90 & \multirow[t]{2}{*}{\begin{tabular}{l} 50314 \\ [1317-36-8] \end{tabular}} & \multirow[t]{2}{*}{Lead (II) Oxide (Lead Monoxide, Litharge) pure, 99\%} & 500 Gms 1 Kg & \[\begin{array}{r} 7.90 \\ 14.48 \end{array} \] \\ \hline 93762 & L-Lactic Acid pure, 88\% & 500 ml & 8.69 & & & 5 Kg & 65.80 \\ \hline [79-33-4] & -Lactic A & 2500 ml & 36.85 & \multirow[t]{2}{*}{\[\begin{aligned} & 60795 \\ & {[7446-14-2]} \end{aligned} \]} & \multirow[t]{2}{*}{Lead (II) Sulphate extrapure, 98\% (Anglesite)} & \multirow[t]{2}{*}{500 Gms} & \multirow[t]{2}{*}{10.53} \\ \hline 41242 & L-Lactic Acid extrapure AR, 88\% & 500 ml & 9.21 & & & & \\ \hline [79-33-4] & (L-(+)-Lactic Acid) & 2500 ml & 39.48 & \multirow[t]{2}{*}{\[\begin{aligned} & 18279 \\ & {[1317-36-8]} \end{aligned} \]} & \multirow[t]{2}{*}{Lead (II) Oxide (Lead Monoxide, Litharge) extrapure AR, ACS, 99\%} & \multirow[t]{2}{*}{\begin{tabular}{l} 100 Gms \\ 250 Gms \end{tabular}} & \multirow[t]{2}{*}{\[\begin{array}{r} 5.92 \\ 12.50 \end{array} \]} \\ \hline \multirow[t]{3}{*}{\[\begin{aligned} & 21206 \\ & {[79-33-4]} \end{aligned} \]} & \multirow[t]{3}{*}{L-Lactic Acid extrapure AR, ACS, ExiPlus, Multi-Compendial, 88\% (L-(+)-Lactic Acid) meets compendial specs of BP, Ph.Eur} & \multirow[t]{3}{*}{\[\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array} \]} & \multirow[t]{3}{*}{\[\begin{array}{r} 9.87 \\ 43.43 \end{array} \]} & & & & \\ \hline & & & & & Leishman Staining Solution & 250 ml & 3.95 \\ \hline & & & & \multirow[t]{3}{*}{\begin{tabular}{l} \[82184 \] \\ [12627-53-1] \end{tabular}} & \multirow[t]{3}{*}{Leishman Stain} & 25 Gms & 8.69 \\ \hline \multirow[t]{2}{*}{\[\begin{aligned} & 54492 \\ & {[79-33-4]} \end{aligned} \]} & \multirow[t]{2}{*}{L-Lactic Acid 0.1N Solution} & 500 ml & 3.29 & & & 100 Gms & 28.95 \\ \hline & & 1000 ml & 6.19 & & & 500 Gms & 128.97 \\ \hline \[\begin{aligned} & 41158 \\ & {[79-33-4]} \end{aligned} \] & L-Lactic Acid 1N Solution & \[\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array} \] & \[\begin{array}{r} 5.53 \\ 10.26 \end{array} \] & \multirow[t]{3}{*}{\[\begin{aligned} & 63007 \\ & {[61-90-5]} \end{aligned} \]} & \multirow[t]{3}{*}{L-Leucine extrapure CHR, 99\%} & \begin{tabular}{l} 100 Gms \\ 500 Gms \end{tabular} & \[\begin{array}{r} 8.55 \\ 39.48 \end{array} \] \\ \hline \multirow[t]{2}{*}{97513} & \multirow[t]{2}{*}{Lacto Fuchsin Staining Solution} & \multirow[t]{2}{*}{100 ml} & \multirow[t]{2}{*}{5.79} & & & \multirow[t]{2}{*}{\[\begin{aligned} & 1 \mathrm{Kg} \\ & 5 \mathrm{Kg} \end{aligned} \]} & \multirow[t]{2}{*}{\[\begin{array}{r} 72.38 \\ 329.00 \end{array} \]} \\ \hline & & & & & & & \\ \hline 92598 & Lactophenol Cotton Blue Solution & 500 ml & 3.95 & \multirow[t]{2}{*}{\[\begin{aligned} & 59178 \\ & {[61-90-5]} \end{aligned} \]} & \multirow[t]{2}{*}{L-Leucine extrapure, ExiPlus, Multi-Compendial, 99\%} & \multirow[t]{2}{*}{\[\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \\ 5 \mathrm{Kg} \end{array} \]} & \multirow[t]{2}{*}{\[\begin{array}{r} 50.01 \\ 92.12 \\ 407.96 \end{array} \]} \\ \hline 20863 & Lactophenol Mountant Solution & 500 ml & 4.34 & & & & \\ \hline \[\begin{aligned} & 25957 \\ & {[10039-26-6,} \\ & 64044-51-5] \end{aligned} \] & Lactose Monohydrate ACS & \[\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array} \] & 8.55 80.28 & \[\begin{aligned} & 75333 \\ & \text { [1305-62-0] } \end{aligned} \] & Lime Water Saturated Solution & 500 ml & 3.68 \\ \hline \[\begin{aligned} & 33525 \\ & \text { [10039-26-6, } \end{aligned} \] & \multirow[t]{2}{*}{Lactose Monohydrate for tissue culture} & 500 Gms 5 Kg & 9.21 83.30 & 75105 & Lithium AAS Standard Solution in 0.5 N HNO3 (Traceable to NIST) & \[\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned} \] & \[\begin{aligned} & 21.06 \\ & 34.22 \end{aligned} \] \\ \hline 64044-51-5] & & & & \multirow[t]{2}{*}{\[\begin{aligned} & 31665 \\ & {[7550-35-8]} \end{aligned} \]} & \multirow[t]{2}{*}{Lithium Bromide Anhydrous extrapure, 99\%} & \multirow[t]{2}{*}{\begin{tabular}{l} 100 Gms \\ 500 Gms \end{tabular}} & \multirow[t]{2}{*}{\[\begin{aligned} & 13.16 \\ & 55.27 \end{aligned} \]} \\ \hline \begin{tabular}{l} \[67091 \] \\ [10039-26-6, \end{tabular} & & 500 Gms & 9.87 & & & & \\ \hline 64044-51-5] & ExiPlus, Multi-Compendial & \multirow[t]{2}{*}{5 Kg} & \multirow[t]{2}{*}{88.17} & \multirow[t]{2}{*}{\[\begin{aligned} & 33662 \\ & {[7550-35-8]} \end{aligned} \]} & \multirow[t]{2}{*}{Lithium Bromide Anhydrous ultrapure, 99.999\% , -10mesh} & \multirow[t]{2}{*}{\[\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array} \]} & \multirow[t]{2}{*}{\[\begin{array}{r} 75.80 \\ 252.67 \end{array} \]} \\ \hline & meets compendial specs of USP, BP \& Ph Eur & & & & & & \\ \hline \end{tabular} \begin{tabular}{	c	c	c	c	c	c	c	c	} \hline Code & Name & Packing & \$ Price & Code & Name & Packing & \$ Price \\ \hline \multirow[t]{3}{*}{\[\begin{aligned} & 73154 \\ & {[554-13-2]} \end{aligned} \]} & \multirow[t]{3}{*}{Lithium Carbonate pure, 98\%} & 100 Gms & 23.69 & \multirow[t]{2}{*}{42603} & \multirow[t]{2}{*}{Lugols lodine 5\% Solution (Conc)} & 125 ml & 21.06 \\ \hline & & 250 Gms & 51.32 & & & 500 ml & 63.17 \\ \hline & & 500 Gms & 98.70 & \multirow[t]{2}{*}{\[\begin{aligned} & 72349 \\ & \text { [7274-88-6] } \end{aligned} \]} & \multirow[t]{2}{*}{D-Lysine Monohydrochloride extrapure, \(99 \%\)} & 5 Gms & 44.74 \\ \hline \multirow[t]{2}{*}{\[\begin{aligned} & 19558 \\ & {[554-13-2]} \end{aligned} \]} & \multirow[t]{2}{*}{Lithium Carbonate extrapure AR, 99\%} & 100 Gms & 26.32 & & & 25 Gms & 171.08 \\ \hline & & 250 Gms & 55.27 & \multirow[t]{4}{*}{\[\begin{aligned} & 30163 \\ & {[56-87-1]} \end{aligned} \]} & \multirow[t]{4}{*}{L-Lysine (free base) Anhydrous extrapure, 98\%} & 10 Gms & 17.90 \\ \hline \multirow[t]{3}{*}{\[\begin{aligned} & 74884 \\ & {[554-13-2]} \end{aligned} \]} & \multirow[t]{3}{*}{\begin{tabular}{l} Lithium Carbonate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% \\ meets compendial specs of BP, Ph.Eur \end{tabular}} & \multirow[t]{3}{*}{250 Gms} & \multirow[t]{3}{*}{59.22} & & & 25 Gms & 42.11 \\ \hline & & & & & & 100 Gms & 118.44 \\ \hline & & & & & & 500 Gms & 460.60 \\ \hline \multirow[t]{3}{*}{\[\begin{aligned} & 39692 \\ & {[7447-41-8]} \end{aligned} \]} & \multirow[t]{3}{*}{Lithium Chloride Anhydrous pure, 99\%} & 100 Gms & 29.61 & \multirow[t]{2}{*}{\[\begin{aligned} & 22527 \\ & {[56-87-1]} \end{aligned} \]} & \multirow[t]{2}{*}{L-Lysine (free base) Anhydrous for tissue culture, 98\%} & \begin{tabular}{l} 10 Gms \\ 25 Gms \end{tabular} & \[20.92 \] \[46.06 \] \\ \hline & & 250 Gms & 71.06 & & & & \\ \hline & & 500 Gms & 138.18 & \multirow[t]{2}{*}{\[\begin{aligned} & 15942 \\ & {[56-87-1]} \end{aligned} \]} & \multirow[t]{2}{*}{L-Lysine (free base) Anhydrous ExiPlus, Multi-Compendial, 98\%} & 10 Gms & 21.06 \\ \hline \multirow[t]{2}{*}{\begin{tabular}{l} 76359 \\ [7447-41-8] \end{tabular}} & \multirow[t]{2}{*}{Lithium Chloride Anhydrous ACS, 99\%} & 100 Gms & 31.58 & & & 100 Gms & 138.18 \\ \hline & & 250 Gms & 75.01 & \multirow[t]{3}{*}{\[\begin{aligned} & 85187 \\ & {[39665-12-8]} \end{aligned} \]} & \multirow[t]{3}{*}{L-Lysine Monohydrate extrapure, 99\%} & 25 Gms & 25.93 \\ \hline 26341 & Lithium Chloride 1M Solution in & 250 ml & 15.13 & & & 100 Gms & 92.51 \\ \hline [7447-41-8] & Acetic Acid & & & & & 500 Gms & 421.12 \\ \hline \[\begin{aligned} & 20003 \\ & {[7447-41-8]} \end{aligned} \] & Lithium Chloride 1M Solution in Ethanol & 250 ml & 17.77 & \[\begin{aligned} & 76199 \\ & {[39665-12-8]} \end{aligned} \] & \begin{tabular}{l} L-Lysine Monohydrate ExiPlus, \\ Multi-Compendial, 99\% \end{tabular} & 25 Gms 100 Gms & 27.77 102.52 \\ \hline \multirow[t]{3}{*}{\begin{tabular}{l} 81034 \\ [7789-24-4] \end{tabular}} & \multirow[t]{3}{*}{Lithium Fluoride pure, 98.5\%} & 25 Gms & 10.53 & \multirow[t]{2}{*}{} & Multi-Compendial, 99\% & & \\ \hline & & 100 Gms & 36.85 & & \multicolumn{2}{	l	}{meets compendial specs of USP} & \\ \hline & & 500 Gms & 157.92 & \multirow[t]{2}{*}{\[\begin{aligned} & 45976 \\ & {[39665-12-8]} \end{aligned} \]} & \multirow[t]{2}{*}{L-Lysine Monohydrate for molecular biology, 99\%} & \multirow[t]{2}{*}{25 Gms} & \multirow[t]{2}{*}{72.38} \\ \hline \multirow[t]{3}{*}{\[\begin{aligned} & 44318 \\ & {[1310-65-2]} \end{aligned} \]} & \multirow[t]{3}{*}{Lithium Hydroxide Anhydrous extrapure, \(98 \%\)} & 25 Gms & 20.40 & & & & \\ \hline & & 100 Gms & 51.32 & \multirow[t]{2}{*}{\[\begin{aligned} & 89361 \\ & {[657-27-2]} \end{aligned} \]} & \multirow[t]{2}{*}{L-Lysine Monohydrochloride extrapure CHR, 99\%} & 100 Gms & 3.29 \\ \hline & & 500 Gms & 243.46 & & & 500 Gms & 14.08 \\ \hline \multirow[t]{2}{*}{\begin{tabular}{l} 52019 \\ [1310-66-3] \end{tabular}} & \multirow[t]{2}{*}{Lithium Hydroxide Monohydrate pure, 99\%} & 100 Gms & 25.00 & \multirow[t]{4}{*}{\[\begin{aligned} & 77872 \\ & {[657-27-2]} \end{aligned} \]} & \multirow[t]{2}{*}{L-Lysine Monohydrochloride ExiPlus, Multi-Compendial, 99\%} & 100 Gms & 5.00 \\ \hline & & 500 Gms & 105.28 & & & 500 Gms & 17.24 \\ \hline \multirow[t]{2}{*}{\[\begin{aligned} & 48204 \\ & {[1310-66-3]} \end{aligned} \]} & \multirow[t]{2}{*}{Lithium Hydroxide Monohydrate ACS, 99\%} & 100 Gms & 27.64 & & meets compendial specs of USP, BP, & & \\ \hline & & 500 Gms & 118.44 & & Ph.Eur & & \\ \hline \multirow[t]{3}{*}{\[\begin{aligned} & 89966 \\ & {[1310-66-3]} \end{aligned} \]} & \multirow[t]{3}{*}{\begin{tabular}{l} Lithium Hydroxide Monohydrate ACS, ExiPlus, Multi-Compendial, 99\% \\ meets compendial specs of USP, \end{tabular}} & 100 Gms & 30.27 & \multirow[t]{2}{*}{\[\begin{aligned} & 35443 \\ & {[16674-78-5]} \end{aligned} \]} & \multirow[t]{2}{*}{Magnesium Acetate Tetrahydrate extrapure, 98\%} & 500 Gms & \[8.82 \] \\ \hline & & 500 Gms & 134.89 & & & 5 Kg & 76.33 \\ \hline & & & & \multirow[t]{2}{*}{\[\begin{aligned} & 53888 \\ & {[16674-78-5]} \end{aligned} \]} & \multirow[t]{2}{*}{Magnesium Acetate Tetrahydrate extrapure AR, 99\%} & 500 Gms & \[10.53 \] \\ \hline \multirow[t]{2}{*}{\[\begin{aligned} & 82712 \\ & \text { [7790-69-4] } \end{aligned} \]} & \multirow[t]{2}{*}{Lithium Nitrate (High Purity) extrapure AR, 99.5\%} & 100 Gms & 39.48 & & & 5 Kg & 92.12 \\ \hline & & 500 Gms & 186.87 & \multirow[t]{4}{*}{\[\begin{aligned} & 64328 \\ & {[16674-78-5]} \end{aligned} \]} & \multirow[t]{4}{*}{Magnesium Acetate Tetrahydrate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP, BP, Ph.Eur} & \multirow[t]{4}{*}{500 Gms} & \multirow[t]{4}{*}{11.84} \\ \hline \multirow[t]{4}{*}{\[\begin{aligned} & 17864 \\ & {[7790-69-4]} \end{aligned} \]} & \multirow[t]{4}{*}{Lithium Nitrate (High Purity) extrapure AR, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP} & 100 Gms & 43.43 & & & & \\ \hline & & 500 Gms & 205.30 & & & & \\ \hline & & & & & & & \\ \hline & & & & \multirow[t]{2}{*}{\begin{tabular}{l} 50488 \\ [16674-78-5] \end{tabular}} & \multirow[t]{3}{*}{Magnesium Acetate Tetrahydrate for molecular biology, 99\%} & 100 Gms & 5.26 \\ \hline \multirow[t]{3}{*}{\begin{tabular}{l} 88181 \\ [10102-25-7] \end{tabular}} & \multirow[t]{3}{*}{Lithium Sulphate Monohydrate ACS, 99\%} & 100 Gms & 23.69 & & & 500 Gms & 15.79 \\ \hline & & 250 Gms & 39.48 & \multirow[t]{2}{*}{52917} & & & \\ \hline & & 500 Gms & 72.38 & & Magnesium AAS Standard Solution in 0.5 N HNO3 (Traceable to NIST) & \[\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned} \] & 21.06 34.22 \\ \hline \multirow[t]{2}{*}{\[\begin{aligned} & 39478 \\ & {[10102-25-7]} \end{aligned} \]} & \multirow[t]{2}{*}{\begin{tabular}{l} Lithium Sulphate Monohydrate ACS, ExiPlus, Multi-Compendial, 99\% \\ meets compendial specs of USP, BP, Ph.Eur \end{tabular}} & 100 Gms 250 Gms & 26.32 44.74 & \[\begin{aligned} & 28935 \\ & {[13446-53-2]} \end{aligned} \] & Magnesium Bromide Hexahydrate pure, 98\% & 500 Gms & 26.32 \\ \hline & & 500 Gms & 81.59 & \begin{tabular}{l} 63818 \\ [39409-82-0] \end{tabular} & \begin{tabular}{l} Magnesium Carbonate Basic Light, 40-45\% MgO \\ (Magnesium Carbonate Light) \end{tabular} & 500 Gms & 5.66 53.96 \\ \hline \multirow[t]{3}{*}{\[\begin{aligned} & 11373 \\ & {[12007-60-2]} \end{aligned} \]} & \multirow[t]{3}{*}{\begin{tabular}{l} Lithium Tetraborate extrapure AR, 98\% \\ (di-Lithium Tetraborate) \end{tabular}} & 25 Gms & 17.11 & \multirow[t]{3}{*}{\[\begin{aligned} & 31196 \\ & {[7786-30-3]} \end{aligned} \]} & \multirow[t]{3}{*}{Magnesium Chloride Anhydrous extrapure, \(98 \%\)} & 100 Gms & 11.05 \\ \hline & & 100 Gms & 59.22 & & & 500 Gms & 17.37 \\ \hline & & 500 Gms & 263.20 & & & 5 Kg & 117.65 \\ \hline \multirow[t]{2}{*}{78724} & \multirow[t]{2}{*}{Lugols lodine 1\% Solution (Conc) (Iodine-Potassium iodide Solution)} & 125 ml & 5.00 & \multirow[t]{2}{*}{\begin{tabular}{l} \[39750 \] \\ [7786-30-3] \end{tabular}} & \multirow[t]{2}{*}{Magnesium Chloride Anhydrous for tissue culture, 98\%} & 100 Gms & 16.06 \\ \hline & & & 17.11 & & & 500 Gms & 38.43 \\ \hline \end{tabular} \begin{tabular}{	c	c	c	c	c	c	c	c	} \hline Code & Name & Packing & \$ Price & Code & Name & Packing & \$ Price \\ \hline \multirow[t]{2}{*}{\begin{tabular}{l} \[43302 \] \\ [7783-35-9] \end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l} Mercuric Sulphate ACS, ExiPlus, Multi-Compendial, 99\% \\ (Mercury (II) Sulphate) \\ meets compendial specs of USP, Ph.Eur \end{tabular}} & \[\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 250 \mathrm{Gms} \end{array} \] & 18.95 56.06 134.23 & \[\begin{aligned} & 59029 \\ & {[67-56-1]} \end{aligned} \] & Methanol pure, 99\% & \[\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array} \] & \[\begin{array}{r} 3.29 \\ 8.82 \\ 75.67 \end{array} \] \\ \hline & & & & 65524 & Methanol extrapure AR, 99.8\% & 500 ml & 3.55 \\ \hline \[\begin{aligned} & 48274 \\ & {[592-85-8]} \end{aligned} \] & \begin{tabular}{l} Mercuric Thiocyanate extrapure, 98\% \\ (Mercury (II) Thiocyanate) \end{tabular} & \[\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered} \] & \[\begin{aligned} & 17.11 \\ & 56.59 \end{aligned} \] & [67-56-1] & & \[\begin{aligned} & 1000 \mathrm{ml} \\ & 2500 \mathrm{ml} \end{aligned} \] & 6.84 9.61 \\ \hline \[\begin{aligned} & 93119 \\ & {[592-85-8]} \end{aligned} \] & \begin{tabular}{l} Mercuric Thiocyanate extrapure AR, ExiPlus, Multi-Compendial, 98\% \\ (Mercury (II) Thiocyanate) meets compendial specs of Ph.Eur \end{tabular} & \[\begin{array}{r} 250 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 250 \mathrm{Gms} \end{array} \] & \[\begin{array}{r} 131.60 \\ \hline 20.40 \\ 68.43 \\ 151.34 \end{array} \] & \[\begin{aligned} & 37152 \\ & {[67-56-1]} \end{aligned} \] & \begin{tabular}{l} Methanol extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.8\% \\ meets compendial specs of USP, BP, Ph.Eur \end{tabular} & \[\begin{gathered} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \\ 2500 \mathrm{ml} \end{gathered} \] & 4.21 7.11 10.79 \\ \hline \multirow[t]{2}{*}{\begin{tabular}{l} \[47184 \] \\ [10112-91-1] \end{tabular}} & \multirow[t]{2}{*}{Mercurous Chloride pure, 98\% (Mercury (I) Chloride, Calomel)} & \[\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered} \] & \[\begin{aligned} & 19.74 \\ & 72.38 \end{aligned} \] & \[\begin{aligned} & 87655 \\ & {[67-56-1]} \end{aligned} \] & Methanol GC-HS, 99.9\% & \[\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array} \] & \[\begin{array}{r} 9.21 \\ 16.19 \end{array} \] \\ \hline & & 250 Gms & 171.08 315.84 & \[\begin{aligned} & 79345 \\ & {[67-56-1]} \end{aligned} \] & Methanol for HPLC \& UV Spectroscopy, 99.8\% & \[\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array} \] & 4.87 6.58 \\ \hline \multirow[t]{3}{*}{\begin{tabular}{l} 37921 \\ [10112-91-1] \end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l} Mercurous Chloride extrapure AR, ACS, 99.5\% \\ (Mercury (I) Chloride, Calomel) \end{tabular}} & 25 Gms & 21.06 & & & 2500 ml & 12.77 \\ \hline & & \begin{tabular}{l} 100 Gms \\ 250 Gms \end{tabular} & 77.64 184.24 & \[\begin{aligned} & 10036 \\ & {[67-56-1]} \end{aligned} \] & Methanol electronic grade, 99.8\% & 2500 ml & 15.66 \\ \hline & & 500 Gms & 342.16 & \[62456 \] & Methanol Dried extrapure AR, & & 4.74 \\ \hline \multirow[t]{2}{*}{\begin{tabular}{l} 36004 \\ [14836-60-3] \end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l} Mercurous Nitrate Dihydrate extrapure, \(97 \%\) \\ (Mercury (I) Nitrate Dihydrate) \end{tabular}} & \[\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered} \] & 17.37 56.59 & [67-56-1] & 99.8\%, water 0.02\% & 1000 ml & 6.58 14.48 \\ \hline & & 250 Gms & 131.60 & 96446 & Methanol for molecular biology, & 500 ml & 11.98 \\ \hline \multirow[t]{2}{*}{\begin{tabular}{l} 44682 \\ [14836-60-3] \end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l} Mercurous Nitrate Dihydrate extrapure AR, ACS, 98\% \\ (Mercury (I) Nitrate Dihydrate) \end{tabular}} & \[\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered} \] & 18.95 72.64 & & & 1000 ml & 21.58 46.19 \\ \hline & & 250 Gms & 177.66 & \[\begin{gathered} 21944 \\ {[811-98-3]} \end{gathered} \] & Methanol-d4 for NMR spectroscopy, 99.8 atom\%D & 10 Gms & 125.02 \\ \hline 84229 & Mercury AAS Standard Solution in 0.5N HNO3 (Traceable to NIST) & \[\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned} \] & 35.53 52.64 & \[\begin{aligned} & 19305 \\ & {[63-68-3]} \end{aligned} \] & L-Methionine extrapure CHR, 99\% & 25 Gms 100 Gms & 4.34 9.21 \\ \hline \multirow[t]{2}{*}{\[\begin{aligned} & 83568 \\ & {[10124-48-8]} \end{aligned} \]} & \multirow[t]{2}{*}{\begin{tabular}{l} Mercury (II) Amidochloride extrapure, 98\% \\ (Ammoniated Mercury) \end{tabular}} & \[\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered} \] & \[\begin{aligned} & 17.11 \\ & 68.43 \end{aligned} \] & & & 1 Kg 5 Kg & 76.33 355.32 \\ \hline & & 500 Gms & & 65167 & Methyl Cellosolve extrapure, 99\% & 500 ml & 5.00 \\ \hline \multirow[t]{2}{*}{\[\begin{aligned} & 43665 \\ & {[108-67-8]} \end{aligned} \]} & \multirow[t]{2}{*}{\begin{tabular}{l} Mesitylene extrapure, 98\% \\ (1,3,5-Trimethyl Benzene) \end{tabular}} & \[500 \mathrm{ml} \] & \[\begin{aligned} & 13.29 \\ & 23.69 \end{aligned} \] & [109-86-4] & & 2500 ml & 23.69 \\ \hline & & \[2500 \text { ml } \] & 23.69 52.64 & \[\begin{aligned} & 38200 \\ & {[109-86-4]} \end{aligned} \] & Methyl Cellosolve extrapure AR, 99.5\% & \[\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array} \] & 5.53 26.32 \\ \hline \[\begin{aligned} & 53383 \quad \text { [7439-97-6] } \end{aligned} \] & Mercury Metal extrapure, 99\% & 250 Gms 500 Gms & \[\begin{aligned} & 157.92 \\ & 302.68 \end{aligned} \] & \begin{tabular}{l} 60451 \\ [108-87-2] \end{tabular} & Methyl Cyclohexane extrapure, 99\% & \[\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array} \] & 7.24 27.37 \\ \hline \[\begin{aligned} & 86556 \\ & {[79-41-4]} \end{aligned} \] & Methacrylic Acid extrapure, 99\% & \[\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array} \] & \[\begin{array}{r} 7.11 \\ 34.22 \end{array} \] & \[\begin{aligned} & 46985 \\ & {[845-10-3]} \end{aligned} \] & Methyl Red Sodium Salt (water soluble) ACS, 95\% & \[\begin{array}{r} 25 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array} \] & 3.55 63.04 \\ \hline \multirow[t]{2}{*}{\[\begin{aligned} & 87726 \\ & {[75-75-2]} \end{aligned} \]} & \multirow[t]{2}{*}{Methanesulphonic Acid (MSA) pure, 99\%} & 100 ml & 2.90 & & (C.I. No. 13020) (Acid Red 2) & & \\ \hline & & \[\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array} \] & \[\begin{array}{r} 10.13 \\ 46.06 \\ 447.44 \end{array} \] & \[\begin{aligned} & 38862 \\ & {[110-26-9]} \end{aligned} \] & N,N-Methylene Bisacrylamide (bis-Acrylamide) pure, 98\% & \[\begin{array}{r} 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array} \] & \[\begin{array}{r} 13.69 \\ 38.30 \\ 289.52 \end{array} \] \\ \hline \multirow[t]{2}{*}{\[\begin{aligned} & 46989 \\ & {[124-63-0]} \end{aligned} \]} & \multirow[t]{2}{*}{Methanesulphonyl Chloride (MSCI) pure, 98\%} & \[\begin{array}{r} 100 \mathrm{ml} \\ 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array} \] & \[\begin{array}{r} 2.90 \\ 9.21 \\ 42.11 \end{array} \] & \[\begin{gathered} 38516 \\ {[110-26-9]} \end{gathered} \] & \(\mathrm{N}, \mathrm{N}-\) Methylene Bisacrylamide (bis-Acrylamide) 3x cryst. extrapure AR, 99.5\% & \[\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array} \] & 7.11 22.37 92.38 \\ \hline & & 25 Ltr & 394.80 & 67320 \& & N,N-Methylene Bisacrylamide 3x & 25 Gms & 7.63 \\ \hline \multirow[t]{2}{*}{\[\begin{aligned} & 46644 \\ & {[124-63-0]} \end{aligned} \]} & \multirow[t]{2}{*}{Methanesulphonyl Chloride (MSCI) extrapure, 99\%} & \[\begin{gathered} 100 \mathrm{ml} \\ 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{gathered} \] & 3.29 9.87 43.43 & [110-26-9] & cryst. for molecular biology, 99.5\% (Bis-Acrylamide) & \begin{tabular}{l} 100 Gms \\ 250 Gms \\ 500 Gms \end{tabular} & 23.95 58.96 113.04 \\ \hline & & 25 Ltr & 414.54 & \[\begin{gathered} 58779 \\ {[110-26-9]} \end{gathered} \] & N,N`-Methylene Bisacrylamide 2\% aq. solution for molecular biology	$\begin{gathered} 25 \mathrm{ml} \\ 100 \mathrm{ml} \end{gathered}$	$\begin{aligned} & 23.69 \\ & 69.09 \end{aligned}$

Catalogue 2024-25

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 60363 \\ & \text { [7220-79-3] } \end{aligned}$	Methylene Blue Trihydrate	25 Gms	5.79	$\begin{aligned} & 49449 \\ & {[493-52-7]} \end{aligned}$	Methyl Red extrapure AR	25 Gms	3.29
		100 Gms	21.58			100 Gms	12.50
		500 Gms	105.28			1 Kg	118.44
97866	Methylene Blue 1\% aq. Solution	125 ml	1.97	$\begin{aligned} & 40431 \\ & {[493-52-7]} \end{aligned}$	Methyl Red ACS, ExiPlus, Multi-Compendial	25 Gms	6.05
		250 ml	3.29			100 Gms	14.34
$\begin{aligned} & 77248 \\ & {[74-88-4]} \end{aligned}$	Methyl lodide (lodomethane) extrapure, 99\%	100 ml	87.78		meets compendial specs of BP, Ph.Eur	1 Kg	128.97
		250 ml	189.24				
64889	Methyl Isobutyl Carbinol extrapure,	500 ml	13.69	$\begin{aligned} & 99983 \\ & {[96-47-9]} \end{aligned}$	2-Methyl Tetrahydrofuran pure, 98\%	100 ml	3.29
[108-11-2]	98\%					500 ml	13.82
$\begin{aligned} & 15926 \\ & {[108-10-1]} \end{aligned}$	Methyl Isobutyl Ketone (MIBK) pure, 98\%	500 ml	4.34			2500 ml	57.90
		2500 ml	18.42			25 Ltr	539.56
		25 Ltr	171.08	$\begin{aligned} & 37689 \\ & {[8004-87-3]} \end{aligned}$	Methyl Violet	25 Gms	2.90
$\begin{aligned} & 61929 \\ & {[108-10-1]} \end{aligned}$	Methyl Isobutyl Ketone (MIBK) extrapure AR, 99.5\%	500 ml	5.13			100 Gms	6.84
		2500 ml	22.37	$\begin{aligned} & 90121 \\ & {[55-55-0]} \end{aligned}$	Metol extrapure, 99\% (4-Methylaminophenol Sulphate)	100 Gms	12.90
		25 Ltr	197.40			500 Gms	55.27
$\begin{aligned} & 10416 \\ & {[108-10-1]} \end{aligned}$	Methyl Isobutyl Ketone (MIBK) for UV spectroscopy, 99.5\%	500 ml	16.06	$\begin{aligned} & 32198 \\ & {[1319-77-3]} \end{aligned}$	Mixed Cresol (Mixture of Ortho, Meta \& Para Cresol)	500 ml	9.87
$\begin{aligned} & 13077 \\ & {[563-80-4]} \end{aligned}$	Methyl Isopropyl Ketone (MIPK) pure, 98\% (3-Methyl-2-Butanone, Isopropyl Methyl Ketone, Methyl Isopropyl Ketone)	$\begin{gathered} 250 \mathrm{ml} \\ 1000 \mathrm{ml} \end{gathered}$	$\begin{aligned} & 24.35 \\ & 94.75 \end{aligned}$				
				$\begin{aligned} & 98254 \\ & {[308080-99-1]} \end{aligned}$	Molecular Sieve 3A (0.3nm) ($1.6-3 \mathrm{~mm}$ Beads)	250 Gms	7.24
						1 Kg	20.13
						5 Kg	80.41
$\begin{aligned} & 72387 \\ & {[109-02-4]} \end{aligned}$	4-Methyl Morpholine pure, 99\% (N-Methyl Morpholine)	$\begin{aligned} & 250 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$		$\begin{aligned} & 72866 \\ & {[70955-01-0]} \end{aligned}$	Molecular Sieve 4A (0.4nm) (1.6-3mm Beads)	250 Gms	7.24
			11.58			1 Kg	20.13
$\begin{aligned} & 70280 \\ & {[547-58-0]} \end{aligned}$	Methyl Orange	25 Gms	2.76			5 Kg	80.41
		$\begin{array}{r} 100 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{array}{r} 7.50 \\ 63.17 \end{array}$	75690 [70955-01-0]	Molecular Sieve 5A (0.5nm) (1.6-3mm Beads)	250 Gms	7.90
						1 Kg	21.58
$\begin{aligned} & 51369 \\ & {[872-50-4]} \end{aligned}$	N-Methyl-2-Pyrrolidone (NMP) extrapure, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	10.53			5 Kg	86.07
			44.74		Molecular Sieve 13X (2-4mm	250 Gms	7.24
$\begin{aligned} & 86263 \\ & {[872-50-4]} \end{aligned}$	N -Methyl-2-Pyrrolidone (NMP) extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	11.19	[63231-69-6]	Beads)	1 Kg	20.13
			47.38			5 Kg	80.41
$\begin{aligned} & 11118 \\ & {[872-50-4]} \end{aligned}$	N-Methyl-2-Pyrrolidone (NMP) extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	11.84	38717	Molybdenum AAS Standard Solution in 0.5 N H2SO4 (Traceable to NIST)	100 ml	21.06
			48.69			250 ml	34.22
				$\begin{aligned} & 31444 \\ & {[1313-27-5]} \end{aligned}$	Molybdenum Trioxide extrapure, 99.5\%	100 Gms 250 Gms 500 Gms	27.64
$\begin{aligned} & 25903 \\ & {[872-50-4]} \end{aligned}$	N-Methyl-2-Pyrrolidone (NMP) GC-HS, 99.9\%	$\begin{array}{r} 250 \mathrm{ml} \\ 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	11.84				65.80
			15.79				128.97
			28.95		Molybdenum Trioxide extrapure AR, ACS, 99.5%	100 Gms	30.27
$\begin{aligned} & 10331 \\ & {[872-50-4]} \end{aligned}$	N-Methyl-2-Pyrrolidone (NMP) for HPLC, 99.5\%	1000 ml	26.32	$\begin{aligned} & 72615 \\ & {[1313-27-5]} \end{aligned}$		250 Gms	69.09
$\begin{aligned} & 90214 \\ & {[872-50-4]} \end{aligned}$	N-Methyl-2-Pyrrolidone (NMP) VLSI Semiconductor Grade, 99.5\%	1000 ml 2500 ml	$\begin{array}{r} 98.70 \\ 203.98 \end{array}$			500 Gms	135.55
				$\begin{aligned} & 49664 \\ & {[7782-91-4]} \end{aligned}$	Molybdic Acid pure, 85\%	100 Gms	21.32
$\begin{aligned} & 89975 \\ & {[872-50-4]} \end{aligned}$	N-Methyl-2-Pyrrolidone (NMP) for molecular biology, 99.5\%	250 ml	10.00			250 Gms 500 Gms	51.32 98.70
$\begin{aligned} & 44055 \\ & {[99-76-3]} \end{aligned}$	Methyl-4-Hydroxybenzoate (Methyl Paraben) ExiPlus, Multi-Compendial, 98-102\% meets compendial specs of USP, BP	500 Gms	17.11	$\begin{aligned} & 98466 \\ & {[7782-91-4]} \end{aligned}$	Molybdic Acid extrapure AR, 85\%	100 Gms	23.03
		5 Kg	157.92			250 Gms	55.27
						500 Gms	105.28
60905 [5026-62-0]	Methyl-4-Hydroxybenzoate Sodium Salt (Methyl Paraben Sodium) ExiPlus, Multi-Compendial, 95-102\% meets compendial specs of USP, BP	500 Gms	15.66	71772 [7782-91-4]	Molybdic Acid extrapure AR, ACS, ExiPlus, Multi-Compendial, 85\% meets compendial specs of USP	100 Gms	26.58
		5 Kg	151.60			250 Gms	57.25
						500 Gms	111.86

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 44630 \\ & {[110-91-8]} \end{aligned}$	Morpholine extrapure, 99\%		8.16	86079	Neissers Stain A (Methylene Blue)	125 ml	2.63
		2500 ml	38.30				
		25 Ltr	290.44	20379	Neissers Stain B (Crystal Violet)	125 ml	2.76
$\begin{aligned} & 96740 \\ & {[110-91-8]} \end{aligned}$	Morpholine extrapure AR, 99.5\%	$\begin{aligned} & 250 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{aligned} & 4.87 \\ & 9.34 \end{aligned}$	23058	Neissers Stain C (Chrysoidine)	125 ml	2.63
$\begin{aligned} & 11287 \\ & {[110-91-8]} \end{aligned}$	Morpholine extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP, Ph.Eur	500 ml	14.34	$\begin{aligned} & 36248 \\ & {[553-24-2]} \end{aligned}$	Neutral Red (High Purity), 85\%	$\begin{array}{r} 10 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 12.50 \\ 28.29 \\ 107.91 \end{array}$
$\begin{aligned} & 98293 \\ & {[3051-09-0]} \end{aligned}$	Murexide (Ammonium Purpurate) extrapure AR, 98\%	5 Gms 25 Gms 100 Gms	$\begin{array}{r} 3.42 \\ 12.90 \\ 49.09 \end{array}$	$\begin{aligned} & 90691 \\ & {[553-24-2]} \end{aligned}$	Neutral Red extrapure AR, 60\% (C.I. No. 50040)	$\begin{array}{r} 10 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 6.58 \\ 14.48 \\ 47.38 \end{array}$
		500 Gms	217.01	$\begin{aligned} & 18559 \\ & {[553-24-2]} \end{aligned}$	Neutral Red (High Purity) ACS, ExiPlus, Multi-Compendial, 85\%	10 Gms 25 Gms	$\begin{aligned} & 13.16 \\ & 30.27 \end{aligned}$
$\begin{aligned} & 99571 \\ & {[3051-09-0]} \end{aligned}$	Murexide (Ammonium Purpurate) extrapure AR, ACS, ExiPlus, Multi-Compendial, 98\%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	4.08 14.34		meets compendial specs of BP		
		100 Gms 500 Gms	51.46 237.80	$\begin{aligned} & 73342 \\ & {[12635-27-7]} \end{aligned}$	Nickel Aluminium Alloy powder, $50 \% \mathrm{Ni}, 50 \% \mathrm{Al}$	100 Gms 500 Gms	$\begin{array}{r} 9.87 \\ 39.48 \end{array}$
	meets compendial specs of Ph.Eur			48615	Nickel AAS Standard Solution in 0.5 N HNO3 (Traceable to NIST)	$100 \mathrm{ml}$	21.06
$\begin{aligned} & 13280 \\ & {[91-20-3]} \end{aligned}$	Naphthalene extrapure AR, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP, Ph.Eur	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{aligned} & 5.53 \\ & 9.21 \end{aligned}$	42591 [6018-89-9]	Nickel (II) Acetate Tetrahydrate pure, 98\% (Nickelous Acetate Tetrahydrate)	$\begin{array}{r} 250 \mathrm{ml} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	34.22 9.74 39.48
$\begin{aligned} & 26320 \\ & {[91-20-3]} \end{aligned}$	Naphthalene scintillation grade, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{array}{r} 7.24 \\ 11.84 \end{array}$	$\begin{aligned} & 66489 \\ & {[958638-02-3]} \end{aligned}$	extrapure, 44-47\% Ni (Nickelous Carbonate Hydroxide	500 Gms	65.01
$\begin{aligned} & 89740 \\ & {[86-87-3]} \end{aligned}$	Naphthalene-1-Acetic Acid (NAA) extrapure, 99\% (1-Naphthylacetic Acid)	$25 \text { Gms }$	2.76		Hydrate, Nickel Hydroxide Carbonate Hydrate)		
		500 Gms	8.42 37.24	$\begin{aligned} & 58481 \\ & {[12607-70-4,} \end{aligned}$	Nickel (II) Carbonate Basic Tetrahydrate extrapure, 44-47\% Ni	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 37.90 \\ 351.37 \end{array}$
$\begin{aligned} & 75928 \\ & {[86-87-3]} \end{aligned}$	Naphthalene-1-Acetic Acid (NAA) for tissue culture, 99\% (1-Naphthylacetic Acid)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 3.42 \\ & 9.21 \end{aligned}$	39430-27-8]	(Nickelous Carbonate Hydroxide Tetrahydrate, Nickel Hydroxide Carbonate Tetrahydrate)		
		500 Gms	43.03	84421	Nickel (II) Chloride Hexahydrate	500 Gms	27.64
$\begin{aligned} & 84226 \\ & {[90-15-3]} \end{aligned}$	a-Naphthol pure, 99\%	$\begin{aligned} & 100 \mathrm{Gms} \\ & 500 \mathrm{Gms} \end{aligned}$	3.95 14.48	[7791-20-0]	pure, 98\% (Nickelous Chloride Hexahydrate)	5 Kg	261.88
$\begin{aligned} & 36309 \\ & {[90-15-3]} \end{aligned}$	a-Naphthol extrapure AR, 99.5\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	2.76 6.84	$\begin{aligned} & 27303 \\ & \text { [7791-20-0] } \end{aligned}$	Nickel (II) Chloride Hexahydrate extrapure AR, 99\% (Nickelous Chloride Hexahydrate)	100 Gms 500 Gms	6.58 28.95
		500 Gms	26.32	10081	Nickel (II) Chloride Hexahydrate	100 Gms	7.63
$\begin{aligned} & 30585 \\ & {[90-15-3]} \end{aligned}$	a-Naphthol extrapure AR, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP, Ph.Eur	100 Gms 500 Gms	8.16 28.95		Multi-Compendial, 99\% (Nickelous Chloride Hexahydrate) meets compendial specs of BP	500 Gms	32.90
				75546	Nickel Metal powder extrapure,	100 Gms	15.92
$\begin{aligned} & 76018 \\ & {[135-19-3]} \end{aligned}$	b-Naphthol pure, 99\%	500 Gms	6.58	[7440-02-0]	99.5\%, ~100 mesh	500 Gms	61.59
$\begin{aligned} & 74770 \\ & {[135-19-3]} \end{aligned}$	B-Naphthol extrapure AR, 99\%	100 Gms 500 Gms	$\begin{array}{r} 4.21 \\ 15.79 \end{array}$	[13478-00-7]	pure, 98\% (Nickelous Nitrate Hexahydrate)		
$\begin{aligned} & 19261 \\ & {[135-19-3]} \end{aligned}$	b-Naphthol extrapure AR, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP, BP, Ph.Eur	100 Gms 500 Gms	4.87 18.42	$\begin{aligned} & 30795 \\ & {[13478-00-7]} \end{aligned}$	Nickel (II) Nitrate Hexahydrate extrapure AR, 99\% (Nickelous Nitrate Hexahydrate)	250 Gms 500 Gms	13.42 24.35
				$\begin{aligned} & 33568 \\ & {[13478-00-7]} \end{aligned}$	Nickel (II) Nitrate Hexahydrate extrapure AR, ACS, ExiPlus,	250 Gms 500 Gms	15.13 26.32
$\begin{aligned} & 77807 \\ & {[145-50-6]} \end{aligned}$	1-Naphtholbenzein extrapure (a-Naphtholbenzein, p-naphtholbenzein, 4,4'- (a-Hydroxybenzylidene)di-1-naphthol)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	11.19 50.01		Multi-Compendial, 99\% (Nickelous Nitrate Hexahydrate) meets compendial specs of Ph. Eur		
				49487	Nickel (II) Oxide pure, 77\% Ni	100 Gms	23.69
				[1313-99-1]	(Nickel Monoxide)	500 Gms	105.28

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 12125 \\ & {[10101-98-1]} \end{aligned}$	Nickel (II) Sulphate Heptahydrate pure, 98\% (Nickelous Sulphate Heptahydrate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	15.13 144.76	$\begin{aligned} & 75010 \\ & {[98-95-3]} \end{aligned}$	Nitrobenzene extrapure AR, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	5.00 22.37
$\begin{aligned} & 93377 \\ & {[10101-98-1]} \end{aligned}$	Nickel (II) Sulphate Heptahydrate extrapure AR, 99\% (Nickelous Sulphate Heptahydrate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	16.45 157.92	$\begin{aligned} & 40208 \\ & {[98-95-3]} \end{aligned}$	Nitrobenzene extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP, BP, Ph.Eur	2500 ml	25.00
$\begin{aligned} & 48105 \\ & {[10101-98-1]} \end{aligned}$	Nickel (II) Sulphate Heptahydrate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% (Nickelous Sulphate Heptahydrate) meets compendial specs of USP, BP, Ph.Eur	100 Gms	10.26				
		500 Gms	17.77	$\begin{aligned} & 20509 \\ & {[75-52-5]} \end{aligned}$	Nitromethane ACS, 98\% (Nitrocarbol, Nitroparaffin)	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{aligned} & 13.95 \\ & 24.61 \\ & 57.38 \end{aligned}$
				$\begin{aligned} & 50337 \\ & {[100-02-7]} \end{aligned}$	p-Nitrophenol pure, 98\% (4-Nitrophenol)	100 Gms	$\begin{array}{r} 3.82 \\ 12.50 \end{array}$
61397	Nickel (II) Sulphate Hexahydrate ACS, 99\%	100 Gms	10.53			500 Gms	
[10101-97-0]	ACS, 99\% (Nickelous Sulphate Heptahydrate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 46.06 \\ 447.44 \end{array}$	$\begin{aligned} & 25170 \\ & {[100-02-7]} \end{aligned}$	p-Nitrophenol (High Purity) extrapure AR, 99.5\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 5.53 \\ 15.66 \end{array}$
$\begin{aligned} & 86097 \\ & {[59-67-6]} \end{aligned}$	Nicotinic Acid (Pyridine-3-Carboxylic Acid) pure, 99\% (3-Picolinic Acid, Niacin, Vitamin B3)	100 Gms 500 Gms	$\begin{array}{r} 5.53 \\ 16.45 \end{array}$			500 Gms	68.96
				$\begin{aligned} & 59687 \\ & {[100-02-7]} \end{aligned}$	p-Nitrophenol (High Purity) extrapure AR, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of BP, Ph.Eur	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 6.32 \\ 17.24 \end{array}$
$\begin{aligned} & 67066 \\ & \text { [8005-03-6] } \end{aligned}$	Nigrosin (water soluble)	100 Gms 500 Gms	$\begin{array}{r} 6.84 \\ 31.58 \end{array}$				
$\begin{aligned} & 75529 \\ & {[11099-03-9]} \end{aligned}$	Nigrosin (alcohol soluble)	100 Gms 500 Gms	$\begin{array}{r} 6.97 \\ 32.90 \end{array}$	$\begin{aligned} & 49301 \\ & {[100-02-7]} \end{aligned}$	p-Nitrophenol for Spectrophotometry, 99.5\% (4-Nitrophenol)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	$\begin{aligned} & 24.61 \\ & 62.38 \end{aligned}$
71131	Nigrosin 10\% w/v Solution	100 ml	2.63	54373 [35192-74-6]	Nonane Sulphonic Acid Sodium Salt Anhydrous for HPLC, 98\% (Sodium 1-Nonanesulfonate)	$5 \mathrm{Gms}$ $25 \text { Gms }$	$\begin{array}{r} 32.90 \\ 144.76 \end{array}$
36317 [2381-85-3]	Nile Blue Chloride	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	$\begin{aligned} & 14.48 \\ & 65.80 \end{aligned}$	$\begin{aligned} & 67956 \\ & {[5324-84-5]} \end{aligned}$	Octane Sulphonic Acid Sodium Salt Anhydrous for HPLC, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 15.79 \\ & 57.38 \end{aligned}$
$\begin{aligned} & 62887 \\ & {[3625-57-8]} \end{aligned}$	Nile Blue Sulphate	$\begin{array}{r} 10 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 10.66 \\ & 21.58 \\ & 78.96 \end{aligned}$			250 Gms	140.68
				$\begin{aligned} & 72554 \\ & {[207596-29-0]} \end{aligned}$	Octane Sulphonic Acid Sodium Salt Monohydrate for HPLC, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 250 \mathrm{Gms} \end{array}$	$\begin{aligned} & 15.79 \\ & 57.38 \end{aligned}$
$\begin{aligned} & 47353 \\ & {[7385-67-3]} \end{aligned}$	Nile Red (Nile Blue A Oxazone)	$\begin{gathered} 100 \mathrm{Mg} \\ 1 \mathrm{Gms} \\ 5 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 39.48 \\ 210.56 \\ 394.80 \end{array}$				140.68
				$\begin{aligned} & 38732 \\ & {[111-87-5]} \end{aligned}$	```1-Octanol (1-Octyl Alcohol) pure, 99% (n-Octanol, n-Octyl Alcohol)```	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 9.87 \\ 46.06 \end{array}$
$\begin{aligned} & 55058 \\ & {[485-47-2]} \end{aligned}$	Ninhydrin extrapure AR, 99\%	$\begin{array}{r} 10 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 9.21 \\ 21.06 \\ 81.59 \end{array}$				
				$\begin{aligned} & 40334 \\ & {[111-87-5]} \end{aligned}$	1-Octanol (1-Octyl Alcohol) for HPLC \& UV Spectroscopy, 99\% (n-Octanol, n-Octyl Alcohol)	$\begin{gathered} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{gathered}$	$\begin{aligned} & 26.32 \\ & 50.01 \end{aligned}$
$\begin{aligned} & 93940 \\ & {[485-47-2]} \end{aligned}$	Ninhydrin extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\%	$\begin{array}{r} 10 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 9.74 \\ 22.37 \\ 85.54 \end{array}$	$\begin{aligned} & 52761 \\ & {[142-31-4]} \end{aligned}$	Octyl Sulphate Sodium Salt for HPLC, 99\% (Sodium Octyl Sulphate, SOS)	5 Gms 25 Gms	$\begin{array}{r} 30.66 \\ 130.02 \end{array}$
	meets compendial specs of BP, Ph.Eur			$\begin{aligned} & 87572 \\ & {[112-80-1]} \end{aligned}$	Oleic Acid pure, 65\% (cis-9-Octadecenoic acid, Elainic acid)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 6.45 \\ 26.19 \end{array}$
$\begin{aligned} & 48081 \\ & {[139-13-9]} \end{aligned}$	Nitrilotriacetic Acid (NTA) extrapure AR, ACS, 99\% (N,N-Bis(carboxymethyl)glycine, Tris(carboxymethyl)amine)	100 Gms 500 Gms	$\begin{array}{r} 3.95 \\ 14.48 \end{array}$	$\begin{gathered} 28460 \\ {[112-80-1]} \end{gathered}$	Oleic Acid Reference Standard, 99\%(GC)	1 Gms 5 Gms 25 Gms	$\begin{array}{r} 15.79 \\ 39.48 \\ 144.76 \end{array}$
$\begin{aligned} & 15319 \\ & {[88-74-4]} \end{aligned}$	o-Nitroaniline extrapure, 99\%	250 Gms	9.74	$\begin{aligned} & 55081 \\ & {[112-80-1]} \end{aligned}$	Oleic Acid extrapure, 98\% (cis-9-Octadecenoic acid, Elainic acid)	$\begin{gathered} 25 \mathrm{ml} \\ 100 \mathrm{ml} \end{gathered}$	$\begin{aligned} & 39.48 \\ & 72.38 \end{aligned}$
$\begin{aligned} & 34003 \\ & {[99-09-2]} \end{aligned}$	m-Nitroaniline extrapure, 99\%	250 Gms	23.03				
$\begin{aligned} & 99409 \\ & {[100-01-6]} \end{aligned}$	p-Nitroaniline extrapure, 98\%	250 Gms	8.82	$\begin{aligned} & 87519 \\ & {[112-90-3]} \end{aligned}$	Oleylamine pure, 95\% (cis-9-Octadecenylamine)	$\begin{array}{r} 250 \mathrm{ml} \\ 1000 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 5.13 \\ 19.08 \\ 43.43 \end{array}$
69114	p-Nitroaniline (High Purity) extrapure AR, 99.5\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 4.47 \\ 11.58 \end{array}$				
[100-01-6]				$\begin{aligned} & 79576 \\ & {[8001-25-0]} \end{aligned}$	Olive Oil	100 ml	6.58
$\begin{aligned} & 55410 \\ & {[98-95-3]} \end{aligned}$	Nitrobenzene pure, 98\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 4.47 \\ 19.74 \end{array}$			250 ml	11.84 19.74

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
13756 [1936-15-8]	Orange G	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 3.42 \\ 10.66 \end{array}$	$\begin{aligned} & 92345 \\ & {[7440-05-3]} \end{aligned}$	Palladium 5\% On Asbestos	$\begin{gathered} 1 \mathrm{Gms} \\ 10 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 34.74 \\ 157.92 \end{array}$
$\begin{aligned} & 66366 \\ & {[504-15-4]} \end{aligned}$	Orcinol Anhydrous extrapure (3,5dihydroxytoluene), 99\%	$\begin{gathered} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{gathered}$	$\begin{aligned} & 21.58 \\ & 54.22 \end{aligned}$	$\begin{aligned} & 57033 \\ & {[7440-05-3]} \end{aligned}$	Palladium 10\% On Asbestos	$\begin{gathered} 1 \mathrm{Gms} \\ 10 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 44.22 \\ 284.26 \end{array}$
		100 Gms	135.28	44002 [7440-05-3]	Palladium 5\% On Activated Carbon	1 Gms	26.32
$\begin{aligned} & 49330 \\ & {[6153-39-5]} \end{aligned}$	Orcinol Monohydrate extrapure (3,5- dihydroxytoluene monohydrate), 99\%	10 Gms 25 Gms	$\begin{aligned} & 12.77 \\ & 30.27 \end{aligned}$			10 Gms 50 Gms	$\begin{aligned} & 125.02 \\ & 500.08 \end{aligned}$
		100 Gms	93.96	$\begin{aligned} & 45685 \\ & {[7440-05-3]} \end{aligned}$	Palladium 5\% On Activated Carbon (50\% wet)	1 Gms	14.48
$\begin{aligned} & 36916 \\ & \text { [6153-39-5] } \end{aligned}$	Orcinol Monohydrate ExiPlus, Multi-Compendial (3,5dihydroxytoluene monohydrate), 99\% meets compendial specs of USP, BP	10 Gms 25 Gms	$\begin{aligned} & 15.66 \\ & 35.14 \end{aligned}$			10 Gms 50 Gms	62.51 250.04
		100 Gms	100.28	$\begin{aligned} & 52944 \\ & {[7440-05-3]} \end{aligned}$	Palladium 10\% On Activated Carbon	1 Gms 10 Gms	$\begin{array}{r} 32.90 \\ 236.88 \end{array}$
36678 [7664-38-2]	Orthophosphoric Acid extrapure, 85\% (Phosphoric Acid)		6.58			50 Gms	987.00
		2500 ml 20 Ltr	26.32 197.40	$\begin{aligned} & 46494 \\ & {[7440-05-3]} \end{aligned}$	Palladium 10\% On Activated Carbon (50\% wet)	1 Gms 10 Gms	19.08 118.44
$\begin{aligned} & 50056 \\ & {[7664-38-2]} \end{aligned}$	Orthophosphoric Acid extrapure AR, ACS, 85\% (Phosphoric Acid)	$500 \mathrm{ml}$	7.50			50 Gms	493.50
		2500 ml	30.27	$\begin{aligned} & 40822 \\ & {[7440-05-3]} \end{aligned}$	Palladium 10\% on Calcium Carbonate	1 Gms 5 Gms	31.58 105.28
$\begin{aligned} & 38048 \\ & {[7664-38-2]} \end{aligned}$	Orthophosphoric Acid for HPLC \& UV Spectroscopy, 85\%	250 ml	17.77			5 Gms	105.28
		$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	31.58 57.90	$\begin{aligned} & 32049 \\ & {[1314-08-5]} \end{aligned}$	Palladium (II) Oxide pure, 85\% Pd (Palladium Monoxide)	250 Mg 1 Gms	$\begin{array}{r} 59.22 \\ 210.56 \end{array}$
$\begin{aligned} & 83577 \\ & {[20816-12-0]} \end{aligned}$	Osmic Acid extrapure, 99\%	1 Gms	92.12	81249 [13566-03-5]	Palladium (II) Sulphate extrapure, 99\%	250 Mg 1 Gms	$\begin{array}{r} 34.22 \\ 111.86 \end{array}$
$\begin{aligned} & 40510 \\ & {[6153-56-6]} \end{aligned}$	Oxalic Acid extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 5.00 \\ 46.06 \end{array}$	$\begin{aligned} & 18211 \\ & \text { [8012-95-1, } \\ & 8042-47-5] \end{aligned}$	Paraffin Liquid Light (Mineral Oil Light) extrapure, $\mathbf{2 5 - 8 0 m P a s}$	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	3.55 15.13
$\begin{aligned} & 72425 \\ & {[6153-56-6]} \end{aligned}$	Oxalic Acid Dihydrate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP, Ph.Eur	500 Gms	5.66				138.18
		5 Kg	52.64	79167 [8012-95-1, 8042-47-5]	Paraffin Liquid Heavy (Mineral Oil Heavy) extrapure, 110-230mPas	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	$\begin{array}{r} 3.95 \\ 17.11 \\ 164.50 \end{array}$
$\begin{aligned} & 64056 \\ & {[3375-31-3]} \end{aligned}$	Palladium (II) Acetate (Palladium Diacetate) extrapure, $99 \%, 47 \%$ Pd	250 Mg 1 Gms	$\begin{array}{r} 47.38 \\ 111.86 \end{array}$	$\begin{aligned} & 86715 \\ & {[8002-74-2]} \end{aligned}$	Paraffin Wax Cubes (Type 1 -56-58) extrapure	500 Gms 1 Kg	5.66 10.40
		5 Gms 25 Gms	552.72 2632.00	$\begin{aligned} & 47994 \\ & \text { [8002-74-2] } \end{aligned}$	Paraffin Wax Pellets (Type 2 -58-60) extrapure	500 Gms 1 Kg	5.66 10.40
$\begin{aligned} & 59548 \quad \vee \\ & {[14024-61-4]} \end{aligned}$	Palladium (II) Acetylacetonate (Pd(acac)2) extrapure, 34.7\% Pd (Bis(2,4-Pentanedionato) Palladium(II), Bis(Acetylacetonato) Palladium(II))	250 Mg 1 Gms 5 Gms	39.48 134.23 592.20	84381 [8002-74-2]	Paraffin Wax Pellets (Type 3 -60-62) extrapure	500 Gms 1 Kg	$\begin{array}{r}5.66 \\ 10.40 \\ \hline 2.37\end{array}$
69263	Palladium AAS Standard Solution in 0.5 N HCl (Traceable to NIST)	$\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned}$	$\begin{aligned} & 42.11 \\ & 69.75 \end{aligned}$	[8002-74-2]	(Petroleum Jelly White)	500 Gms	5.79
$\begin{aligned} & 33080 \\ & {[7647-10-1]} \end{aligned}$	Palladium (II) Chloride pure, 99%, 59-60\% Pd (Palladium Dichloride)	250 Mg 1 Gms 5 Gms	46.06 111.86 500.08	$\begin{aligned} & 66400 \\ & {[8002-74-2]} \end{aligned}$	Paraffin Wax w/ Ceresin Blocks, $58-60^{\circ} \mathrm{C}$	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \\ 2 \mathrm{Kg} \end{array}$	$\begin{array}{r} 9.21 \\ 17.11 \\ 32.90 \end{array}$
		25 Gms	2105.60	$\begin{aligned} & 60536 \\ & {[8002-74-2]} \end{aligned}$	Paraffin Yellow pure	500 Gms	8.16
$\begin{aligned} & 96917 \\ & {[7647-10-1]} \end{aligned}$	Palladium (II) Chloride ACS, ExiPlus, Multi-Compendial, 99\%, 59-60\% Pd (Palladium Dichloride) meets compendial specs of USP, BP	250 Mg 1 Gms 5 Gms	$\begin{array}{r} 50.01 \\ 121.73 \\ 526.40 \end{array}$	$\begin{aligned} & 45057 \\ & {[9000-69-5]} \end{aligned}$	Pectin pure (Poly-D-Galacturonic Acid Methyl Ester)	$\begin{array}{r} 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{aligned} & 10.79 \\ & 43.43 \\ & 73.70 \end{aligned}$
		25 Gms	2263.52	$\begin{aligned} & 96096 \\ & {[109-66-0]} \end{aligned}$	n-Pentane extrapure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	9.21 42.11
19694 [32916-07-7]	Palladium (II) Nitrate Dihydrate extrapure, 99\%, 40\% Pd (Palladium Dinitrate Dihydrate)	$250 \mathrm{Mg}$	30.27 98.70			25 Ltr	381.64
		5 Gms	447.44	$\begin{aligned} & 41730 \\ & {[109-66-0]} \end{aligned}$	n-Pentane extrapure AR, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	10.53 46.06

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 94510 \\ & {[109-66-0]} \end{aligned}$	n-Pentane extrapure AR, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP, BP, Ph.Eur	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	11.84 48.69	$\begin{gathered} 14892 \\ {[108-95-2]} \end{gathered}$	Phenol Crystalline extrapure AR, 99.5\% (Hydroxybenzene, Carbolic Acid)	$\begin{array}{r} 500 \mathrm{Gms} \\ 2.5 \mathrm{Kg} \end{array}$	8.55 37.90
				$\begin{aligned} & 97745 \\ & {[108-95-2]} \end{aligned}$	Phenol Crystalline extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% (Hydroxybenzene, Carbolic Acid) meets compendial specs of USP, BP	500 Gms	9.48
$\begin{aligned} & 49135 \\ & {[109-66-0]} \end{aligned}$	n-Pentane for HPLC \& UV Spectroscopy, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	15.79 28.95				
$\begin{aligned} & 47040 \\ & {[5343-92-0]} \end{aligned}$	1,2-Pentanediol pure, 98\% (1,2-Dihydroxypentane)	25 ml	17.11				
		250 ml	98.70	$\underset{[108-95-2]}{17286}$	Phenol Crystalline for molecular biology, 99.5\% (Hydroxybenzene, Carbolic Acid)	100 Gms	6.05
$\begin{aligned} & 18486 \\ & {[22767-49-3]} \end{aligned}$	Pentane Sulphonic Acid Sodium Salt Anhydrous for HPLC, 99\%	25 Gms	15.79				
		100 Gms 250 Gms	57.38 140.68	$\begin{gathered} 47484 \\ {[108-95-2]} \end{gathered}$	Phenol Equilibrated with 0.1M Citrate Buffer pH 4.5 for molecular biology w/ Stabilizer	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	14.21 57.25
$\begin{aligned} & 90760 \\ & {[207605-40-1]} \end{aligned}$	Pentane Sulphonic Acid Sodium Salt Monohydrate for HPLC, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 250 \mathrm{Gms} \end{array}$	15.79 57.38 140.68	$\underset{[108-95-2]}{12692}$	Phenol Tris Equilibrated for molecular biology w/ Stabilizer (Hydroxybenzene, Carbolic Acid)	$\begin{array}{r} 60 \mathrm{ml} \\ 100 \mathrm{ml} \\ 500 \mathrm{ml} \end{array}$	$\begin{aligned} & 18.42 \\ & 25.00 \\ & 65.80 \end{aligned}$
$\begin{aligned} & 23283 \\ & {[7601-90-3]} \end{aligned}$	Perchloric Acid ACS, for Diamond Industry, 70\% Suitable fo Diamond Industry	500 ml	32.90	$\begin{gathered} 78348 \\ {[108-95-2]} \end{gathered}$	Phenol Tris Equilibrated for molecular biology w/o Stabilizer	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	25.00 65.80
$\begin{aligned} & 26312 \\ & {[10450-60-9]} \end{aligned}$	Periodic Acid extrapure, 99\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	12.50 42.11	$\begin{gathered} 83275 \\ {[108-95-2]} \end{gathered}$	Phenol Saturated w/ 10\% water for molecular biology (Phenol Liquid w/ 10\% water), 90%	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{aligned} & 11.84 \\ & 38.16 \end{aligned}$
$\begin{aligned} & 11778 \\ & \text { [8032-32-4] } \end{aligned}$	Petroleum Ether 40-60 extrapure	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 5.26 \\ 21.06 \end{array}$	$\begin{aligned} & 90179 \\ & {[77-09-8]} \end{aligned}$	Phenolphthalein extrapure AR, 99\%	$\begin{array}{r} 50 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	5.13 7.76
$\begin{aligned} & 26440 \\ & \text { [8032-32-4] } \end{aligned}$	Petroleum Ether 40-60 extrapure AR	$500 \mathrm{ml}$				500 Gms	37.24
		2500 ml	25.00	74785	Phenolphthalein extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of BP, Ph.Eur	100 Gms	9.34
58415 [8032-32-4]	Petroleum Ether 60-80 pure	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	3.68 12.50	[77-09-8]		500 Gms	39.61
		25 Ltr	118.44	$\begin{aligned} & 79563 \\ & {[77-09-8]} \end{aligned}$	Phenolphthalein Indicator 1\% Soln in Ethanol	125 ml	2.63
36651 [8032-32-4]	Petroleum Ether 60-80 extrapure AR	500 ml 2500 ml	3.95 13.82			500 ml	6.32
		2500 ml	13.82	$\begin{aligned} & 90817 \\ & {[143-74-8]} \end{aligned}$	Phenol Red	25 Gms	8.16
$\begin{aligned} & 15340 \\ & {[8032-32-4]} \end{aligned}$	Petroleum Ether 60-80 for HPLC \& UV Spectroscopy	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	8.42 15.13			100 Gms 500 Gms	31.58 144.76
		2500 ml	30.27	$\begin{aligned} & 68313 \\ & {[143-74-8]} \end{aligned}$	Phenol Red ACS, ExiPlus, Multi-Compendial	25 Gms	9.21
$\begin{aligned} & 15590 \\ & {[8032-32-4]} \end{aligned}$	Petroleum Ether 80-100 pure	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	5.53 22.24 203.98			100 Gms 500 Gms	$\begin{array}{r} 34.22 \\ 157.92 \end{array}$
$\begin{aligned} & 52226 \\ & {[8032-32-4]} \end{aligned}$	Petroleum Ether 100-120 extrapure	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	5.79 21.06	59462 [34487-61-1]	Phenol Red Sodium Salt ACS (water soluble), 95\% (Phenolsulfonephthalein Sodium Salt)	5 Gms 25 Gms	3.03 8.55
69031 \&	Phenol:Chloroform:Isoamyl	100 ml	18.42			100 Gms	32.64
[136112-00-0]	Alcohol (25:24:1) pH 8.0 for molecular biology	250 ml 500 ml	42.11 56.59	$\begin{aligned} & 40919 \\ & {[673-06-3]} \end{aligned}$	D-Phenylalanine extrapure CHR, 99\%	5 Gms 25 Gms	5.79 23.03
17080 \&	Phenol:Chloroform:Isoamyl Alcohol (125:24:1) pH 4.5 for molecular biology	100 ml	34.22			100 Gms	86.07
		500 ml	114.49	$\begin{aligned} & 67602 \\ & {[150-30-1]} \end{aligned}$	DL-Phenylalanine extrapure CHR, 99\%	25 Gms	9.34 31.72
79030 \&	Phenol:Chloroform:Isoamyl Alcohol (49.5:49.5:1) pH 6.7 for molecular biology	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	35.53 119.76	$\begin{aligned} & 85081 \\ & {[63-91-2]} \end{aligned}$	L-Phenylalanine extrapure CHR, 99\%	100 Gms 100 Gms 500 Gms	31.72 6.58 28.95
36976 d	Phenol:Chloroform: Isoamyl Alcohol (49.5:49.5:1) pH 8.0 for molecular biology	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	36.85 128.97			1 Kg 5 Kg	50.01 210.56
$\underset{[108-95-2]}{28104}$	Phenol Crystalline pure, 99\% (Hydroxybenzene, Carbolic Acid)	$\begin{array}{r} 500 \mathrm{Gms} \\ 2.5 \mathrm{Kg} \end{array}$	7.63 34.87	$\begin{aligned} & 40170 \\ & {[63-91-2]} \end{aligned}$	L-Phenylalanine ExiPlus, Multi-Compendial, 99\%	100 Gms 500 Gms	8.55 32.90
		25 Kg	286.10			1 Kg	60.54
					meets compendial specs of BP		

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 64975 \\ & {[100-63-0]} \end{aligned}$	Phenylhydrazine pure, 98\%	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	7.90 34.22	41175 [9000-55-9]	Podophyllum Resin pure, 50\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	60.54 210.56
		2500 ml	177.66	79133[25322-68-3]	Polyethylene Glycol 400 (PEG 400) (Carbowax 400)	500 Gms	6.58
$\begin{aligned} & 31804 \\ & {[100-63-0]} \end{aligned}$	Phenylhydrazine extrapure AR, 99\%	100 ml	14.48				
		500 ml	68.43	87919 [25322-68-3]	Polyethylene Glycol 400 (PEG 400) ExiPlus, Multi-Compendial (Carbowax 400) meets compendial specs of BP	500 Gms	7.76
$\begin{aligned} & 40555 \\ & {[59-88-1]} \end{aligned}$	Phenylhydrazine Hydrochloride pure, 99\%	100 Gms 250 Gms	10.00 22.50				
$\begin{aligned} & 12109 \\ & {[59-88-1]} \end{aligned}$	Phenylhydrazine Hydrochloride extrapure AR, 99\%	100 Gms 250 Gms	13.29 31.58	$\begin{aligned} & 61213 \\ & {[25322-68-3]} \end{aligned}$	Polyethylene Glycol 3350 (PEG 3350) ExiPlus, Multi-Compendial	500 Gms	10.79
$\begin{aligned} & 26892 \\ & {[59-88-1]} \end{aligned}$	Phenylhydrazine Hydrochloride extrapure AR, ExiPlus, Multi-Compendial, 99\%	100 Gms 250 Gms	17.50 40.80	30970 [25322-68-3]	Polyethylene Glycol 4000 (PEG 4000)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 6.58 \\ 63.96 \\ 303.21 \end{array}$
	meets compendial specs of USP, BP, Ph.Eur			$\begin{aligned} & 76937 \\ & {[25322-68-3]} \end{aligned}$	Polyethylene Glycol 4000 (PEG 4000) ExiPlus, Multi-Compendial meets compendial specs of USP	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 7.90 \\ 73.96 \end{array}$
64732 [59-88-1]	Phenylhydrazine Hydrochloride Superior extrapure AR, 99\%	5 Gms	11.84				
		100 Gms	31.06	$\begin{aligned} & 67429 \\ & \text { [25322-68-3] } \end{aligned}$	Polyethylene Glycol 6000 (PEG 6000)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 7.24 \\ 63.17 \end{array}$
28022	Phenyltrimethyl Ammonium	100 Gms	8.16				
		500 Gms	36.98	$\begin{aligned} & 26029 \\ & {[25322-68-3]} \end{aligned}$	Polyethylene Glycol 6000 (PEG 6000) ExiPlus, Multi-Compendial meets compendial specs of USP	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 8.55 \\ 74.62 \end{array}$
$\begin{aligned} & 82322 \\ & {[51429-74-4]} \end{aligned}$	Phosphomolybdic Acid extrapure AR, ACS, 99\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	15.79 50.53				
		500 Gms	210.56	54866 [25322-68-3]	Polyethylene Glycol 8000 (PEG 8000) for molecular biology (Carbowax 8000)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 23.03 \\ 208.06 \end{array}$
$\begin{aligned} & 78861 \\ & {[13598-36-2]} \end{aligned}$	Phosphorous Acid Crystals (Phosphonic Acid) extrapure, 98\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 2.5 \mathrm{Kg} \end{array}$	11.05 53.96				
	(Orthophosphorous Acid)			94701 [25322-68-3]	Polyethylene Glycol 8000 (PEG 8000) ExiPlus, Multi-Compendial (Carbowax 8000)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	10.00
$\begin{aligned} & 72656 \\ & \text { [7723-14-0] } \end{aligned}$	Phosphorus Red pure 97\%	500 Gms	31.06				93.83
$\begin{aligned} & 80653 \\ & {[12501-23-4]} \end{aligned}$	Phosphotungstic Acid Hydrate extrapure (Tungstophosphoric Acid)	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	9.74 32.51	$\begin{aligned} & 64651 \\ & \text { [25322-68-3] } \end{aligned}$	Polyethylene Glycol 9000 (PEG 9000) (Carbowax 9000)	500 Gms	15.92
		500 Gms	138.18	46505 [25322-68-3]	Polyethylene Glycol 9000 (PEG 9000) ExiPlus, Multi-Compendial (Carbowax 9000)	500 Gms	19.21
$\begin{aligned} & 57855 \\ & {[12501-23-4]} \end{aligned}$	Phosphotungstic Acid Hydrate extrapure AR	25 Gms 100 Gms	11.84 40.80				
		500 Gms	157.92	39569 [25322-68-3]	Polyethylene Glycol 10000 (PEG 10000) (Polyethylene glycol 10000, Polyethylene oxide, Polyoxy ethylene, Carbowax)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 31.58 \\ 289.52 \end{array}$
$\begin{aligned} & 67397 \\ & {[88-99-3]} \end{aligned}$	Phthalic Acid pure, 99\%	500 Gms	9.87				
$\begin{aligned} & 32624 \\ & {[85-44-9]} \end{aligned}$	Phthalic Anhydride pure, 97\%	500 Gms	3.95				
		5 Kg	36.85	75727 [25322-68-3]	Polyethylene Glycol 20000 (PEG 20000)	100 Gms 500 Gms 1 Kg 5 Kg	$\begin{array}{r} 19.74 \\ 65.80 \\ 111.86 \\ 236.88 \end{array}$
$\begin{aligned} & 93665 \\ & {[85-44-9]} \end{aligned}$	Phthalic Anhydride ACS, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 9.21 \\ 85.54 \end{array}$				
44745 [17211-15-3]	Phytic Acid Sodium Salt Hydrate (InsP6) extrapure, 70\% (Inositol hexaphosphoric acid dodecasodium salt, myo-Inositol hexakis(dihydrogen phosphate) dodecaso	5 Gms 25 Gms	$\begin{array}{r} 46.45 \\ 208.59 \end{array}$	33817 [25322-68-3]	Polyethylene Glycol 20000 (PEG 20000) ExiPlus, Multi-Compendial meets compendial specs of USP, BP	$\begin{array}{r} 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{array}{r} 23.69 \\ 73.70 \\ 128.97 \end{array}$
$\begin{aligned} & 94847 \\ & {[88-89-1]} \end{aligned}$	Picric Acid moistened with ~30\% water extrapure, 99\%	100 Gms 500 Gms	4.87 11.84	$\begin{aligned} & 41098 \\ & {[8017-16-1]} \end{aligned}$	Polyphosphoric Acid extrapure, 83-87\% P2O5	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{aligned} & 20.92 \\ & 97.65 \end{aligned}$
$\begin{aligned} & 47998 \\ & {[88-89-1]} \end{aligned}$	Picric Acid moistened with ~30\% water extrapure AR, 99.8\%	100 Gms 500 Gms	5.79 14.48	$\begin{aligned} & 28599 \\ & \text { [9005-64-5] } \end{aligned}$	Polysorbate 20 (Tween 20) extrapure	$\begin{array}{r} 500 \mathrm{Gms} \\ 2.5 \mathrm{Kg} \\ 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 11.19 \\ 48.82 \\ 92.12 \\ 438.89 \end{array}$
16462 [52785-06-5]	Platinum (IV) Oxide Hydrate extrapure, $76-80 \%$ Pt Platinum Dioxide Hydrate, Adam's Catalyst	1 Gms 250 Mg	144.76 43.43				
				$\begin{aligned} & 33712 \\ & \text { [9005-64-5] } \end{aligned}$	Polysorbate 20 (Tween 20) for tissue culture	500 Gms	15.27

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 23610 \\ & {[9005-64-5]} \end{aligned}$	Polysorbate 20 (Tween 20) ExiPlus, Multi-Compendial meets compendial specs of BP	500 Gms	13.69	$\begin{aligned} & 99644 \\ & {[7758-01-2]} \end{aligned}$	Potassium Bromate pure, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 13.82 \\ 134.23 \end{array}$
65296 [9005-64-5]	Polysorbate 20 (Tween 20) for molecular biology	100 Gms 500 Gms	20.79 33.56	80823 [7758-02-3]	Potassium Bromide pure, 98.5\%	500 Gms 5 Kg	14.48 134.23
$\begin{aligned} & 31453 \\ & {[9005-66-7]} \end{aligned}$	Polysorbate 40 (Tween 40) extrapure	$\begin{array}{r} 250 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 8.03 \\ 125.02 \end{array}$	$\begin{aligned} & 66453 \\ & {[7758-02-3]} \end{aligned}$	Potassium Bromide extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 21.06 \\ 197.40 \end{array}$
$\begin{aligned} & 62539 \\ & {[9005-66-7]} \end{aligned}$	Polysorbate 40 (Tween 40) ExiPlus, Multi-Compendial meets compendial specs of USP, BP,	$\begin{array}{r} 250 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	14.34 164.50	25707 [7758-02-3]	Potassium Bromide extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 23.69 \\ 223.72 \end{array}$
	Ph.Eur			13873 [7758-02-3]	Potassium Bromide Powder for IR \& FTIR spectroscopy, 99.5\%	25 Gms	15.79
$\begin{aligned} & 12502 \\ & {[9005-67-8]} \end{aligned}$	Polysorbate 60 (Tween 60) extrapure	100 Gms 500 Gms	$\begin{array}{r} 6.32 \\ 13.95 \end{array}$			100 Gms 500 Gms	$\begin{array}{r} 56.19 \\ 236.88 \end{array}$
		5 Kg	105.28	87005	Potassium AAS Standard Solution in 0.5 N HCl (Traceable to NIST)	100 ml	21.06
86878 [9005-67-8]	Polysorbate 60 (Tween 60) ExiPlus, Multi-Compendial	500 Gms	15.92			250 ml	34.22
	meets compendial specs of USP, BP, Ph.Eur	5 Kg	118.44	$\begin{aligned} & 93649 \\ & {[7758-02-3]} \end{aligned}$	Potassium Bromide 0.1M Solution	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{aligned} & 4.08 \\ & 7.37 \end{aligned}$
$\begin{aligned} & 28940 \\ & {[9005-65-6]} \end{aligned}$	Polysorbate 80 (Tween 80) extrapure	500 Gms 5 Kg	$\begin{aligned} & 11.98 \\ & 87.78 \end{aligned}$	$\begin{aligned} & 79982 \\ & {[7758-02-3]} \end{aligned}$	Potassium Bromide 0.5M Solution	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	4.34 8.03
			399.01	$\begin{aligned} & 29988 \\ & {[7758-02-3]} \end{aligned}$	Potassium Bromide 1M Solution	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	4.74 8.42
95188 [9005-65-6]	Polysorbate 80 (Tween 80) ExiPlus, Multi-Compendial	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 13.82 \\ 103.83 \\ 494.68 \end{array}$	$\begin{aligned} & 24794 \\ & {[298-14-6]} \end{aligned}$	Potassium Bicarbonate extrapure, 99\% (Potassium Hydrogen Carbonate)	500 Gms	5.66
	meets compendial specs of BP			$\begin{aligned} & 57674 \\ & {[298-14-6]} \end{aligned}$	Potassium Bicarbonate AR, ACS, ExiPlus, Multi-Compendial, 99.5\% (Potassium Hydrogen Carbonate) meets compendial specs of BP	500 Gms	6.19
81613 [9003-39-8]	Polyvinylpyrrolidone K25 (Povidone, PVP K-25)	100 Gms 500 Gms	$\begin{array}{r} 9.87 \\ 37.51 \end{array}$				
		5 Kg	315.84	$\begin{aligned} & 87272 \\ & {[584-08-7]} \end{aligned}$	Potassium Carbonate anhydrous extrapure, 99\%	500 Gms	5.13
$\begin{aligned} & 41030 \\ & {[9003-39-8]} \end{aligned}$	Polyvinylpyrrolidone K30 (Povidone, PVP K-30)	100 Gms 500 Gms	$\begin{array}{r} 8.55 \\ 30.27 \end{array}$			5 Kg	44.74
		$\begin{array}{r} 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \\ \hline \end{array}$	276.36 1250.20	$\begin{aligned} & 83342 \\ & {[584-08-7]} \end{aligned}$	Potassium Carbonate anhydrous extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 5.92 \\ 51.19 \end{array}$
65155	Polyvinylpyrrolidone K30	100 Gms	9.87				
[9003-39-8]	(Povidone, PVP K-30) ExiPlus, Multi-Compendial meets compendial specs of BP	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	39.48 368.48	$\begin{aligned} & 38630 \\ & {[7447-40-7]} \end{aligned}$	Potassium Chloride ACS, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 4.08 \\ 30.14 \\ 140.68 \end{array}$
$\begin{aligned} & 24564 \\ & \text { [9003-39-8] } \end{aligned}$	Polyvinylpyrrolidone K90 (Povidone, PVP K-90)	100 Gms 500 Gms 5 Kg	$\begin{array}{r} 15.79 \\ 48.69 \\ 375.06 \end{array}$	$\begin{aligned} & 50016 \\ & {[7447-40-7]} \end{aligned}$	Potassium Chloride ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of BP, Ph.Eur, USP	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	4.47 34.48
$\begin{aligned} & 44333 \\ & {[127-08-2]} \end{aligned}$	Potassium Acetate pure, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	7.90 72.38	$\begin{aligned} & 84984 \\ & {[7447-40-7]} \end{aligned}$	Potassium Chloride for molecular biology, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	11.84 18.03
$\begin{aligned} & 79156 \\ & {[127-08-2]} \end{aligned}$	Potassium Acetate extrapure AR, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	8.95 84.22	$\begin{aligned} & 71088 \\ & {[7447-40-7]} \end{aligned}$	Potassium Chloride for tissue culture, 99.5%	250 Gms	10.13
$\begin{aligned} & 40480 \\ & {[127-08-2]} \end{aligned}$	Potassium Acetate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	9.61 90.80	84390 [7789-00-6]	Potassium Chromate pure, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 12.11 \\ 110.54 \end{array}$
				$\begin{aligned} & 93448 \\ & {[7789-00-6]} \end{aligned}$	Potassium Chromate extrapure AR, 99.5\%	500 Gms	13.16
$\begin{aligned} & 96248 \\ & {[127-08-2]} \end{aligned}$	Potassium Acetate for molecular biology, 99.5\%	100 Gms 500 Gms	$\begin{array}{r} 5.26 \\ 15.79 \end{array}$			5 Kg	118.44
$\begin{aligned} & 81955 \\ & {[127-08-2]} \end{aligned}$	Potassium Acetate for tissue culture, 99.5\%	100 Gms 500 Gms	$\begin{array}{r} 3.95 \\ 11.84 \end{array}$				

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
31751 [7789-00-6]	Potassium Chromate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP, Ph.Eur	500 Gms	14.61	$\begin{aligned} & 12914 \\ & \text { [14459-95-1] } \end{aligned}$	Potassium Ferrocyanide extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP, Ph.Eur	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 12.50 \\ 118.44 \end{array}$
				$\begin{aligned} & 97535 \\ & \text { [7789-23-3] } \end{aligned}$	Potassium Fluoride Anhydrous pure, 97\%	500 Gms	10.53
49890	Potassium Citrate Tribasic	500 Gms	7.24				
[6100-05-6]	Monohydrate extrapure AR, 99\%	5 Kg	69.09	$\begin{aligned} & 91489 \\ & {[16921-30-5]} \end{aligned}$	Potassium Hexachloroplatinate (IV) pure, 40\% Pt (Platinum Potassium Chloride, Potassium Chloroplatinate)	250	39.48
$\begin{aligned} & 74176 \\ & \text { [6100-05-6] } \end{aligned}$	Potassium Citrate Tribasic Monohydrate extrapure AR, ExiPlus, Multi-Compendial, 99\% meets compendial specs of BP	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 8.55 \\ 82.25 \end{array}$			$\begin{array}{r} 1 \mathrm{Gms} \\ 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	92.12 394.80 1842.40
$\begin{aligned} & 13250 \\ & \text { [7778-50-9] } \end{aligned}$	Potassium Dichromate pure, 99.5\%	500 Gms 5 Kg	$\begin{array}{r} 12.50 \\ 113.18 \end{array}$	42414 [17084-13-8]	Potassium Hexafluorophosphate extrapure, 99\%	25 Gms 100 Gms 500 Gms	$\begin{aligned} & 10.53 \\ & 26.32 \\ & 92.12 \end{aligned}$
80233 [7778-50-9]	Potassium Dichromate extrapure AR, 99.9\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	13.82 119.76	$\begin{aligned} & 40180 \\ & {[16919-27-0]} \end{aligned}$	Potassium Hexafluorotitanate pure, 98\% (Potassium Fluotitanate, Potassium Titanium Fluoride, Dipotassium hexafluorotitanate, Titanium potas	$\begin{array}{r} 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 7.90 \\ 19.74 \\ 105.28 \end{array}$
55353 [7778-50-9]	Potassium Dichromate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.9\% meets compendial specs of USP, BP, Ph.Eur	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 15.79 \\ 128.97 \end{array}$				
				$\begin{aligned} & 37466 \\ & {[16923-95-8]} \end{aligned}$	Potassium Hexafluorozirconate pure, 97\%	$\begin{aligned} & 100 \mathrm{Gms} \\ & 500 \mathrm{Gms} \end{aligned}$	$\begin{aligned} & 14.08 \\ & 32.90 \end{aligned}$
$\begin{aligned} & 52403 \\ & {[7778-77-0]} \end{aligned}$	Potassium Dihydrogen Orthophosphate pure, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 6.84 \\ 63.17 \\ 289.52 \end{array}$	$\begin{aligned} & 39535 \\ & {[16905-14-9]} \end{aligned}$	Potassium Hexaiodoplatinate (IV) pure, 18-19\% Pt	$\begin{array}{r} 250 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{array}$	$\begin{aligned} & 29.61 \\ & 75.67 \end{aligned}$
$\begin{aligned} & 50451 \\ & {[7778-77-0]} \end{aligned}$	Potassium Dihydrogen Orthophosphate extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 8.42 \\ 15.79 \\ 69.75 \end{array}$	$\begin{aligned} & 80633 \\ & {[877-24-7]} \end{aligned}$	Potassium Hydrogen Phthalate extrapure AR, 99.9\%	500 Gms	9.48
				$\begin{aligned} & 29467 \\ & {[877-24-7]} \end{aligned}$	Potassium Hydrogen Phthalate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.9\% meets compendial specs of BP, Ph.Eur	500 Gms	10.79
$\begin{aligned} & 78297 \\ & {[7778-77-0]} \end{aligned}$	Potassium Dihydrogen Orthophosphate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of BP	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 9.21 \\ 17.77 \\ 75.01 \end{array}$				
				$\begin{aligned} & 49017 \\ & {[877-24-7]} \end{aligned}$	Potassium Hydrogen Phthalate for HPLC \& UV Spectroscopy, 99.9\%	500 Gms	12.90
				$\begin{aligned} & 65031 \\ & {[7646-93-7]} \end{aligned}$	Potassium Hydrogen Sulphate (Potassium Bisulphate) pure, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 7.90 \\ 76.33 \end{array}$
54358 [7778-77-0]	Potassium Dihydrogen Orthophosphate for molecular biology, 99.5\% (Potassium Phosphate Monobasic)	250 Gms	7.90				
		500 Gms 5 Kg	15.13 144.76	$\begin{aligned} & 10942 \\ & {[7646-93-7]} \end{aligned}$	Potassium Hydrogen Sulphate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% (Potassium Bisulphate) meets compendial specs of BP, Ph.Eur	500 Gms	9.48
$\begin{aligned} & 30955 \\ & \text { [7778-77-0] } \end{aligned}$	Potassium Dihydrogen Orthophosphate for HPLC \& UV Spectroscopy, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 12.90 \\ 125.02 \end{array}$				
				$\begin{aligned} & 76131 \\ & {[868-14-4]} \end{aligned}$	Potassium Hydrogen Tartrate (Potassium Bitartrate) pure, 99\% (Potassium L-Tartrate Monobasic)	500 Gms	11.19
32360 [7778-77-0]	Potassium Dihydrogen Orthophosphate for tissue culture, 99.5\% (Potassium Phosphate Monobasic)	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 9.87 \\ 19.08 \\ 78.96 \end{array}$			5 Kg	103.96
				$\begin{aligned} & 84749 \\ & {[1310-58-3]} \end{aligned}$	Potassium Hydroxide pellets extrapure, 85%	500 Gms	6.32 11.19
$\begin{aligned} & 77012 \\ & {[140-89-6]} \end{aligned}$	Potassium Ethyl Xanthate (PEX) extrapure, 98\% (O-Ethyl Xanthic Acid Potassium Salt)	100 Gms 500 Gms	$\begin{aligned} & 18.42 \\ & 76.33 \end{aligned}$			1 Kg 5 Kg	11.19 53.96
				$\begin{aligned} & 78269 \\ & \text { [1310-58-3] } \end{aligned}$	Potassium Hydroxide Pellets ACS, 85\%	500 Gms	6.84
15766 [13746-66-2]	Potassium Ferricyanide extrapure, 98\%	100 Gms 500 Gms 5 Kg	$\begin{array}{r} 5.92 \\ 25.66 \\ 236.88 \end{array}$			1 Kg 5 Kg	13.16 57.90
				$\begin{aligned} & 18543 \\ & {[1310-58-3]} \end{aligned}$	Potassium Hydroxide Pellets ExiPlus, Multi-Compendial, 85\% meets compendial specs of USP, BP, Ph.Eur	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	7.37
59558 [13746-66-2]	Potassium Ferricyanide ACS, ExiPlus, Multi-Compendial, 98\%	250 Gms 500 Gms 5 Kg	15.13 28.03 261.09				63.17
	meets compendial specs of USP, Ph.Eur			$\begin{aligned} & 26035 \\ & {[1310-58-3]} \end{aligned}$	Potassium Hydroxide Powder extrapure, 85\%, 80-100 mesh	500 Gms	6.58
$\begin{aligned} & 32294 \\ & \text { [14459-95-1] } \end{aligned}$	Potassium Ferrocyanide extrapure AR, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 11.84 \\ 111.86 \end{array}$			1 Kg	12.50
						5 Kg	55.27

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 67864 \\ & {[7758-05-6]} \end{aligned}$	Potassium lodate pure, 99.5\%	100 Gms 250 Gms	25.00 60.54	$\begin{aligned} & 10322 \\ & {[7727-21-1]} \end{aligned}$	Potassium Persulphate extrapure, 97\%	500 Gms	6.84
		500 Gms	115.81	$\begin{aligned} & 52254 \\ & {[7727-21-1]} \end{aligned}$	Potassium Persulphate extrapure AR, 98\%	500 Gms	7.90
$\begin{aligned} & 11041 \\ & {[7758-05-6]} \end{aligned}$	Potassium lodate extrapure AR, 99.9\%	100 Gms 250 Gms 500 Gms	26.32 63.17 119.76	$\begin{aligned} & 48319 \\ & {[7727-21-1]} \end{aligned}$	Potassium Persulphate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP, BP, Ph.Eur	500 Gms	8.69
$\begin{aligned} & 10809 \\ & {[7758-05-6]} \end{aligned}$	Potassium lodate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.9\%	$\begin{aligned} & 100 \mathrm{Gms} \\ & 250 \mathrm{Gms} \end{aligned}$	$\begin{aligned} & 28.29 \\ & 67.12 \end{aligned}$				
		500 Gms	128.97	90654 [7758-11-4]	Potassium Phosphate Dibasic Anhydrous pure, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 7.90 \\ 65.80 \end{array}$
	meets compendial specs of USP, BP, Ph.Eur			$\begin{aligned} & 27387 \\ & {[7758-11-4]} \end{aligned}$	Potassium Phosphate Dibasic Anhydrous extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 8.55 \\ 72.38 \end{array}$
$\begin{aligned} & 78240 \\ & {[7681-11-0]} \end{aligned}$	Potassium lodide pure, 99\%	25 Gms	8.55				
		100 Gms 250 Gms 500 Gms	32.24 77.64 151.34	31964 [7758-11-4]	Potassium Phosphate Dibasic Anhydrous extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 9.21 \\ 78.96 \end{array}$
$\begin{aligned} & 27874 \\ & {[7681-11-0]} \end{aligned}$	Potassium lodide ACS, 99.8\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	9.21 33.56	$\begin{aligned} & 41295 \\ & {[7758-11-4]} \end{aligned}$	Potassium Phosphate Dibasic Anhydrous for HPLC, 99.5\%	500 Gms	15.79
		250 Gms 500 Gms	81.59 161.21	$\begin{aligned} & 57419 \\ & {[7758-11-4]} \end{aligned}$	Potassium Phosphate Dibasic Anhydrous for tissue culture, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 8.82 \\ 75.01 \end{array}$
$\begin{aligned} & 97028 \\ & {[7681-11-0]} \end{aligned}$	Potassium Iodide ExiPlus, Multi-Compendial, 99.8\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	9.54 36.19	$\begin{aligned} & 15914 \\ & {[7778-53-2]} \end{aligned}$	Potassium Phosphate Tribasic Anhydrous extrapure AR, ACS, 98\% (Tripotassium Phosphate)	500 Gms	15.79
		250 Gms 500 Gms	88.17 171.08	$\begin{aligned} & 37423 \\ & {[12208-13-8]} \end{aligned}$	Potassium Pyroantimonate extrapure, 98\% (Potassium Hexahydroxoantimonate(V), Potassium Antimonate Trihydrate)	$\begin{aligned} & 100 \mathrm{Gms} \\ & 500 \mathrm{Gms} \end{aligned}$	$\begin{array}{r} 8.69 \\ 39.48 \end{array}$
$\begin{aligned} & 11677 \\ & {[7681-11-0]} \end{aligned}$	Potassium lodide 0.1M Solution	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{array}{r} 6.58 \\ 11.84 \end{array}$				
				$\begin{aligned} & 94527 \\ & {[12208-13-8]} \end{aligned}$	Potassium Pyroantimonate extrapure AR, 99\% (Potassium Hexahydroxoantimonate(V), Potassium Antimonate Trihydrate)	$\begin{aligned} & 100 \mathrm{Gms} \\ & 500 \mathrm{Gms} \end{aligned}$	$\begin{aligned} & 10.53 \\ & 46.06 \end{aligned}$
$\begin{aligned} & 74567 \\ & {[7681-11-0]} \end{aligned}$	Potassium lodide 1M Solution	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{aligned} & 26.32 \\ & 51.32 \end{aligned}$				
26645	Potassium lodide 3M Solution	500 ml 1000 ml	$\begin{array}{r} 78.96 \\ 151.34 \end{array}$				
[7681-11-0]				$\begin{aligned} & 50862 \\ & {[7320-34-5]} \end{aligned}$	Potassium Pyrophosphate extrapure, 98\% Tetra Potassium Pyrophosphate, Potassium diphosphate tetrabasic, Tetrapotassium diphosphate, Potassi	500 Gms	12.50
93842 [4429-42-9]	Potassium Metabisulphite pure, 95\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 5.92 \\ 55.93 \end{array}$				
[7790-21-8]	Potassium Periodate extrapure AR, 99.8\%	100 Gms 500 Gms	$\begin{array}{r} 31.85 \\ 151.34 \end{array}$	$\begin{aligned} & 53158 \\ & {[7790-62-7]} \end{aligned}$	Potassium Pyrosulphate (Potassium Disulfate) extrapure, 97.5\%	$\begin{aligned} & 100 \mathrm{Gms} \\ & 500 \mathrm{Gms} \end{aligned}$	$\begin{aligned} & 23.69 \\ & 85.54 \end{aligned}$
$\begin{aligned} & 86742 \\ & {[7790-21-8]} \end{aligned}$	Potassium Periodate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.8\% meets compendial specs of USP, BP, Ph.Eur	100 Gms 500 Gms	$\begin{array}{r} 34.87 \\ 166.47 \end{array}$				
				$\begin{aligned} & 86344 \\ & {[7492-30-0]} \end{aligned}$	Potassium Ricinoleate extrapure (Ricinoleic Acid Potassium Salt, Potassium Ricinolate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 12.50 \\ 118.44 \end{array}$
				$\begin{aligned} & 44277 \\ & {[7778-80-5]} \end{aligned}$	Potassium Sulphate extrapure, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 5.53 \\ 44.74 \end{array}$
$\begin{aligned} & 77407 \\ & {[6487-48-5]} \end{aligned}$	Potassium Oxalate Monohydrate pure, 99%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 8.42 \\ 78.96 \end{array}$				
40707	Potassium Oxalate Monohydrate extrapure AR, ACS, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 9.74 \\ 92.12 \end{array}$	$\begin{aligned} & 52182 \\ & {[7778-80-5]} \end{aligned}$	Potassium Sulphate for tissue culture, 99\%	500 Gms	7.24
[6487-48-5]				26253 [7778-80-5]	Potassium Sulphate extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 6.05 \\ 55.27 \end{array}$
36903	Potassium Permanganate extrapure, 99%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 8.82 \\ 68.96 \end{array}$				
[7722-64-7]				$\begin{aligned} & 73900 \\ & {[7778-80-5]} \end{aligned}$	Potassium Sulphate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP	500 Gms	6.58
$\begin{aligned} & 51470 \\ & {[7722-64-7]} \end{aligned}$	Potassium Permanganate extrapure AR, 99.5\%	500 Gms 5 Kg	9.61 83.30			5 Kg	59.22
$\begin{aligned} & 26500 \\ & {[7722-64-7]} \end{aligned}$	Potassium Permanganate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP	500 Gms	86.07	$\begin{aligned} & 66691 \\ & {[7790-58-1]} \end{aligned}$	Potassium Tellurite Anhydrous extrapure, 98% (Dipotassium Tellurite, Potassium Tellurate, Potassium Tellurium Oxide)	10 Gms 25 Gms 100 Gms	23.69 47.38 190.82

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 35889 \\ & {[123333-66-4]} \end{aligned}$	Potassium Tellurite Monohydrate extrapure, 90% (Potassium Tellurate (IV) Hydrate, Dipotassium Tellurite Monohydrate)	$\begin{array}{r} 10 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 18.42 \\ 34.22 \\ 118.44 \end{array}$	$\begin{aligned} & 85994 \\ & {[71-23-8]} \end{aligned}$	n-Propanol Dried, 99.5\%, 0.005\% water (1-Propanol)	1000 ml	15.79
				$\begin{gathered} 52111 \\ {[123-38-6]} \end{gathered}$	Propionaldehyde (Propanal) pure, 97\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 5.13 \\ 26.32 \end{array}$
16273 [10025-99-7]	Potassium Tetrachloroplatinate (II) pure, 47\% Pt (Potassium Platinum (II) Chloride)	250 Mg 1 Gms 5 Gms	$\begin{array}{r} 41.06 \\ 126.34 \\ 600.10 \end{array}$				
				$\begin{aligned} & 12931 \\ & {[79-09-4]} \end{aligned}$	Propionic Acid extrapure, C3-99\% (GC)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 4.47 \\ 21.06 \end{array}$
$\begin{aligned} & 34570 \\ & {[14484-69-6]} \end{aligned}$	Potassium Tetrafluoroaluminate pure, 98\% (Potassium Aluminium Fluoride, PAF)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{aligned} & 11.84 \\ & 94.75 \end{aligned}$	$\begin{aligned} & 43883 \\ & {[79-09-4]} \end{aligned}$	Propionic Acid extrapure AR, C3-99.5\% (GC)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 5.00 \\ 23.69 \end{array}$
$\begin{aligned} & 99928 \\ & {[14075-53-7]} \end{aligned}$	Potassium Tetrafluoroborate pure, 98\% (Potassium Fluoroborate, Potassium Fluoborate, Potassium Borofluoride)	250 Gms 1 Kg	3.29 11.84	$\begin{aligned} & 42263 \\ & {[79-09-4]} \end{aligned}$	Propionic Acid extrapure AR, ACS, ExiPlus, Multi-Compendial, C3-99.5\% (GC) meets compendial specs of USP, BP, Ph.Eur	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 5.40 \\ 26.32 \end{array}$
48218	Potassium Thiocyanate pure, 97\%	500 Gms	10.26				
[333-20-0]				$\begin{aligned} & 52810 \\ & {[123-62-6]} \end{aligned}$	Propionic Anhydride extrapure, 98\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{aligned} & 11.84 \\ & 55.93 \end{aligned}$
$\begin{aligned} & 41027 \\ & {[333-20-0]} \end{aligned}$	Potassium Thiocyanate extrapure AR, 99\%	500 Gms	12.11				
$\begin{aligned} & 59115 \\ & {[333-20-0]} \end{aligned}$	Potassium Thiocyanate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP, Ph.Eur Potato Starch pure	500 Gms	15.13	$\begin{aligned} & 21587 \\ & {[79-03-8]} \end{aligned}$	Propionyl Chloride extrapure, 99\%	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	3.68 10.79
				$\begin{aligned} & 85159 \\ & {[79-03-8]} \end{aligned}$	Propionyl Chloride extrapure AR (Specially purified), 99.5\%	500 ml	15.79
$\begin{aligned} & 69285 \\ & {[9005-25-8]} \end{aligned}$		500 Gms 5 Kg	$\begin{array}{r} 4.74 \\ 41.45 \end{array}$	$\begin{aligned} & 28849 \\ & {[107-10-8]} \end{aligned}$	n-Propylamine pure, 99\%	500 ml	7.24
$\begin{aligned} & 95365 \\ & {[344-25-2]} \end{aligned}$	D-Proline extrapure CHR, 99\%	5 Gms 25 Gms	19.74 63.69	$\begin{aligned} & 30754 \\ & {[57-55-6]} \end{aligned}$	Propylene Glycol (1,2-Propanediol) pure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	5.26 24.35
35139	L-Proline extrapure CHR, 99\%	25 Gms	3.95			25 Ltr	223.72
[147-85-3]		$\begin{array}{r} 100 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	9.87 85.54	$\begin{aligned} & 53054 \\ & {[57-55-6]} \end{aligned}$	Propylene Glycol (1,2-Propanediol) extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 6.05 \\ 27.64 \end{array}$
		5 Kg	394.80	$\begin{aligned} & 95961 \\ & {[57-55-6]} \end{aligned}$	Propylene Glycol (1,2-Propanediol) extrapure AR, ACS, ExiPlus, Multi-Compendial , 99.5\% meets compendial specs of USP, BP, Ph.Eur	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 6.58 \\ 31.58 \end{array}$
56073 [147-85-3]	L-Proline for tissue culture, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	4.61 11.84 47.38				
$\begin{aligned} & 96877 \\ & {[147-85-3]} \end{aligned}$	L-Proline ExiPlus, Multi-Compendial, 99\%	100 Gms 1 Kg	16.58 105.28	$\begin{aligned} & 40011 \\ & {[121-79-9]} \end{aligned}$	Propyl Gallate extrapure, 98\%	100 Gms 500 Gms	$\begin{aligned} & 14.34 \\ & 56.06 \end{aligned}$
	meets compendial specs of BP, Ph.Eur			[121-79-9]	Propyl Gallate IP	$\begin{aligned} & 1 \mathrm{Kg} \\ & 5 \mathrm{Kg} \end{aligned}$	$\begin{aligned} & 105.28 \\ & 493.50 \end{aligned}$
61988	Proline BP	1 Kg	105.28			$\begin{array}{r} 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 493.50 \\ 2303.00 \end{array}$
[147-85-3]	(L-Proline BP)	$\begin{array}{r} 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 493.50 \\ 2303.00 \end{array}$	$\begin{aligned} & 14086 \\ & {[121-79-9]} \end{aligned}$	Propyl Gallate BP	$\begin{array}{r} 1 \mathrm{Kg} \\ 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{aligned} & 105.28 \\ & 493.50 \end{aligned}$
$\begin{aligned} & 68128 \\ & {[147-85-3]} \end{aligned}$	L-Proline USP	1 Kg	121.07				2303.00
		$\begin{array}{r} 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 559.30 \\ 2632.00 \end{array}$	$\begin{aligned} & 16067 \\ & {[121-79-9]} \end{aligned}$	Propyl Gallate NF	$\begin{array}{r} 1 \mathrm{Kg} \\ 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 121.07 \\ 559.30 \\ 2632.00 \end{array}$
39236	n-Propanol pure, 99\%	500 ml	3.95				
[71-23-8]		2500 ml	15.79	$\begin{aligned} & 53898 \\ & {[94-13-3]} \end{aligned}$	Propyl-4-Hydroxybenzoate (Propyl Paraben) ExiPlus, Multi-Compendial, 98-102\% meets compendial specs of USP, BP	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 17.63 \\ 156.47 \end{array}$
$\begin{aligned} & 24501 \\ & {[71-23-8]} \end{aligned}$	n-Propanol extrapure AR, 99.5\%	500 ml 2500 ml	$\begin{array}{r} 4.34 \\ 17.11 \end{array}$				
$\begin{aligned} & 53790 \\ & {[71-23-8]} \end{aligned}$	n-Propanol extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of BP, Ph.Eur	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	4.74 19.74	52950 [35285-69-9]	Propyl-4-Hydroxybenzoate Sodium Salt (Propyl Paraben Sodium) ExiPlus, Multi-Compendial, 94-102\% meets compendial specs of USP, BP	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 18.42 \\ 164.50 \end{array}$
$\begin{aligned} & 42328 \\ & {[71-23-8]} \end{aligned}$	n-Propanol GC-HS (1-propanol), 99.9\%	$\begin{array}{r} 250 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{array}{r} 5.53 \\ 18.42 \end{array}$				
$\begin{aligned} & 45909 \\ & {[71-23-8]} \end{aligned}$	n-Propanol for HPLC, 99.8\%	1000 ml	21.06				

Catalogue 2024-25

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 22342 \\ & {[127-09-3]} \end{aligned}$	Sodium Acetate Anhydrous for molecular biology, 99\%	250 Gms 500 Gms	6.84 11.84	$\begin{aligned} & 93982 \\ & {[16940-66-2]} \end{aligned}$	Sodium Borohydride (powder) extrapure AR, ACS, 98\% (Sodium Tetrahydridoborate)	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	5.92 13.82
$\begin{aligned} & 70509 \\ & {[127-09-3]} \end{aligned}$	Sodium Acetate Anhydrous for HPLC \& UV Spectroscopy, 99\%	500 Gms	17.24			500 Gms 5 Kg	63.17 534.56
$\begin{aligned} & 54966 \\ & {[6131-90-4]} \end{aligned}$	Sodium Acetate Trihydrate extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	3.82 34.22	$\begin{aligned} & 43471 \\ & {[16940-66-2]} \end{aligned}$	Sodium Borohydride (crystals) extrapure, 98\% (Sodium Tetrahydridoborate)	25 Gms 100 Gms	6.58 14.48
$\begin{aligned} & 44981 \\ & {[6131-90-4]} \end{aligned}$	Sodium Acetate Trihydrate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of BP	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	39.48			500 Gms 5 Kg	68.43 579.04
				$\begin{aligned} & 32769 \\ & {[7789-38-0]} \end{aligned}$	Sodium Bromate extrapure AR, 99\%	100 Gms	3.55
88035	Sodium Acetate Trihydrate for molecular biology, 99.5\%	250 Gms	4.47			500 Gms	11.84
[6131-90-4]		500 Gms	8.55	$\begin{aligned} & 43327 \\ & {[7647-15-6]} \end{aligned}$	Sodium Bromide extrapure, 99\%	500 Gms	9.48
$\begin{aligned} & 84658 \\ & \text { [6131-90-4] } \end{aligned}$	Sodium Acetate Trihydrate for tissue culture, 99.5%	500 Gms	11.19			5 Kg	92.12
$\begin{aligned} & 56315 \\ & \text { [6131-90-4] } \end{aligned}$	Sodium Acetate Trihydrate for HPLC, 99.5\%	500 Gms	19.74	$\begin{aligned} & 84486 \\ & {[6131-99-3]} \end{aligned}$	Sodium Cacodylate Trihydrate extrapure, 98\% (Dimethyl Arsenic Acid Sodium Salt Trihydrate)	25 Gms	108.57
21636 [7758-16-9]	Sodium Acid Pyrophosphate (SAPP) extrapure, 95\% (Sodium Pyrophosphate Dibasic, Disodium Diphosphate Dibasic, Disodium Dihydrogen Diphosphate)	500 Gms	6.05			100 Gms	421.12
				$\begin{aligned} & 42215 \\ & {[1984-06-1]} \end{aligned}$	Sodium Caprylate extrapure, 99\% (Caprylic Acid Sodium Salt)	100 Gms 250 Gms 500 Gms	$\begin{array}{r} 9.74 \\ 18.42 \\ 32.90 \end{array}$
80726 [9005-38-3]	Sodium Alginate LV extrapure, 4-12cps, 30mesh	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	32.90 309.26	$\begin{aligned} & 50090 \\ & {[1984-06-1]} \end{aligned}$	Sodium Caprylate BP, 99-101\%	1 Kg 5 Kg	$\begin{aligned} & 118.44 \\ & 565.88 \end{aligned}$
52775 [9005-38-3]	Sodium Alginate HV extrapure, 1000cps, 100mesh (Alginic Acid Sodium Salt)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	44.74 421.12	$\begin{aligned} & 81340 \\ & {[1984-06-1]} \end{aligned}$	Sodium Caprylate NF, 99-101\%	1 Kg 5 Kg	$\begin{aligned} & 121.07 \\ & 559.30 \end{aligned}$
75063	Sodium AAS Standard Solution in 0.5 N HCl (Traceable to NIST)	$\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned}$	21.06 34.22	$\begin{aligned} & 89382 \\ & {[497-19-8]} \end{aligned}$	Sodium Carbonate Anhydrous pure, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 3.16 \\ 27.64 \end{array}$
84070	Sodium Azide extrapure AR, ACS,	100 Gms	8.55			25 Kg	131.60
[26628-22-8]	99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	35.53 315.84	$\begin{aligned} & 51938 \\ & {[497-19-8]} \end{aligned}$	Sodium Carbonate Anhydrous ACS, 99\%, 80-100mesh	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	4.34 39.48
$\begin{aligned} & 17782 \\ & \text { [26628-22-8] } \end{aligned}$	Sodium Azide for molecular biology, 99\%	100 Gms 500 Gms	9.48 40.80	$\begin{aligned} & 64079 \\ & {[497-19-8]} \end{aligned}$	Sodium Carbonate Anhydrous ACS, 99.9\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	4.08 35.14
	Sodium Benzoate pure, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 5.79 \\ 52.64 \end{array}$			25 Kg	167.66
[532-32-1]				$\begin{aligned} & 93857 \\ & {[497-19-8]} \end{aligned}$	Sodium Carbonate Anhydrous ExiPlus, Multi-Compendial, 99.9\% meets compendial specs of USP, BP, Ph.Eur	500 Gms	4.61 41.59
$\begin{aligned} & 11114 \\ & {[532-32-1]} \end{aligned}$	Sodium Benzoate Exiplus, Multicompendial, 99\% meets compendial specs of USP, BP \& Ph.Eur	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 7.63 \\ 65.14 \end{array}$				
				$\begin{aligned} & 41721 \\ & \text { [7647-14-5] } \end{aligned}$	Sodium Chloride ACS, 99.9\%	500 Gms	2.76 5.26
$\begin{aligned} & 56398 \\ & {[144-55-8]} \end{aligned}$	Sodium Bicarbonate extrapure, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 3.16 \\ 25.00 \\ 118.44 \end{array}$			5 Kg 25 Kg	17.11 79.09
$\begin{aligned} & 45437 \\ & {[144-55-8]} \end{aligned}$	Sodium Bicarbonate ACS, 99.7\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 3.68 \\ 28.95 \\ 125.02 \end{array}$	$\begin{aligned} & 76945 \\ & {[7647-14-5]} \end{aligned}$	Sodium Chloride ExiPlus, Multi-Compendial, 99.9\%	500 Gms 1 Kg 5 Kg	2.90 5.66 17.77
$\begin{aligned} & 89399 \\ & {[144-55-8]} \end{aligned}$	Sodium Bicarbonate ACS, ExiPlus, Multi-Compendial, 99.7\%	500 Gms 5 Kg	$\begin{array}{r} 4.08 \\ 31.58 \end{array}$	$\begin{aligned} & 33205 \\ & {[7647-14-5]} \end{aligned}$	Sodium Chloride for molecular biology, 99.9\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	8.69 15.79
$\begin{aligned} & 36328 \\ & {[144-55-8]} \end{aligned}$	Sodium Bicarbonate for molecular biology, 99.7\%	500 Gms	10.53			5 Kg	73.17
$\begin{aligned} & 92957 \\ & {[144-55-8]} \end{aligned}$	Sodium Bicarbonate for tissue culture, 99.7\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 9.21 \\ 78.96 \end{array}$	$\begin{aligned} & 26416 \\ & \text { [7647-14-5] } \end{aligned}$	Sodium Chloride for tissue culture, 99.9\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	9.21 15.79
				$\begin{aligned} & 76154 \\ & {[7647-14-5]} \end{aligned}$	Sodium Chloride for HPLC, 99.9\%	500 Gms	6.32

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 71964 \\ & {[7681-55-2]} \end{aligned}$	Sodium lodate extrapure AR, 99.5\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	$\begin{aligned} & 12.50 \\ & 34.22 \end{aligned}$	$\begin{aligned} & 23621 \\ & \text { [7790-28-5] } \end{aligned}$	Sodium Metaperiodate (Sodium Periodate) extrapure AR, 99.5\%	100 Gms 500 Gms	$\begin{array}{r} 26.98 \\ 121.07 \end{array}$
		500 Gms	142.13	$\begin{aligned} & 30037 \\ & \text { [7790-28-5] } \end{aligned}$	Sodium Metaperiodate (Sodium Periodate) extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP, BP, Ph.Eur	100 Gms	28.95
$\begin{aligned} & 77758 \\ & {[7681-82-5]} \end{aligned}$	Sodium lodide pure, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 250 \mathrm{Gms} \end{array}$	$\begin{array}{r} 9.48 \\ 36.19 \\ 82.25 \end{array}$			500 Gms	123.70
		1 Kg	315.84	$\begin{aligned} & 94601 \\ & {[10213-79-3]} \end{aligned}$	Sodium Metasilicate Pentahydrate (Sodium Silicate Hydrated) extrapure	500 Gms	3.29
21704	\checkmark Sodium Iodide 1M Solution	100 ml 500 ml	9.87 32.90			1 Kg	5.53 26.32
11004 [9004-82-4]	Sodium Lauryl Ether Sulphate (SLES, AES), 28-30\% (Sodium Laureth Sulfate)	$1000 \mathrm{ml}$ $5 \mathrm{Ltr}$	9.61 25.66	$\begin{aligned} & 20660 \\ & {[13517-24-3]} \end{aligned}$	Sodium Metasilicate Nonahydrate (Sodium Silicate Hydrated) extrapure	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	3.29 5.53
$\begin{aligned} & 46821 \\ & {[151-21-3]} \end{aligned}$	Sodium Lauryl Sulphate (SLS, SDS) (Needle-shaped) extrapure, 90\% (Sodium Dodecyl Sulphate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	8.03 70.67	$\begin{gathered} 41670 \\ {[124-41-4]} \end{gathered}$	Sodium Methoxide Powder pure, 98\%	500 Gms	26.32 9.61
$\begin{aligned} & 14374 \\ & {[151-21-3]} \end{aligned}$	Sodium Lauryl Sulphate (SDS, SLS) ExiPlus, Multi-Compendial, 85\% (Sodium Dodecyl Sulphate) meets compendial specs of USP, BP, Ph.Eur	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	8.16 74.22	$\begin{aligned} & 13547 \\ & {[10102-40-6]} \end{aligned}$	Sodium Molybdate Dihydrate pure, 98\%	100 Gms 250 Gms 500 Gms	16.45 32.90 63.17
				18108	Sodium Molybdate Dihydrate	100 Gms	18.42
$\begin{aligned} & 54468 \\ & {[151-21-3]} \end{aligned}$	Sodium Lauryl Sulphate (SDS, SLS) extrapure AR, ACS, 99\% (Sodium Dodecyl Sulphate)	100 Gms 250 Gms	17.63 38.43	[10102-40-6]	extrapure AR, 99\%	250 Gms	38.82 68.43
		$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	70.27 135.68	$\begin{aligned} & 70851 \\ & {[10102-40-6]} \end{aligned}$	Sodium Molybdate Dihydrate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\%	100 Gms 250 Gms	19.74 42.11
$\begin{aligned} & 99671 \\ & {[151-21-3]} \end{aligned}$	Sodium Lauryl Sulphate (SDS, SLS) for HPLC, 99\% (Sodium Dodecyl Sulphate)	25 Gms 100 Gms 250 Gms	21.19 58.04 119.76		meets compendial specs of USP, BP, Ph.Eur	500 Gms	72.38
		1 Kg	295.31	44618 [7631-99-4]	Sodium Nitrate extrapure AR, ACS, 99\%	500 Gms	5.92
$\begin{aligned} & 32096 \\ & {[151-21-3]} \end{aligned}$	Sodium Lauryl Sulphate (SDS, SLS) for molecular biology, 99\% (Sodium Dodecyl Sulphate)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	7.76 23.95 79.09	28182 [13755-38-9]	Sodium Nitroprusside Dihydrate pure, 98\% (Sodium Nitroferricyanide)	$\begin{array}{r} 5 \mathrm{Kg} \\ \hline 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	52.64 14.48 65.80
		1 Kg	150.02	71750	Sodium Nitroprusside Dihydrate	100 Gms	15.79
$\begin{aligned} & 35825 \\ & {[151-21-3]} \end{aligned}$	Sodium Lauryl Sulphate (SDS, SLS) High Purity, 99.5\% (Sodium Dodecyl Sulphate)	$25 \mathrm{Gms}$	10.66	[13755-38-9]	extrapure AR, 99\%	500 Gms	68.43
		100 Gms	. 64	58403 [13755-38-9]	Sodium Nitroprusside Dihydrate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of BP, Ph.Eur	100 Gms	17.11
85369	Sodium Lauryl Sulphate (SDS, SLS) 10\% Solution (10\% SDS Solution)	100 ml	5.26			500 Gms	72.38
87547	Sodium Lauryl Sulphate (SDS, SLS) 20\% Solution (20\% SDS Solution)	250 ml	7.24	$\begin{aligned} & 62381 \\ & {[10101-89-0]} \end{aligned}$	tri-Sodium Orthophosphate Dodecahydrate pure, 98\% (Sodium Phosphate Tribasic	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	4.87 44.22
$\begin{aligned} & 34378 \\ & {[151-21-3]} \end{aligned}$	Sodium Lauryl Sulphate (SDS, SLS) BP, 85\% (Sodium Dodecyl Sulphate)	1 Kg	23.69		Dodecahydrate (Trisodium Phosphate Dodecahydrate))		
		$\begin{array}{r} 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	107.91 473.76	$\begin{aligned} & 73670 \\ & {[10101-89-0]} \end{aligned}$	tri-Sodium Orthophosphate Dodecahydrate extrapure AR, 99\%	500 Gms 5 Kg	$\begin{array}{r} 5.92 \\ 57.11 \end{array}$
$\begin{aligned} & 21705 \\ & {[7681-57-4]} \end{aligned}$	Sodium Metabisulphite extrapure AR, 98\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	3.95 37.51		(Sodium Phosphate Tribasic Dodecahydrate, Trisodium Phosphate Dodecahydrate)		
		25 Kg	177.66	69199	tri-Sodium Orthophosphate	500 Gms	7.11
$\begin{aligned} & 52693 \\ & {[7681-57-4]} \end{aligned}$	Sodium Metabisulphite extrapure AR, ACS, ExiPlus, Multi-Compendial, 98\% meets compendial specs of USP, BP	500 Gms 5 Kg	4.34 41.45	[10101-89-0]	Dodecahydrate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% (Sodium Phosphate Tribasic Dodecahydrate, Trisodium Phosphate Dodecahydrate)	5 Kg	65.41
$\begin{aligned} & 51153 \\ & {[7790-28-5]} \end{aligned}$	Sodium Metaperiodate (Sodium Periodate) pure 99\%	$100 \mathrm{Gms}$	24.35				
		500 Gms	115.81	36176	Sodium Oxalate pure, 99\%	500 Gms	6.32
				[62-76-0]		5 Kg	60.54

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 57554 \\ & {[62-76-0]} \end{aligned}$	Sodium Oxalate extrapure AR, 99.9\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	6.71 64.48	$\begin{aligned} & 22249 \\ & {[7558-80-7]} \end{aligned}$	Sodium Phosphate Monobasic Anhydrous extrapure AR, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	7.90 65.80
$\begin{aligned} & 36984 \\ & {[62-76-0]} \end{aligned}$	Sodium Oxalate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.9\% meets compendial specs of USP, BP, Ph.Eur	500 Gms	7.90	$\begin{aligned} & 98336 \\ & {[7558-80-7]} \end{aligned}$	Sodium Phosphate Monobasic Anhydrous for HPLC, 99\% (Sodium Dihydrogen Orthophosphate Anhydrous)	500 Gms	14.81
				59443 [7558-80-7]	Sodium Phosphate Monobasic Anhydrous for molecular biology, 99\%	250 Gms	12.90
$\begin{aligned} & 39815 \\ & {[15630-89-4]} \end{aligned}$	Sodium Percarbonate 13\% Active Oxygen (Sodium carbonate hydrogen peroxide)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 4.61 \\ 42.11 \end{array}$			500 Gms	18.42
				$\begin{aligned} & 91826 \\ & {[7558-80-7]} \end{aligned}$	Sodium Phosphate Monobasic Anhydrous for tissue culture, 99\%	250 Gms	5.26
$\begin{aligned} & 57548 \\ & {[15630-89-4]} \end{aligned}$	Sodium Percarbonate 20-30\% Active Oxygen	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{array}{r} 5.00 \\ 44.74 \end{array}$			1 Kg	17.11
				$\begin{aligned} & 27092 \\ & {[13472-35-0]} \end{aligned}$	Sodium Phosphate Monobasic Dihydrate extrapure, 99\%	500 Gms	5.72
$\begin{aligned} & 53388 \\ & {[1313-60-6]} \end{aligned}$	Sodium Peroxide ACS, 93\% (Sodium Superoxide)	100 Gms 250 Gms 500 Gms	$\begin{array}{r} 57.90 \\ 138.18 \end{array}$			5 Kg	52.64
				$\begin{aligned} & 40597 \\ & {[13472-35-0]} \end{aligned}$	Sodium Phosphate Monobasic Dihydrate extrapure AR, 99\%	500 Gms 5 Kg	$\begin{array}{r} 6.45 \\ 57.90 \end{array}$
			289.52				
$\begin{aligned} & 97295 \\ & {[7775-27-1]} \end{aligned}$	Sodium Persulphate pure, 98\% (Sodium Peroxodisulfate)	500 Gms	6.45	$\begin{aligned} & 79088 \\ & {[13472-35-0]} \end{aligned}$	Sodium Phosphate Monobasic Dihydrate extrapure AR, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP	500 Gms 5 Kg	$\begin{array}{r} 7.24 \\ 63.17 \end{array}$
$\begin{aligned} & 53046 \\ & {[7558-79-4]} \end{aligned}$	Sodium Phosphate Dibasic Anhydrous extrapure, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 6.84 \\ 63.17 \end{array}$				
$\begin{aligned} & 66273 \\ & \text { [7558-79-4] } \end{aligned}$	Sodium Phosphate Dibasic Anhydrous ACS, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 7.90 \\ 14.48 \\ 69.75 \end{array}$	$\begin{aligned} & 93494 \\ & {[13472-35-0]} \end{aligned}$	Sodium Phosphate Monobasic Dihydrate for molecular biology, 99\% (Sodium Hydrogen Phosphate Dihydrate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{aligned} & 10.86 \\ & 94.75 \end{aligned}$
45932	Sodium Phosphate Dibasic	500 Gms	8.95				
[7558-79-4]	Anhydrous ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP	1 Kg 5 Kg	15.79 75.01	$\begin{aligned} & 61707 \\ & {[10049-21-5]} \end{aligned}$	Sodium Phosphate Monobasic Monohydrate extrapure AR, 99\% (Sodium Dihydrogen Orthophosphate Monohydrate, Monosodium phosphate, Sodium dihydrogen phosphate mon	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	70.41
$\begin{aligned} & 21669 \\ & {[7558-79-4]} \end{aligned}$	Sodium Phosphate Dibasic Anhydrous for molecular biology, 99.5\%	250 Gms 500 Gms 5 Kg	$\begin{array}{r} 10.92 \\ 20.40 \\ 184.24 \end{array}$				
				$\begin{aligned} & 97768 \\ & {[10049-21-5]} \end{aligned}$	Sodium Phosphate Monobasic Monohydrate for HPLC, 99\% (Sodium Dihydrogen Orthophosphate Monohydrate, Monosodium phosphate, Sodium dihydrogen phosphate mon	500 Gms	12.90
$\begin{aligned} & 32080 \\ & {[10028-24-7]} \end{aligned}$	Sodium Phosphate Dibasic Dihydrate extrapure, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 5.26 \\ 46.06 \end{array}$				
87258	Sodium Phosphate Dibasic Dihydrate extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 6.32 \\ 52.64 \end{array}$				
[10028-24-7]				$\begin{aligned} & 78535 \\ & \text { [7601-54-9] } \end{aligned}$	Sodium Phosphate Tribasic Anhydrous extrapure, 96\% (Sodium Orthophosphate, Trisodium Phosphate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 8.55 \\ 77.64 \end{array}$
$\begin{aligned} & 52234 \\ & {[10028-24-7]} \end{aligned}$	Sodium Phosphate Dibasic Dihydrate ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of BP, USP \& Ph Eur	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{aligned} & 10.26 \\ & 81.59 \end{aligned}$				
				63059 [6381-59-5]	Sodium Potassium Tartrate Tetrahydrate pure, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 8.16 \\ 78.96 \end{array}$
$\begin{aligned} & 87027 \\ & {[10028-24-7]} \end{aligned}$	Sodium Phosphate Dibasic Dihydrate for molecular biology, 99.5\%	$\begin{array}{r} 250 \mathrm{Gms} \\ 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 5.92 \\ 11.32 \\ 102.65 \end{array}$	$\begin{aligned} & 18241 \\ & \text { [6381-59-5] } \end{aligned}$	Sodium Potassium Tartrate Tetrahydrate extrapure AR, 99\%	500 Gms $5 \mathrm{Kg}$	$\begin{array}{r} 8.69 \\ 82.91 \end{array}$
				88662 [6381-59-5]	Sodium Potassium Tartrate Tetrahydrate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of Ph.Eur	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 9.34 \\ 86.86 \end{array}$
$\begin{aligned} & 86858 \\ & {[10028-24-7]} \end{aligned}$	Sodium Phosphate Dibasic Dihydrate for HPLC, 99.5\%	500 Gms	13.82				
$\begin{aligned} & 57085 \\ & {[10039-32-4]} \end{aligned}$	Sodium Phosphate Dibasic Dodecahydrate extrapure, 98.5\% (Sodium Hydrogen Phosphate Dodecahydrate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 5.92 \\ 46.06 \end{array}$	$\begin{aligned} & 33650 \\ & {[137-40-6]} \end{aligned}$	Sodium Propionate pure, 99\%	500 Gms 5 Kg	$\begin{array}{r} 7.90 \\ 72.38 \end{array}$
				$\begin{aligned} & 58568 \\ & {[5323-95-5]} \end{aligned}$	Sodium Ricinoleate extrapure, 45\% solids (Ricinoleic Acid Sodium Salt, Sodium Ricinolate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{aligned} & 4.47 \\ & 8.16 \end{aligned}$
$\begin{aligned} & 83417 \\ & {[10039-32-4]} \end{aligned}$	Sodium Phosphate Dibasic Dodecahydrate extrapure AR, 99\% (Sodium Hydrogen Phosphate Dodecahydrate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 6.58 \\ 60.54 \end{array}$				
				$\begin{aligned} & 43874 \\ & {[54-21-7]} \end{aligned}$	Sodium Salicylate extrapure, 99\% (Salicylic Acid Sodium Salt, 2-Hydrobenzoic Acid Sodium Salt, Sodium-2-Hydrobenzoate)	500 Gms	10.53
$\begin{aligned} & 18134 \\ & \text { [7782-85-6] } \end{aligned}$	Sodium Phosphate Dibasic Heptahydrate ACS, 98-102\% (Disodium Hydrogen Phosphate Heptahydrate, Disodium Phosphate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 2.5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 28.95 \\ 134.23 \end{array}$				

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 36590 \\ & {[54-21-7]} \end{aligned}$	Sodium Salicylate extrapure AR, 99.5\% (Salicylic Acid Sodium Salt, 2-Hydrobenzoic Acid Sodium Salt, Sodium-2-Hydrobenzoate)	250 Gms 500 Gms	10.53 18.42	$\begin{aligned} & 54285 \\ & {[143-66-8]} \end{aligned}$	Sodium Tetraphenyl Borate (Kalignost) extrapure AR, 99.5\% (Sodium Tetraphenyl Boron)	$\begin{array}{r} 10 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{array}{r} 12.50 \\ 28.95 \\ 105.28 \\ 789.60 \end{array}$
62399 [13410-01-0]	Sodium Selenate Anhydrous extrapure AR, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 6.58 \\ 19.74 \\ 78.96 \end{array}$	$\begin{aligned} & 30888 \\ & {[143-66-8]} \end{aligned}$	Sodium Tetraphenyl Borate (Kalignost) extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% (Sodium Tetraphenyl Boron) meets compendial specs of BP, Ph.Eur	$\begin{array}{r} 10 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	14.48 110.54 815.92
83627 [9063-38-1]	Sodium Starch Glycolate ex. Maize (SSG) ExiPlus, Multi-Compendial meets compendial specs of USP		6.32				
		5 Kg	60.54	$\begin{aligned} & 94408 \\ & {[540-72-7]} \end{aligned}$	Sodium Thiocyanate pure, 98\%	500 Gms	6.32
$\begin{aligned} & 36313 \\ & {[6106-21-4]} \end{aligned}$	Sodium Succinate Hexahydrate Dibasic extrapure, 99\%	100 Gms 500 Gms	2.50 9.08	$\begin{aligned} & 21444 \\ & {[540-72-7]} \end{aligned}$	Sodium Thiocyanate extrapure AR, ACS, 98\%	500 Gms	7.90
$\begin{aligned} & 87578 \\ & \text { [6106-21-4] } \end{aligned}$	Sodium Succinate Hexahydrate Dibasic extrapure AR, 99\%	$\begin{aligned} & 100 \mathrm{Gms} \\ & 500 \mathrm{Gms} \end{aligned}$	3.16 12.50	$\begin{aligned} & 89728 \\ & \text { [7772-98-7] } \end{aligned}$	Sodium Thiosulphate Anhydrous extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	6.84 65.80
$\begin{aligned} & 59977 \\ & {[7757-82-6]} \end{aligned}$	Sodium Sulphate Anhydrous extrapure AR, 99.5\%	500 Gms 1 Kg 5 Kg	3.03 5.13 22.37	[10102-17-7]	extrapure, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 2.90 \\ 26.32 \\ 118.44 \end{array}$
$\begin{aligned} & 74725 \\ & {[7757-82-6]} \end{aligned}$	Sodium Sulphate Anhydrous extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	3.68 26.32	[10102-17-7]	ACS, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \\ 25 \mathrm{Kg} \end{array}$	$\begin{array}{r} 3.55 \\ 32.90 \\ 157.92 \end{array}$
				62148 [10102-17-7]	Sodium Thiosulphate Pentahydrate ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP	500 Gms	3.82
25365 [27610-45-3]	Sodium Sulphide Flakes extrapure, 60\%	500 Gms	3.68			5 Kg	36.19
32246 [7757-83-7]	Sodium Sulphite Anhydrous extrapure AR, 98\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	4.61 36.85	$\begin{aligned} & 33737 \\ & {[7772-98-7]} \end{aligned}$	Sodium Thiosulphate 0.1N Solution	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	2.50 4.34
29814 [7757-83-7]	Sodium Sulphite Anhydrous extrapure AR, ACS, ExiPlus, Multi-Compendial, 98\% meets compendial specs of USP, BP	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	5.26 43.43	$\begin{aligned} & 40023 \\ & {[7785-84-4]} \end{aligned}$	Sodium Trimetaphosphate (STMP) extrapure AR, 95\% (Trisodium Trimetaphosphate, Sodium Cyclotriphosphate)	100 Gms 500 Gms	40.01 36.85
$\begin{aligned} & 56580 \\ & {[1330-43-4]} \end{aligned}$	Sodium Tetraborate (Borax Anhydrous) extrapure AR, 99\% (Disodium Tetraborate)	$\begin{array}{r} 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \\ 2.5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 11.19 \\ 32.90 \\ 130.42 \end{array}$	$\begin{aligned} & 85124 \\ & \text { [7758-29-4] } \end{aligned}$	Sodium Tripolyphosphate Anhydrous (STPP) extrapure, 57-59\% as P2O5 (Pentasodium Tripolyphosphate, Sodium Triphosphate Pentabasic)	1 Kg 5 Kg	8.16 38.69
$\begin{aligned} & 38631 \\ & {[1303-96-4]} \end{aligned}$	Sodium Tetraborate Decahydrate (Borax Decahydrate) extrapure, 99\% (Disodium Tetraborate Decahydrate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	4.21				
			34.22	$\begin{aligned} & 81499 \\ & {[10213-10-2]} \end{aligned}$	Sodium Tungstate Dihydrate extrapure, 98\%	100 Gms 250 Gms	15.00 34.74
$\begin{aligned} & 19486 \\ & {[1303-96-4]} \end{aligned}$	Sodium Tetraborate Decahydrate (Borax Decahydrate) extrapure AR, 99.5\% (Disodium Tetraborate Decahydrate)					2.5 Kg	332.95
		5 Kg	55.93	$\begin{aligned} & 49110 \\ & {[10213-10-2]} \end{aligned}$	Sodium Tungstate Dihydrate extrapure AR, 99\%	100 Gms 250 Gms	15.79 38.69
$\begin{aligned} & 77668 \\ & {[1303-96-4]} \end{aligned}$	Sodium Tetraborate Decahydrate(Borax Decahydrate) extrapure AR, ACS,ExiPlus, Multi-Compendial, 99.5\% (Disodium Tetraborate Decahydrate) meets compendial specs of BP, Ph.Eur	500 Gms 5 Kg	7.24 65.80	$\begin{aligned} & 46215 \\ & {[10213-10-2]} \end{aligned}$	Sodium Tungstate Dihydrate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP, BP, Ph.Eur	100 Gms 250 Gms	17.24 42.11
					Solochrom Dark Blue (Calcon),	5 Gms	4.47
$\begin{aligned} & 29701 \\ & \text { [12179-04-3] } \end{aligned}$	Sodium Tetraborate Pentahydrate (Borax Pentahydrate) extrapure AR, 99.5\% (Disodium tetraborate pentahydrate)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	5.53 52.64	[2538-85-4] 59985	50\%	25 Gms 100 Gms 500 Gms	13.03 33.56 18.42
58581 [13755-29-8]	Sodium Tetrafluoroborate pure, 98.5\% (Sodium Fluoroborate, Sodium Fluoborate)	500 Gms	11.58	[110-44-1]			
				$\begin{aligned} & 62016 \\ & {[1338-39-2]} \end{aligned}$	Sorbitan Monolaurate (SPAN 20®) extrapure	$\begin{array}{r} 100 \mathrm{ml} \\ 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 26.32 \\ 78.96 \\ 368.48 \end{array}$

$\begin{aligned} & 78338 \\ & {[1338-43-8]} \end{aligned}$	Name Packing \$ Price Code Name Packing \$ Price			76601 [9005-84-9]	Name Starch Soluble extrapure AR, ACS, ExiPlus, Multi-Compendial	Packing 500 Gms 5 Kg	\$ Price $\begin{array}{r} 17.63 \\ 168.45 \end{array}$
$\begin{aligned} & 78338 \\ & {[1338-43-8]} \end{aligned}$	Sorbitan Monooleate (SPAN 80®) extrapure	$2500 \mathrm{ml}$	11.71 55.27	$\begin{aligned} & 76601 \\ & \text { [9005-84-9] } \end{aligned}$	Starch Soluble extrapure AR, ACS, ExiPlus, Multi-Compendial	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 17.63 \\ 168.45 \end{array}$
$\begin{aligned} & 36179 \\ & {[1338-41-6]} \end{aligned}$	Sorbitan Monostearate (SPAN 60®) extrapure	500 Gms	9.87	meets compendial specs of USP			
				91944	Strontium AAS Standard Solution in 0.5 N HCl (Traceable to NIST)	100 ml	21.06
$\begin{aligned} & 14281 \\ & {[50-70-4]} \end{aligned}$	D-Sorbitol Powder extrapure, 98\%	500 Gms	6.97			250 ml	34.22
		1 Kg	13.69	$\begin{aligned} & 66731 \\ & {[10476-81-0]} \end{aligned}$	Strontium Bromide (Strontium Dibromide) extrapure, 99\%	5 Gms	26.32
		5 Kg	65.80			25 Gms	65.80
$\begin{aligned} & 33320 \\ & {[50-70-4]} \end{aligned}$	D-Sorbitol Powder for tissue culture, 98\%	500 Gms	8.03			100 Gms	157.92
		1 Kg	14.48	$\begin{aligned} & 67911 \\ & {[1633-05-2]} \end{aligned}$	Strontium Carbonate extrapure, 98\%	500 Gms	8.55
$\begin{aligned} & 63443 \\ & {[50-70-4]} \end{aligned}$	D-Sorbitol Powder ExiPlus, Multi-Compendial, 98\%	500 Gms					
		1 Kg	15.79	$\begin{aligned} & 61832 \\ & {[10025-70-4]} \end{aligned}$	Strontium Chloride Hexahydrate extrapure, 98\%	250 Gms	5.13
		5 Kg	70.27			500 Gms	10.00
	meets compendial specs of BP					5 Kg	85.54
$\begin{aligned} & 99103 \\ & {[50-70-4]} \end{aligned}$	D-Sorbitol Powder for molecular biology, 98\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 19.87 \\ 38.03 \\ 127.26 \end{array}$	$\begin{aligned} & 29563 \\ & {[10042-76-9]} \end{aligned}$	Strontium Nitrate Anhydrous extrapure, 98\%	500 Gms	7.90
				$\begin{aligned} & 96330 \\ & {[110-15-6]} \end{aligned}$	Succinic Acid extrapure, 99\%	500 Gms	7.50
$\begin{aligned} & 47886 \\ & {[23647-14-5]} \end{aligned}$	SPADNS extrapure AR, ACS	1 Gms 5 Gms 25 Gms	$\begin{array}{r} 5.26 \\ 17.11 \\ 52.64 \end{array}$			5 Kg	68.43
				$\begin{aligned} & 85752 \\ & {[110-15-6]} \end{aligned}$	Succinic Acid extrapure AR, 99.5\%	100 Gms	5.53
						500 Gms	10.53
30467 [7646-78-8]	Stannic Chloride anhydrous extrapure, 99% (Tin (IV) Chloride, Tin Tetrachloride)	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{array}{r} 27.37 \\ 121.99 \end{array}$			5 Kg	98.70
				$\begin{aligned} & 62321 \\ & {[110-15-6]} \end{aligned}$	Succinic Acid extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of BP, Ph.Eur	100 Gms 500 Gms	6.05 12.50
79862 [7646-78-8]	Stannic Chloride 1M in Dichloromethane (Tin (IV) Chloride/Tin Tetrachloride in 1M MDC)	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{aligned} & 16.32 \\ & 59.22 \end{aligned}$				12.50
				$\begin{aligned} & 10917 \\ & {[123-56-8]} \end{aligned}$	Succinimide (Butanimide) extrapure AR, 99\%	100 Gms 500 Gms	$\begin{array}{r} 6.32 \\ 23.03 \end{array}$
$\begin{aligned} & 60006 \text { \& } \\ & {[7646-78-8]} \end{aligned}$	Stannic Chloride 1M in Heptane (Tin (IV) Chloride/Tin Tetrachloride in 1M Heptane)	100 ml	34.08	$\begin{aligned} & 84973 \\ & {[57-50-1]} \end{aligned}$	Sucrose pure	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	3.82 24.48
$\begin{aligned} & 98017 \\ & {[7646-78-8]} \end{aligned}$	Stannic Chloride 1M in Toluene (Tin (IV) Chloride/Tin Tetrachloride in 1M Toluene)	100 ml	34.08			25 Kg	114.76
				$\begin{aligned} & 90701 \\ & {[57-50-1]} \end{aligned}$	Sucrose extrapure AR, ACS	500 Gms 1 Kg	5.79 10.79
$\begin{aligned} & 91068 \\ & {[10025-69-1]} \end{aligned}$	Stannous Chloride Dihydrate pure, 97\% (Tin (II) Chloride Dihydrate)	100 Gms 250 Gms 500 Gms	$\begin{aligned} & 12.63 \\ & 30.93 \\ & 58.83 \end{aligned}$			5 Kg	51.72
						25 Kg	229.51
23329 [10025-69-1]	Stannous Chloride Dihydrate extrapure AR, 99\% (Tin (II) Chloride Dihydrate)	100 Gms 250 Gms 500 Gms	$\begin{aligned} & 14.08 \\ & 32.37 \\ & 61.72 \end{aligned}$	$\begin{aligned} & 27580 \\ & {[57-50-1]} \end{aligned}$	Sucrose for molecular biology	500 Gms	7.90 15.66
						5 Kg	59.48
				92696	Sucrose for tissue culture	500 Gms	5.79
89673	Stannous Chloride Dihydrate	100 Gms	15.13	[57-50-1]		1 Kg	10.13
[10025-69-1]	Multi-Compendial, 99\%	250 Gms	34.48			5 Kg	43.03
	(Tin (II) Chloride Dihydrate) meets compendial specs of USP , Ph.Eur		63.17	$\begin{aligned} & 82958 \\ & {[57-50-1]} \end{aligned}$	Sucrose IP (Non-Parenteral Use)	1 Kg 5 Kg	10.13 49.35
58254 [9005-25-8]	Starch Corn pure	500 Gms 5 Kg	$\begin{array}{r} 2.90 \\ 26.32 \end{array}$			25 Kg	236.88
				38142	Sucrose BP (Non-Parenteral Use)	1 Kg	10.13
86106	Starch Hydrolysed extrapure	100 Gms	13.55	[57-50-1]		5 Kg	49.35
[9005-84-9]		500 Gms	63.96			25 Kg	236.88
14418	Starch Soluble extrapure	500 Gms		56799	Sucrose NF (USP) (Non-Parenteral	1 Kg	15.79
[9005-84-9]		5 Kg	142.13	[57-50-1]	Use)	5 Kg	72.38
64698	Starch Soluble extrapure AR	500 Gms	16.45			25 Kg	329.00
[9005-84-9]		5 Kg	155.29	57335	Sudan IV for microscopy (C.I. No.	25 Gms	3.16
				[85-83-6]	26105), 95\%	100 Gms	7.90

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 47256 \\ & {[4197-25-5]} \end{aligned}$	Sudan Black	10 Gms	7.90 15.79	$\begin{aligned} & 54423 \\ & {[1643-19-2]} \end{aligned}$	Tetrabutylammonium Bromide (TBAB) for HPLC, 99.5\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	$\begin{aligned} & 18.42 \\ & 68.43 \end{aligned}$
		100 Gms	52.64	$\begin{gathered} 37256 \\ {[5574-97-0]} \end{gathered}$	Tetrabutylammonium Dihydrogen Phosphate (TBADP) extrapure AR, 98\% (Tetrabutylammonium Phosphate Monobasic)	5 Gms 25 Gms	$\begin{array}{r} 43.43 \\ 157.92 \end{array}$
$\begin{aligned} & 24073 \\ & {[5329-14-6]} \end{aligned}$	Sulphamic Acid pure, 99\% (Amido Sulphonic Acid)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 3.95 \\ 32.77 \end{array}$				
42773	Sulphamic Acid extrapure AR,	100 Gms	5.26				
[5329-14-6]	99.5% (Amido Sulphonic Acid)	500 Gms	23.69	$\begin{gathered} 78262 \\ {[5574-97-0]} \end{gathered}$	Tetrabutylammonium Dihydrogen Phosphate (TBADP) for HPLC, 99\% (Tetrabutylammonium phosphate monobasic)	5 Gms 25 Gms	$\begin{array}{r} 60.27 \\ 205.16 \end{array}$
$\begin{aligned} & 81645 \\ & {[5329-14-6]} \end{aligned}$	Sulphamic Acid extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% (Amido Sulphonic Acid) meets compendial specs of BP, Ph.Eur	100 Gms 500 Gms	$\begin{array}{r} 6.58 \\ 28.95 \end{array}$				
				$\begin{array}{ll} 84444 & \checkmark \\ {[5574-97-0]} \end{array} \quad \mathbf{P}$	Tetrabutylammonium Dihydrogen Phosphate, 0.1M in HPLC Water (Tetrabutylammonium Phosphate Monobasic 0.1M in HPLC Water)	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{array}{r} 68.43 \\ 329.00 \end{array}$
$\begin{aligned} & 89762 \\ & {[63-74-1]} \end{aligned}$	Sulphanilamide pure, 99\% (p-Aminobenzenesulphonamide)	$\begin{array}{r} 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 10.53 \\ 39.48 \\ 368.48 \end{array}$				
				57968 [5574-97-0]	Tetrabutylammonium Dihydrogen Phosphate, 0.5M in HPLC Water (Tetrabutylammonium Phosphate Monobasic 0.5M in HPLC Water)	$\begin{gathered} 10 \mathrm{ml} \\ 100 \mathrm{ml} \\ 500 \mathrm{ml} \end{gathered}$	$\begin{array}{r} 26.32 \\ 105.28 \\ 394.80 \end{array}$
$\begin{aligned} & 65404 \\ & {[63-74-1]} \end{aligned}$	Sulphanilamide extrapure AR, 99\% (p-Aminobenzenesulphonamide)	100 Gms 500 Gms	$\begin{aligned} & 11.84 \\ & 53.82 \end{aligned}$				
$\begin{aligned} & 19689 \\ & {[63-74-1]} \end{aligned}$	Sulphanilamide extrapure AR, ExiPlus, Multi-Compendial, 99\% (p-Aminobenzenesulphonamide)	100 Gms 500 Gms	14.08 58.83	$\begin{aligned} & 53856 \\ & {[5574-97-0]} \end{aligned}$	Tetrabutylammonium Dihydrogen Phosphate, 1M in HPLC Water (Tetrabutylammonium Phosphate Monobasic 1M in HPLC Water)	$\begin{array}{r} 50 \mathrm{ml} \\ 100 \mathrm{ml} \\ 500 \mathrm{ml} \end{array}$	$\begin{array}{r} 98.70 \\ 157.92 \\ 434.28 \end{array}$
	meets compendial specs of USP, BP, Ph.Eur			50283 [87749-50-6]	Tetrabutylammonium Fluoride Trihydrate extrapure, 98\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	$\begin{aligned} & 17.11 \\ & 50.01 \end{aligned}$
$\begin{aligned} & 15354 \\ & {[121-57-3]} \end{aligned}$	Sulphanilic Acid pure, 99\% (p-Aminobenzenesulphonamide)	$\begin{aligned} & 100 \mathrm{Gms} \\ & 500 \mathrm{Gms} \end{aligned}$	$\begin{aligned} & 2.63 \\ & 9.21 \end{aligned}$	$\begin{aligned} & 30315 \\ & {[429-41-4]} \end{aligned}$	Tetrabutylammonium Fluoride (TBAF) 1M Soln. in THF (N,N,N-Tributyl-1-butanaminium Fluoride)	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{aligned} & 19.08 \\ & 65.80 \end{aligned}$
$\begin{aligned} & 93360 \\ & {[121-57-3]} \end{aligned}$	Sulphanilic Acid (High Purity) extrapure AR, 99.5\%	100 Gms 500 Gms	$\begin{array}{r} 4.34 \\ 17.24 \end{array}$				
$\begin{aligned} & 97979 \\ & {[121-57-3]} \end{aligned}$	Sulphanilic Acid (High Purity) extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of BP	100 Gms 500 Gms	$\begin{array}{r} 6.19 \\ 23.03 \end{array}$	$\begin{aligned} & 91958 \\ & {[32503-27-8]} \end{aligned}$	Tetrabutylammonium Hydrogen Sulphate (TBAHS) pure, 98\%	100 Gms 250 Gms 500 Gms	$\begin{array}{r} 8.16 \\ 15.66 \\ 27.64 \end{array}$
$\begin{aligned} & 44445 \\ & {[5965-83-3]} \end{aligned}$	5-Sulphosalicylic Acid extrapure, 99\%	250 Gms 500 Gms 5 Kg	$\begin{array}{r} 7.37 \\ 11.19 \\ 105.28 \end{array}$	$\begin{aligned} & 83955 \\ & {[32503-27-8]} \end{aligned}$	Tetrabutylammonium Hydrogen Sulphate (TBAHS) extrapure AR, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 7.50 \\ 21.58 \\ 100.41 \end{array}$
$\begin{aligned} & 92635 \\ & {[14807-96-6]} \end{aligned}$	Talc Powder Fine ExiPlus, Multi-Compendial, -325 mesh (Hydrous Magnesium Silicate, Talcum Powder, Soapstone) meets compedial specs of BP USP \& Ph.Eur	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 2.24 \\ 17.24 \end{array}$	$\begin{aligned} & 10778 \\ & {[32503-27-8]} \end{aligned}$	Tetrabutylammonium Hydrogen Sulphate (TBAHS) extrapure AR, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP, BP, Ph.Eur	100 Gms	25.93
				$\begin{aligned} & 88383 \\ & {[32503-27-8]} \end{aligned}$	Tetrabutylammonium Hydrogen Sulphate (TBAHS) for HPLC, 99.5\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 8.69 \\ 23.69 \\ 114.76 \end{array}$
$\begin{aligned} & 92101 \\ & {[1401-55-4]} \end{aligned}$	Tannic Acid extrapure AR, ACS, ExiPlus, Multi-Compendial (Gallotannin, Tannin) meets compendial specs of BP	100 Gms 250 Gms 500 Gms	$\begin{aligned} & 15.92 \\ & 31.06 \\ & 55.80 \end{aligned}$				
				$\begin{aligned} & 52162 \\ & {[2052-49-5]} \end{aligned}$	Tetrabutylammonium Hydroxide 0.1 N aq. solution extrapure AR	500 ml	23.16
52931	Tartrazine, 87\%	$\begin{array}{r} 100 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{array}{r} 5.00 \\ 39.48 \end{array}$	$\begin{aligned} & 28342 \\ & {[2052-49-5]} \end{aligned}$	Tetrabutylammonium Hydroxide 0.1 N in Isopropanol extrapure AR	500 ml	25.00
[1934-21-0]				$\begin{aligned} & 94836 \\ & {[2052-49-5]} \end{aligned}$	Tetrabutylammonium Hydroxide 1M aq. solution	100 ml 500 ml	$\begin{array}{r} 30.27 \\ 138.18 \end{array}$
20428	Terephthalic Acid pure, 98\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 5.00 \\ 46.06 \end{array}$				
[100-21-0]				$\begin{aligned} & 41728 \\ & {[2052-49-5]} \end{aligned}$	Tetrabutylammonium Hydroxide 10% aq. solution extrapure	100 ml 500 ml	$\begin{aligned} & 16.45 \\ & 68.43 \end{aligned}$
20669	Tetrabutylammonium Bromide (TBAB) pure, 98\%	100 Gms 250 Gms 500 Gms	$\begin{array}{r} 5.26 \\ 10.79 \\ 19.48 \end{array}$				
[1643-19-2]				$\begin{aligned} & 15134 \\ & \text { [2052-49-5] } \end{aligned}$	Tetrabutylammonium Hydroxide 10\% in methanol extrapure	100 ml	17.77
$\begin{aligned} & 57594 \\ & {[1643-19-2]} \end{aligned}$	Tetrabutylammonium Bromide (TBAB) extrapure AR, ACS, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 6.58 \\ 21.06 \\ 98.70 \end{array}$	$\begin{aligned} & 41715 \\ & \text { [2052-49-5] } \end{aligned}$	Tetrabutylammonium Hydroxide 20% aq. solution extrapure	100 ml 500 ml	$\begin{aligned} & 23.69 \\ & 92.12 \end{aligned}$
				$\begin{aligned} & 54722 \\ & {[2052-49-5]} \end{aligned}$	Tetrabutylammonium Hydroxide 25\% aq. solution extrapure	100 ml 500 ml	$\begin{array}{r} 25.00 \\ 107.91 \end{array}$

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 68032 \\ & {[2052-49-5]} \end{aligned}$	Tetrabutylammonium Hydroxide 40% aq solution pure	$\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{array}{r} 40.80 \\ 98.70 \\ 184.24 \end{array}$	$\begin{aligned} & 93314 \\ & {[78-10-4]} \end{aligned}$	Tetraethyl Orthosilicate (TEOS) extrapure, 98\%, 28-28.8\% SiO2 (Silicon Tetraethoxide, Tetraethoxysilane, Tetraethyl Silicate)	$\begin{array}{r} 100 \mathrm{ml} \\ 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{aligned} & 11.84 \\ & 21.06 \\ & 81.59 \end{aligned}$
		1000 ml	315.84	21957 [4368-51-8]	Tetraheptyl Ammonium Bromide (THAB) extrapure, 99\%	5 Gms	31.19
30064 [2052-49-5]	Tetrabutylammonium Hydroxide 54-56\% aq. solution extrapure AR	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	98.70 394.80			25 Gms 100 Gms	116.20 420.99
$\begin{aligned} & 13656 \\ & {[2052-49-5]} \end{aligned}$	Tetrabutylammonium Hydroxide 25\% in Methanol extrapure	$\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	25.00 56.59 107.91	$\begin{aligned} & 46986 \\ & {[4368-51-8]} \end{aligned}$	Tetraheptyl Ammonium Bromide (THAB) for HPLC, 99\%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 44.74 \\ 157.92 \\ 552.72 \end{array}$
$\begin{aligned} & 74212 \\ & \text { [2052-49-5] } \end{aligned}$	Tetrabutylammonium Hydroxide 40\% in Methanol extrapure	$\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{array}{r} 40.80 \\ 98.70 \\ 184.24 \end{array}$	$\begin{aligned} & 82863 \\ & {[109-99-9]} \end{aligned}$	Tetrahydrofuran (THF) (Stabilized) pure, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	$\begin{array}{r} 6.58 \\ 28.95 \\ 263.20 \end{array}$
$\begin{aligned} & 40878 \\ & {[2052-49-5]} \end{aligned}$	Tetrabutylammonium Hydroxide 0.1 N in Methanol for non-aqueous titration extrapure AR	500 ml	22.37	$\begin{aligned} & 74497 \\ & {[109-99-9]} \end{aligned}$	Tetrahydrofuran (THF) (Stabilized) extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 7.24 \\ 32.90 \end{array}$
$\begin{aligned} & 45205 \\ & {[2052-49-5]} \end{aligned}$	Tetrabutylammonium Hydroxide 0.1 N in Methanol/Toluene extrapure AR	500 ml	20.00	$\begin{aligned} & 83642 \\ & {[109-99-9]} \end{aligned}$	Tetrahydrofuran (THF) (Stabilized) extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	7.90 36.19
$\begin{aligned} & 44991 \\ & \text { [2052-49-5] } \end{aligned}$	Tetrabutylammonium Hydroxide 20\% in Methanol/Toluene extrapure	100 ml	26.32		meets compendial specs of USP, BP, Ph.Eur		
$\begin{aligned} & 28051 \\ & {[311-28-4]} \end{aligned}$	Tetrabutylammonium lodide (TBAI) extrapure AR, 99\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	$\begin{aligned} & 19.74 \\ & 69.75 \end{aligned}$	$\begin{aligned} & 32661 \\ & {[109-99-9]} \end{aligned}$	Tetrahydrofuran (THF) GC-HS, 99.9\%	$\begin{array}{r} 250 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{array}{r} 6.58 \\ 22.37 \end{array}$
$\begin{aligned} & 62390 \\ & {[311-28-4]} \end{aligned}$	Tetrabutylammonium lodide (TBAI) extrapure AR, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP, BP, Ph.Eur	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	22.37 73.70	$\begin{aligned} & 94842 \\ & {[109-99-9]} \end{aligned}$	Tetrahydrofuran (THF) for HPLC \& UV Spectroscopy, 99.9\%	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{aligned} & 11.58 \\ & 19.74 \\ & 44.74 \end{aligned}$
				$\begin{aligned} & 59167 \\ & {[109-99-9]} \end{aligned}$	Tetrahydrofuran (THF) Dried, $99.5 \%, 0.005 \%$ water	$500 \mathrm{ml}$	10.53
$\begin{aligned} & 26158 \\ & {[5593-70-4]} \end{aligned}$	Tetra-N-Butyl Orthotitanate (TNBT) extrapure, 23-24\% TiO2 (Tetrabutyl Orthotitanate, Titanium(IV) n-Butoxide, Tetrabutyl Titanate, Orthotitanic Acid Tetrabuty	100 ml	11.84			1000 ml	18.42
		$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	31.58 92.12	$\begin{aligned} & 92562 \\ & {[109-99-9]} \end{aligned}$	Tetrahydrofuran (THF) for molecular biology, 99.8\%	$\begin{aligned} & 250 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	6.32 11.32
				22698 \&	Tetrahydrofuran-d8 (THF-d8) for	5 ml	256.62
$\begin{aligned} & 69105 \\ & {[127-18-4]} \end{aligned}$	Tetrachloroethylene pure, 99\% (Perchloroethylene)	500 ml	7.90	[1693-74-9]	NMR spectroscopy, 99.5 Atom \%D		
		2500 ml	34.22	$\begin{aligned} & 11088 \\ & {[119-64-2]} \end{aligned}$	1,2,3,4-Tetrahydronaphthalene (Tetralin) pure, 98\%		16.45 68.43
$\begin{aligned} & 25058 \\ & {[127-18-4]} \end{aligned}$	Tetrachloroethylene extrapure AR, 99.5\% (Perchloroethylene)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	10.00 43.43	$\begin{aligned} & 91496 \\ & {[75-59-2]} \end{aligned}$	Tetramethylammonium Hydroxide 10% aq. solution pure	50 ml 250 ml	68.4 10.66 40.80
$\begin{aligned} & 74438 \\ & {[127-18-4]} \end{aligned}$	Tetrachloroethylene for UV spectroscopy, 99.5\% (Perchloroethylene)	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	11.19 20.40	$\begin{aligned} & 94620 \\ & {[75-59-2]} \end{aligned}$	Tetramethylammonium Hydroxide 25% aqueous solution pure	$\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned}$	36.85 69.75
$\begin{aligned} & 48448 \\ & {[127-18-4]} \end{aligned}$	Tetrachloroethylene GC-HS, 99.9\%	250 ml	9.21			500 ml	125.02
		1000 ml	25.00	21371	Tetramethylammonium Hydroxide	100 ml	39.48
$\begin{aligned} & 70427 \\ & {[14937-42-9]} \end{aligned}$	Tetradecylammonium Bromide (TDAB) extrapure AR, 99\% (Tetrakis(decyl) Ammonium Bromide)	$\begin{gathered} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 35.53 \\ 134.23 \end{array}$	[75-59-2]	25\% in methanol pure	$\begin{aligned} & 250 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{array}{r} 65.80 \\ 111.86 \end{array}$
		100 Gms	447.44	38342	Tetramethylammonium Hydroxide	1000 ml	276.36
$\begin{aligned} & 59256 \\ & {[14937-42-9]} \end{aligned}$	Tetradecylammonium Bromide (TDAB) for HPLC, 99\% (Tetrakis(decyl) Ammonium Bromide)	5 Gms	42.11 164.50	[75-59-2]	25\% aqueous solution, VLSI Semiconductor Grade	2500 ml	506.66
					Tetramethylammonium Hydroxide 0.1 N in isopropanol/ methanol extrapure	100 ml	18.42
$\begin{aligned} & 67902 \\ & {[71-91-0]} \end{aligned}$	Tetraethylammonium Bromide (TEAB) pure, 98\%	100 Gms	6.45 11.84	[75-59-2]		500 ml	40.80
		500 Gms 1 Kg	$\begin{aligned} & 11.84 \\ & 23.36 \\ & 45.40 \end{aligned}$	$\begin{aligned} & 56874 \\ & {[75-59-2]} \end{aligned}$	Tetramethylammonium Hydroxide 1M aq. solution ACS	$\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned}$	$\begin{aligned} & 14.48 \\ & 34.22 \end{aligned}$
$\begin{aligned} & 64674 \\ & {[16873-13-5]} \end{aligned}$	Tetraethylammonium Hydrogen Sulphate (TEAHS) extrapure, 99\%	10 Gms 25 Gms	27.37 59.22	$\begin{aligned} & 29740 \\ & {[10424-65-4]} \end{aligned}$	Tetramethylammonium Hydroxide Pentahydrate extrapure, 98\%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 10.92 \\ & 19.21 \\ & 64.75 \end{aligned}$

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price		
$\begin{aligned} & 56993 \\ & {[546-68-9]} \end{aligned}$	Titanium Isopropoxide (TTIP) extrapure, 27.8-28.6\% TiO2 (Tetraisopropyl Orthotitanate, Titanium (IV) Isopropoxide, Titanium Tetraisopropoxide)	$\begin{gathered} 100 \mathrm{ml} \\ 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{gathered}$	$\begin{array}{r} 8.03 \\ 15.53 \\ 72.51 \end{array}$	$\begin{aligned} & 86763 \\ & {[657-84-1]} \end{aligned}$	p-Toluenesulphonic Acid Sodium Salt pure, 98\% (Sodium p-Toluenesulfonate, PTSA Sodium)	500 Gms	24.35		
				$\begin{aligned} & 73222 \\ & {[102-76-1]} \end{aligned}$	Triacetin pure, 99\%	500 ml	10.66		
$\begin{aligned} & 70472 \\ & {[1829-00-1]} \end{aligned}$	Titan Yellow, 65\%	25 Gms 50 Gms	9.87			2500 ml	51.72		
			18.42	$\begin{aligned} & 21559 \\ & {[102-82-9]} \end{aligned}$	Tributylamine extrapure, 99\%	250 ml	3.03		
		250 Gms	78.96			1000 ml	10.53		
$\begin{aligned} & 47556 \\ & {[108-88-3]} \end{aligned}$	Toluene pure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	$\begin{array}{r} 3.75 \\ 14.48 \\ 125.02 \end{array}$	$\begin{aligned} & 74315 \\ & {[126-73-8]} \end{aligned}$	Tributylphosphate extrapure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 23.69 \\ 110.54 \end{array}$		
				$\begin{aligned} & 91094 \\ & {[6138-23-4]} \end{aligned}$	D-Trehalose Dihydrate extrapure CHR	5 Gms	4.87		
$\begin{aligned} & 39984 \\ & {[108-88-3]} \end{aligned}$	Toluene (Sulphur free) extrapure, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	$\begin{array}{r} 3.95 \\ 15.79 \\ 130.28 \end{array}$			25 Gms	16.84		
						100 Gms	55.93		
						1 Kg	164.50		
$\begin{aligned} & 85577 \\ & {[108-88-3]} \end{aligned}$	Toluene extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	$\begin{array}{r} 4.61 \\ 17.11 \\ 142.13 \end{array}$	$\begin{aligned} & 15886 \\ & \text { [6138-23-4] } \end{aligned}$	D-Trehalose Dihydrate for tissue culture	5 Gms	7.24		
						25 Gms	25.66		
						100 Gms	62.25		
$\begin{aligned} & 95227 \\ & {[108-88-3]} \end{aligned}$	Toluene extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP, Ph.Eur	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 5.26 \\ 19.74 \end{array}$	$\begin{gathered} 90544 \\ {[76-03-9]} \end{gathered}$	Trichloroacetic Acid extrapure, 99\%	100 Gms	2.63		
						500 Gms	8.55		
				$\begin{gathered} 60677 \\ {[76-03-9]} \end{gathered}$	Trichloroacetic Acid extrapure AR, ACS, 99.5\%	100 Gms	3.82		
$\begin{aligned} & 17213 \\ & {[108-88-3]} \end{aligned}$	Toluene Dried, 99.5\%, 0.005% water	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	5.13		ACS, 99.5\%	500 Gms	9.48		
			9.74	$\begin{aligned} & 31445 \\ & {[76-03-9]} \end{aligned}$	Trichloroacetic Acid 10\% solution	$100 \mathrm{ml}$$500 \mathrm{ml}$	$\begin{aligned} & 2.63 \\ & 5.66 \end{aligned}$		
			18.42						
$\begin{aligned} & 80156 \\ & {[108-88-3]} \end{aligned}$	Toluene Dried Special (Low Benzene, 25ppm), 99.5\%, 0.005\% water	$\begin{gathered} 250 \mathrm{ml} \\ 1000 \mathrm{ml} \end{gathered}$	$\begin{array}{r} 5.92 \\ 14.48 \end{array}$	$\begin{aligned} & 54290 \\ & {[76-03-9]} \end{aligned}$	Trichloroacetic Acid 20\% solution	500 ml	5.92		
				$\begin{aligned} & 15106 \\ & {[79-01-6]} \end{aligned}$	Trichloroethylene extrapure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	4.61		
83662 [108-88-3]	Toluene GC-HS, 99.9\%	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{array}{r} 9.87 \\ 17.77 \end{array}$				19.74		
							184.24		
$\begin{aligned} & 29490 \\ & {[108-88-3]} \end{aligned}$	Toluene for HPLC \& UV Spectroscopy, 99.8\%	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 6.19 \\ 10.79 \\ 19.08 \end{array}$	$\begin{aligned} & 92390 \\ & {[79-01-6]} \end{aligned}$	Trichloroethylene extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	$\begin{array}{r} 5.13 \\ 21.71 \\ 203.98 \end{array}$		
$\begin{aligned} & 85590 \\ & {[2037-26-5]} \end{aligned}$	Toluene-d8 for NMR spectroscopy, 99.5 Atom \%D	10 ml	179.37	$\begin{aligned} & 86976 \\ & {[79-01-6]} \end{aligned}$	Trichloroethylene extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of BP, Ph.Eur	500 ml 2500 ml	$\begin{array}{r} 5.79 \\ 23.69 \end{array}$		
$\begin{aligned} & 33635 \\ & {[108-44-1]} \end{aligned}$	m-Toluidine extrapure, 99% (3-Methylaniline, m-Aminotoluene)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 7.50 \\ 29.61 \end{array}$						
$\begin{aligned} & 82225 \\ & {[70-55-3]} \end{aligned}$	p -Toluenesulfonamide (PTSamide) pure, 98\% (4-Toluenesulfonamide)	100 Gms 500 Gms	$\begin{array}{r} 4.08 \\ 15.79 \end{array}$	$\begin{aligned} & 76338 \\ & {[79-01-6]} \end{aligned}$	Trichloroethylene electronic grade, 99.5\%	$\begin{gathered} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{gathered}$	$\begin{array}{r} 9.87 \\ 36.85 \end{array}$		
				$\begin{aligned} & 97681 \\ & {[79-01-6]} \end{aligned}$	Trichloroethylene for UV spectroscopy, 99.5\%	$500 \mathrm{ml}$$1000 \text { ml }$	$\begin{array}{r} 9.48 \\ 17.11 \end{array}$		
$\begin{aligned} & 29423 \\ & \text { [6192-52-5] } \end{aligned}$	p-Toluenesulphonic Acid Monohydrate pure, 98\% (Toluene-4-Sulphonic Acid, PTSA)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 6.84 \\ 51.85 \end{array}$						
				$\begin{aligned} & 42943 \\ & {[79-01-6]} \end{aligned}$	Trichloroethylene Dried, 99.5\%, 0.005\% water	500 ml	13.16		
$\begin{aligned} & 77948 \\ & \text { [6192-52-5] } \end{aligned}$	p-Toluenesulphonic Acid 100 Gms 4.21 Monohydrate extrapure AR, ACS, 500 Gms 16.84 99\% (Toluene-4-Sulphonic Acid, PTSA)								
				$\begin{aligned} & 20779 \\ & {[102-71-6]} \end{aligned}$	Triethanolamine pure, 98\%	500 ml 2500 ml	$\begin{array}{r} 5.26 \\ 21.06 \end{array}$		
55580 [6192-52-5]	p-Toluenesulphonic Acid Monohydrate (High Purity) extrapure AR,ACS, ExiPlus,Multi-Compendial, 99.5\% (Toluene-4-Sulphonic Acid, PTSA) meets compendial specs of USP, BP,	100 Gms 500 Gms	$\begin{array}{r} 8.16 \\ 29.48 \end{array}$	$\begin{aligned} & 29306 \\ & {[121-44-8]} \end{aligned}$	Triethylamine pure, 98\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	$\begin{array}{r} 5.00 \\ 21.71 \\ 197.40 \end{array}$		
				$\begin{aligned} & 75198 \\ & {[121-44-8]} \end{aligned}$	Triethylamine extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 5.66 \\ 23.69 \end{array}$		

[^1]| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 95205 \\ & {[121-44-8]} \end{aligned}$ | Triethylamine extrapure AR, ExiPlus, Multi-Compendial, 99.5\%
 meets compendial specs of USP, BP, Ph.Eur | $\begin{aligned} & 1000 \mathrm{ml} \\ & 2500 \mathrm{ml} \end{aligned}$ | $\begin{aligned} & 13.49 \\ & 25.66 \end{aligned}$ | $\begin{aligned} & 37969 \\ & {[77-86-1]} \end{aligned}$ | Tris Buffer Superior for molecular biology, 99.9\%
 (Tris (Hydroxymethyl) Aminomethane, Tromethamine) | $\begin{array}{r} 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$ | $\begin{array}{r} 14.61 \\ 68.96 \\ 588.12 \end{array}$ |
| $\begin{aligned} & 67352 \\ & {[121-44-8]} \end{aligned}$ | Triethylamine for HPLC, 99.5\% | $\begin{aligned} & 250 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$ | 6.05 11.19 | $\begin{aligned} & 56995 \\ & {[77-86-1]} \end{aligned}$ | Tris Buffer for HPLC, 99.9\%
 (Tris (Hydroxymethyl) Aminomethane, Tromethamine) | 100 Gms 500 Gms | 20.13 86.07 |
| | | 1000 ml | 17.11 | $\begin{aligned} & 16622 \\ & {[77-86-1]} \end{aligned}$ | Tris Buffer USP, 99-101\% (Non Injectable Use)
 (Tris (Hydroxymethyl) Aminomethane, Tromethamine) | 1 Kg | 105.28 |
| $\begin{aligned} & 55221 \\ & {[121-44-8]} \end{aligned}$ | Triethylamine for molecular biology, 99.5\% | 500 ml | 7.90 | | | 5 Kg | 493.50 |
| $\begin{aligned} & 12475 \\ & {[77-93-0]} \end{aligned}$ | Triethyl Citrate extrapure, 99\% (Citric Acid Triethyl Ester, Ethyl Citrate) | $\begin{array}{r} 250 \mathrm{ml} \\ 1000 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$ | 7.90 28.95 68.43 | $\begin{aligned} & 99438 \\ & {[1185-53-1]} \end{aligned}$ | Tris Hydrochloride (Tris HCl) extrapure AR, 99\%
 (Tris (Hydroxymethyl) Aminomethane Hydrochloride) | 100 Gms
 500 Gms
 5 Kg | $\begin{array}{r} 14.34 \\ 68.96 \\ 645.50 \end{array}$ |
| $\begin{aligned} & 37817 \\ & {[112-27-6]} \end{aligned}$ | Triethylene Glycol extrapure, 99\% | $\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$ | 5.26 22.37 | $\begin{aligned} & 89781 \\ & {[1185-53-1]} \end{aligned}$ | Tris Hydrochloride (Tris HCI) for molecular biology, 99\%
 (Tris (Hydroxymethyl) Aminomethane Hydrochloride) | 100 Gms
 500 Gms | $\begin{aligned} & 18.03 \\ & 78.96 \end{aligned}$ |
| $\begin{aligned} & 96475 \\ & {[112-27-6]} \end{aligned}$ | Triethylene Glycol extrapure AR, 99\% | $\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$ | $\begin{array}{r} 6.84 \\ 26.32 \end{array}$ | | | 1 Kg | 129.10 |
| | | | | 30190
 [9002-93-1] | Triton X-100 extrapure for scintillation | 500 ml | 8.69 |
| $\begin{aligned} & 86570 \\ & {[112-24-3]} \end{aligned}$ | Triethylenetetramine (mix. of isomers) pure, 97% | 500 ml 2500 ml | $\begin{aligned} & 12.24 \\ & 51.72 \end{aligned}$ | | | 2500 ml | 41.72 |
| | | | | 64518 | Triton X-100 for molecular biology | 100 ml | 11.58 |
| $\begin{aligned} & 81085 \\ & {[122-51-0]} \end{aligned}$ | Triethyl Orthoformate extrapure, 99\% | 500 ml 2500 ml | $\begin{array}{r} 7.90 \\ 38.16 \end{array}$ | [9002-93-1] | | 500 ml | 17.24 |
| $\begin{aligned} & 78984 \\ & {[76-05-1]} \end{aligned}$ | Trifluoroacetic Acid (TFA) pure, 99\% | $\begin{array}{r} 100 \mathrm{ml} \\ 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$ | 38.16 8.55 32.90 157.92 | 55219
 [9036-19-5] | Triton X-405 (70\% solution)
 extrapure
 (Octylphenolethoxylate,Polyethylenegly col
 t-Octylphenylether,Polyoxyethylene(40)i sooctylphenylether) | $\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$ | $\begin{array}{r} 28.95 \\ 47.38 \\ 105.28 \end{array}$ |
| $\begin{aligned} & 65415 \\ & {[76-05-1]} \end{aligned}$ | Trifluoroacetic Acid (TFA) extrapure AR, 99.5\% | 100 ml | 11.84 | | | | |
| | | $\begin{aligned} & 250 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$ | 23.69 36.85 | $\begin{aligned} & 64315 \\ & {[547-57-9]} \end{aligned}$ | Tropaeolin O Sodium Salt (Acid Orange 6, Chrysoin) | $\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$ | 8.42 30.14 |
| $\begin{aligned} & 67869 \\ & {[76-05-1]} \end{aligned}$ | Trifluoroacetic Acid (TFA) extrapure AR, ExiPlus, Multi-Compendial, 99.5\%
 meets compendial specs of USP, BP, Ph.Eur | $\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$ | 13.82 42.11 | $\begin{aligned} & 10233 \\ & {[54-12-6]} \end{aligned}$ | DL-Tryptophan extrapure CHR, 99\% | $\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$ | $\begin{array}{r} 6.45 \\ 19.74 \\ 76.33 \end{array}$ |
| | | | | 10263 | L-Tryptophan extrapure CHR, 99\% | 100 Gms | 9.87 |
| $\begin{aligned} & 82818 \\ & {[76-05-1]} \end{aligned}$ | Trifluoroacetic Acid (TFA) for HPLC \& UV Spectroscopy, 99.9\% | $\begin{gathered} 25 \mathrm{ml} \\ 100 \mathrm{ml} \end{gathered}$ | 11.05 18.42 | 73-22-3] | | $\begin{aligned} & 1 \mathrm{Kg} \\ & 5 \mathrm{Kg} \end{aligned}$ | $\begin{array}{r} 81.59 \\ 394.80 \end{array}$ |
| | | 500 ml | 55.27 | 49102 | L-Tryptophan for tissue culture, | 25 Gms | 10.53 |
| $\begin{aligned} & 40801 \\ & {[76-05-1]} \end{aligned}$ | Trifluoroacetic Acid (TFA) for molecular biology, 99.9\% | 100 ml | 22.37 | 73-22-3] | 99\% | 100 Gms | 28.95 |
| | | | 65.80 | 48288 | L-Tryptophan ExiPlus, | 100 Gms | 11.84 |
| $\begin{aligned} & 23947 \\ & {[76-05-1]} \end{aligned}$ | Trifluoroacetic Acid (TFA) for HPLC \& Sequencing, 99.9\% | $10 \times 1 \mathrm{ml}$ | 236.88 | [73-22-3] | Multi-Compendial, 99\%
 meets compendial specs of BP, Ph.Eur | 1 Kg | 88.17 |
| $\begin{aligned} & 78716 \\ & {[599-00-8]} \end{aligned}$ | Trifluoroacetic Acid-d (TFA-d1) for NMR spectroscopy, 99.5 Atom \%D | 10 ml | 111.99 | $\begin{aligned} & 26579 \\ & {[153-94-6]} \end{aligned}$ | D-Tryptophan (base) extrapure, 99\% | 10 Gms
 25 Gms | 36.85 76.33 |
| $\begin{aligned} & 82395 \\ & {[4574-04-3]} \end{aligned}$ | Trimethyltetradecylammonium Chloride extrapure, 99\% | $\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$ | 19.74 55.27 | | | 100 Gms | 197.40 |
| $\begin{aligned} & 38476 \\ & {[519-73-3]} \end{aligned}$ | Triphenylmethane pure, 98\% | 100 Gms
 500 Gms | 15.92 65.27 | 10726 | Tungsten AAS Standard Solution in H2O (Traceable to NIST) | $\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned}$ | $\begin{aligned} & 21.06 \\ & 34.22 \end{aligned}$ |
| $\begin{aligned} & 71033 \\ & {[77-86-1]} \end{aligned}$ | Tris Buffer AR, ACS for molecular biology, 99.9\%
 (Tris (Hydroxymethyl) Aminomethane, Tromethamine) | 100 Gms
 500 Gms | 11.58 54.61 | [12027-43-9] | Tungstosilicic Acid Hydrate extrapure AR
 (Silicotungstic Acid Hydrate) | 25 Gms 100 Gms | 14.21 36.85 |
| | | 5 Kg | 459.02 | 67134
 [12027-43-9] | Tungstosilicic Acid Hydrate extrapure AR, ExiPlus, | 25 Gms 100 Gms | 15.79 42.11 |
| $\begin{aligned} & 79420 \\ & {[77-86-1]} \end{aligned}$ | Tris Buffer Superior extrapure AR, ACS, 99.9\%
 (Tris (Hydroxymethyl) Aminomethane, Tromethamine) | 100 Gms
 500 Gms
 5 Kg | $\begin{array}{r} 13.69 \\ 60.27 \\ 516.40 \end{array}$ | | Multi-Compendial
 (Silicotungstic Acid Hydrate) meets compendial specs of BP, Ph.Eur | | |

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 70600 \\ & {[556-02-5]} \end{aligned}$	D-Tyrosine extrapure, 98\%	5 Gms 25 Gms	$\begin{aligned} & 26.32 \\ & 92.12 \end{aligned}$	$\begin{aligned} & 20563 \\ & {[121-33-5]} \end{aligned}$	Vanillin extrapure AR, 99\% (4-hydroxy-3-Methoxybenzaldehyde)	25 Gms 100 Gms	4.47 8.55
$\begin{aligned} & 10342 \\ & {[556-03-6]} \end{aligned}$	DL-Tyrosine extrapure CHR, 99\%	5 Gms	19.74			500 Gms	32.90
		$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	42.64 157.92	$\begin{aligned} & 49456 \\ & {[121-33-5]} \end{aligned}$	Vanillin extrapure AR, ExiPlus, Multi-Compendial, 99\% (4-hydroxy-3-Methoxybenzaldehyde)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	4.74 9.87
$\begin{aligned} & 16796 \\ & {[60-18-4]} \end{aligned}$	L-Tyrosine extrapure CHR, 99\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 4.61 \\ 11.19 \end{array}$			meets compendial specs of BP	35.53
		$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	52.64 92.12	$\begin{aligned} & 14553 \\ & {[127-47-9]} \end{aligned}$	Vitamin A Acetate (Retinyl Acetate) for tissue culture (Retinol Acetate)	5 Gms 25 Gms	$\begin{array}{r} 8.55 \\ 28.95 \end{array}$
$\begin{aligned} & 18917 \\ & {[60-18-4]} \end{aligned}$	L-Tyrosine for tissue culture, 99\%	25 Gms	6.58			100 Gms	78.96
		100 Gms 500 Gms	18.42 65.80	$\begin{aligned} & 76911 \\ & {[79-81-2]} \end{aligned}$	Vitamin A Palmitate (Retinyl Palmitate) for tissue culture, 1.615-1.860MIU/g	5 Gms 25 Gms	11.19 47.90
$\begin{aligned} & 91772 \\ & {[60-18-4]} \end{aligned}$	L-Tyrosine ExiPlus, Multi-Compendial, 99\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 5.26 \\ 13.82 \end{array}$	$\begin{aligned} & 92605 \\ & {[7732-18-5]} \end{aligned}$	Water for HPLC	$\begin{aligned} & 1000 \mathrm{ml} \\ & 2500 \mathrm{ml} \end{aligned}$	5.26 11.84
	meets compendial specs of BP, Ph.Eur			$\begin{aligned} & 58348 \\ & {[7732-18-5]} \end{aligned}$	Water Distilled	5 Ltr	6.58
$\begin{aligned} & 62762 \\ & {[57-13-6]} \end{aligned}$	Urea extrapure, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 4.61 \\ 44.09 \end{array}$	64236 [11138-66-2]	Xanthan Gum ExiPlus, Multi-Compendial	100 Gms 500 Gms	$\begin{array}{r} 5.66 \\ 19.74 \end{array}$
$\begin{aligned} & 69120 \\ & {[57-13-6]} \end{aligned}$	Urea extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 8.16 \\ 76.33 \end{array}$		meets compendial specs of USP, BP, Ph.Eur		
		25 Kg	355.32	$\begin{aligned} & 23749 \\ & {[95-47-6]} \end{aligned}$	o-Xylene pure, 98\% (1,2-Dimethylbenzene)	500 ml 2500 ml	5.53
$\begin{aligned} & 86854 \\ & {[57-13-6]} \end{aligned}$	Urea extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP	500 Gms 5 Kg	9.48 81.59	$\begin{aligned} & 62231 \\ & {[95-47-6]} \end{aligned}$	o-Xylene extrapure AR, 99\% (1,2-Dimethylbenzene)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	20.79 8.55 40.80
$\begin{aligned} & 21113 \\ & {[57-13-6]} \end{aligned}$	Urea for molecular biology, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{aligned} & 12.50 \\ & 22.37 \end{aligned}$	$\begin{aligned} & 29280 \\ & {[108-38-3]} \end{aligned}$	m-Xylene pure, 98\% (1,3-Dimethylbenzene)	500 ml	8.16
		5 Kg	103.83	$\begin{aligned} & 24923 \\ & {[106-42-3]} \end{aligned}$	p-Xylene pure, 99\% (1,4-Dimethylbenzene)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	8.42 36.72
$\begin{aligned} & 44255 \\ & {[57-13-6]} \end{aligned}$	Urea for tissue culture, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	10.53 19.74	$\begin{aligned} & 54717 \\ & {[1330-20-7]} \end{aligned}$	Xylene pure, 99\%	500 ml	36.72 4.74 19.48
$\begin{aligned} & 12859 \\ & {[72-18-4]} \end{aligned}$	L-Valine extrapure CHR, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	3.95 9.21			$25 \text { Ltr }$	19.48 142.79
		1 Kg	56.59	$\begin{aligned} & 63797 \\ & {[2650-17-1]} \end{aligned}$	(Acid Blue 147, C.I. No. 42135)	5 Gms 25 Gms	17.11 68.43
$\begin{aligned} & 55269 \\ & {[72-18-4]} \end{aligned}$	L-Valine for tissue culture, 99\%	$\begin{array}{r} 5 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	5.40 16.45	[2650-17-1]		100 Gms	232.80
		500 Gms	65.54	$\begin{aligned} & 75122 \\ & \text { [2650-17-1] } \end{aligned}$	Xylene Cyanol FF extrapure AR, ExiPlus, Multi-Compendial	$5 \text { Gms }$ 25 Gms	19.74 73.70
42749	Vanadium AAS Standard Solution in 2N H2SO4 (Traceable to NIST)	$\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned}$	21.06 34.22		(Acid Blue 147, C.I. No. 42135) meets compendial specs of USP	100 Gms	268.60
$\begin{aligned} & 76132 \\ & {[1314-62-1]} \end{aligned}$	Vanadium Pentoxide extrapure AR, 99.5\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	4.61 15.13 71.06	$\begin{aligned} & 49672 \\ & {[125-31-5]} \end{aligned}$	p-Xylenol Blue extrapure AR, 95\% (p-Xylenosulphonaphthalein)	1 Gms 5 Gms	$\begin{array}{r} 7.24 \\ 33.56 \end{array}$
$\begin{aligned} & 83822 \\ & {[1314-62-1]} \end{aligned}$	Vanadium Pentoxide extrapure AR, ExiPlus, Multi-Compendial, 99.5\%	25 Gms 100 Gms	5.26 16.84	$\begin{aligned} & 49992 \\ & {[3618-43-7]} \end{aligned}$	Xylenol Orange Tetrasodium Salt ACS	5 Gms 10 Gms	6.84 11.84
		500 Gms	74.35	31557 [3618-43-7]	Xylenol Orange Tetrasodium Salt ACS, ExiPlus, Multi-Compendial meets compendial specs of BP, Ph.Eur	10 Gms 25 Gms	34.22
$\begin{aligned} & 83080 \\ & {[121-34-6]} \end{aligned}$	Vanillic Acid extrapure, 99\% (4-Hydroxy-3-Methoxybenzoic Acid)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	16.84 57.51	$\begin{aligned} & 96240 \\ & {[1330-20-7]} \end{aligned}$	Xylene Sulphur Free extrapure, 99\%	500 ml 2500 ml	5.00 20.00
$\begin{aligned} & 98842 \\ & {[121-33-5]} \end{aligned}$	Vanillin pure, 99\% (4-hydroxy-3-Methoxybenzaldehyde)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	4.21 7.90			25 Ltr	147.52
		500 Gms	30.27	$\begin{aligned} & 90998 \\ & \text { [1330-20-7] } \end{aligned}$	Xylene extrapure AR, 99.5\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 5.92 \\ 21.58 \end{array}$

Catalogue 2024-25

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 89159 \\ & {[1330-20-7]} \end{aligned}$	Xylene extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 6.58 \\ 24.74 \end{array}$	$\begin{aligned} & 51508 \\ & {[1314-13-2]} \end{aligned}$	Zinc Oxide ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of BP	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 9.08 \\ 80.28 \end{array}$
$\begin{aligned} & 45122 \\ & {[1330-20-7]} \end{aligned}$	Xylene for molecular biology, 99.5\%	$\begin{array}{r} 250 \mathrm{ml} \\ 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 5.40 \\ 9.61 \\ 28.69 \end{array}$	$\begin{aligned} & 13439 \\ & {[557-05-1]} \end{aligned}$	Zinc Stearate extrapure, 10-15\% ZnO (Stearic acid zinc salt)	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{array}{r} 7.90 \\ 14.48 \end{array}$
$\begin{aligned} & 85471 \\ & {[1330-20-7]} \end{aligned}$	Xylene Dried, 99.5\%, 0.005\% water	1000 ml	9.34	$\begin{aligned} & 67106 \\ & {[7446-20-0]} \end{aligned}$	Zinc Sulphate Heptahydrate for tissue culture, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{array}{r} 7.50 \\ 13.29 \end{array}$
$\begin{aligned} & 46561 \\ & {[1314-36-9]} \end{aligned}$	Yttrium (III) Oxide extrapure AR, 99.9\%	10 Gms 25 Gms	$\begin{array}{r} 6.97 \\ 16.32 \end{array}$	$\begin{aligned} & 76455 \\ & {[7446-20-0]} \end{aligned}$	Zinc Sulphate Heptahydrate pure, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{aligned} & 3.82 \\ & 6.97 \end{aligned}$
$\begin{aligned} & 76192 \\ & {[5970-45-6]} \end{aligned}$	Zinc Acetate Dihydrate extrapure, 98.5\%	500 Gms	10.53	78494	Zinc Sulphite Anhydrous extrapure,	5 500 Gmg	33.56 18.16
$\begin{aligned} & 76205 \\ & {[5970-45-6]} \end{aligned}$	Zinc Acetate Dihydrate ACS, 99.5\%	500 Gms	11.45	[13597-44-9] 62294	80\% Zinc Sulphite Dihydrate extrapure,	500 Gms	17.50
53174 [5970-45-6]	Zinc Acetate Dihydrate ACS, ExiPlus, Multi-Compendial, 99.5\% meets compendial specs of USP, BP, Ph.	500 Gms	12.77	$\begin{aligned} & {[7488-52-0]} \\ & 47482 \\ & {[1314-98-3]} \end{aligned}$	98\% Zinc Sulphide extrapure, 98\%	100 Gms 500 Gms	$\begin{array}{r} 9.48 \\ 31.58 \end{array}$
43758	Zinc AAS Standard Solution in 1N HNO3 (Traceable to NIST)	$\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned}$	$\begin{aligned} & 21.06 \\ & 34.22 \end{aligned}$	75738 [7446-20-0]	Zinc Sulphate Heptahydrate ACS, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 4.47 \\ 40.80 \end{array}$
97765 [5263-02-5, 51839-25-9]	Zinc Carbonate Basic pure, $\mathbf{5 8 \%} \mathbf{Z n}$ (Zinc Hydroxide Carbonate, Carbonic Acid Zinc Salt Basic)	500 Gms	11.84	$\begin{aligned} & 35243 \\ & {[7446-20-0]} \end{aligned}$	Zinc Sulphate Heptahydrate ExiPlus, Multi-Compendial, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 5.66 \\ 51.32 \end{array}$
$\begin{aligned} & 99367 \\ & {[5990-32-9]} \end{aligned}$	Zinc Citrate Dihydrate pure, 98\% (Citric Acid Zinc Salt)	500 Gms	10.53	07	meets compendial specs of BP	100 Gms	6.58
87288 [7646-85-7]	Zinc Chloride pure, 97\%	500 Gms 5 Kg	$\begin{array}{r} 5.26 \\ 50.01 \end{array}$	[13520-92-8]	extrapure, 99.5\%	250 Gms 500 Gms	$\begin{aligned} & 11.84 \\ & 21.71 \end{aligned}$
80004 [7646-85-7]	Zinc Chloride ACS, 98\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{aligned} & 10.53 \\ & 98.70 \end{aligned}$	$\begin{aligned} & 22047 \\ & {[13520-92-8]} \end{aligned}$	Zirconium Oxychloride Octahydrate ACS, 99.5\%	100 Gms 250 Gms	$\begin{aligned} & 13.82 \\ & 23.69 \end{aligned}$
67514 [7646-85-7]	Zinc Chloride for tissue culture, 98\%	500 Gms	24.61	38028 [14644-61-2]	Zirconium Sulphate extrapure, 99.5\%	100 Gms	28.16
$\begin{aligned} & 86783 \\ & \text { [7783-49-5] } \end{aligned}$	Zinc Fluoride pure, 98\%	100 Gms 500 Gms	$\begin{array}{r} 3.95 \\ 11.05 \end{array}$	$\begin{aligned} & 47985 \\ & {[13826-66-9]} \end{aligned}$	Zirconyl Nitrate Hydrate ExiPlus, Multi-Compendial, 99.5\%	100 Gms 500 Gms	$\begin{aligned} & 13.82 \\ & 56.59 \end{aligned}$
$\begin{aligned} & 46621 \\ & {[7440-66-6]} \end{aligned}$	Zinc Metal Dust pure, 95\%, -325 mesh	$\begin{array}{r} 500 \mathrm{Gms} \\ 2.5 \mathrm{Kg} \end{array}$	$\begin{aligned} & 11.84 \\ & 55.27 \end{aligned}$		(Zirconium Oxynitrate) meets compendial specs of USP, Ph.Eur		
$\begin{aligned} & 27008 \\ & {[7440-66-6]} \end{aligned}$	Zinc Metal Dust pure, 99\%, -325 mesh	$\begin{array}{r} 500 \mathrm{Gms} \\ 2.5 \mathrm{Kg} \end{array}$	$\begin{aligned} & 14.21 \\ & 69.48 \end{aligned}$				
$\begin{aligned} & 20050 \\ & {[7440-66-6]} \end{aligned}$	Zinc Metal Dust extrapure AR, 99.5\%, -325 mesh	$\begin{array}{r} 500 \mathrm{Gms} \\ 2.5 \mathrm{Kg} \end{array}$	$\begin{aligned} & 16.58 \\ & 78.17 \end{aligned}$				
$\begin{aligned} & 73932 \\ & {[7440-66-6]} \end{aligned}$	Zinc Metal Dust extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\%, - $\mathbf{3 2 5}$ mesh meets compendial specs of Ph.Eur	$\begin{array}{r} 500 \mathrm{Gms} \\ 2.5 \mathrm{Kg} \end{array}$	$\begin{aligned} & 18.16 \\ & 82.91 \end{aligned}$				
$\begin{aligned} & 91229 \\ & {[7440-66-6]} \end{aligned}$	Zinc Metal Granules, 99\%, 3-8 mm	500 Gms	15.79				
$\begin{aligned} & 60357 \\ & {[7440-66-6]} \end{aligned}$	Zinc Metal Granules, 99.5\%, $10-12 \mathrm{~mm}$	500 Gms	17.77				
$\begin{aligned} & 75001 \\ & {[10196-18-6]} \end{aligned}$	Zinc Nitrate Hexahydrate extrapure, 98\%	500 Gms	7.90				
$\begin{aligned} & 24693 \\ & \text { [10196-18-6] } \end{aligned}$	Zinc Nitrate Hexahydrate extrapure AR, 98\%	500 Gms	9.21				
87531 [1314-13-2]	Zinc Oxide extrapure, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 7.63 \\ 68.43 \end{array}$				
67062 [1314-13-2]	Zinc Oxide ACS, 99.5\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 8.55 \\ 76.33 \end{array}$				

Sodium Lauryl Sulphate

0

A highly versatile product for Drug Dissolution Testing, Quality Control, Research and Electrophoresis applications.

For Drug Dissolution Testing Studies

Sodium Lauryl Sulphate (Sodium Dodecyl Sulphate, SLS, SDS) is a strong component of the media used for Dissolution Testing in In Vitro methods for water-soluble and slightly-water-soluble drugs. It's importance as a simulated gastric/intestinal media ingredient makes it's quality a critical factor in the accuracy of results.
Principally used as a QC Test, Dissolution Testing, SDS of AR \& High Purity grades are the most prevalent reagents in use due to constant production improvements, testing and stability studies. SRL is one of the first developers of the High Purity SLS (99.5\%) which is fast-becoming the industry standard across the Pharma QC Testing, with many scientists now adopting the newer improved grade as a Protocol standard.
Our Premier Product, Sodium Lauryl Sulphate High Purity (99.5\%) (35825) can,

- Eliminate further purification by the customer by foaming \& other processes, demonstrate exceptionally lower lauryl alcohol (LA) impurities
- Improve testing accuracy and confirm lot-to-lot bioequivalence
- Ensure consistent and reliable results in In Vitro Testing and Intrinsic Dissolution Rate (IDR) studies
- Secure accurate Dissolution profiles (suitable to fast-release and slow-release drugs)
- Assist in detection of relevant product changes so as to ensure the quality and consistent performance of final products

For SDS Polyacrylamide Gel Electrophoresis (SDS-PAGE) Studies

Primarily used in the denaturing of proteins, Sodium Lauryl Sulphate of high purity and molecular biology grades play a critical role in PAGE electrophoresis techniques as well as SDS Gradient Gel Electrophoresis to,

- Unfold normally buried polypeptide chains while retaining their normal (native) structure
- Bind to difficult regions (hydrophobic regions) within the protein chains
- Induce a predominant negative charge for the subsequent electrophoresis
- Ensure a electrophoretic separation for a large number (and types) of proteins

Types of Sodium Lauryl Sulphate we offer:

Product code	Product Name	Assay	Pack Size
54468	Sodium Lauryl Sulphate extrapure AR, ACS	(C12) min. 99% (GC)	$100 \mathrm{~g}, 250 \mathrm{~g}, 500 \mathrm{~g}, 1 \mathrm{~kg}$
99671	Sodium Lauryl Sulphate for HPLC	(C12) min. 99% (GC)	$10 \mathrm{~g}, 25 \mathrm{~g}, 100 \mathrm{~g}, 1 \mathrm{~kg}$
32096	Sodium Lauryl Sulphate for molecular biology	(C12) min. 99.5% (GC)	$25 \mathrm{~g}, 100 \mathrm{~g}, 500 \mathrm{~g}$
35825	Sodium Lauryl Sulphate High Purity	(C12) min. 99.5% (GC)	$25 \mathrm{~g}, 100 \mathrm{~g}, 500 \mathrm{~g}$
85369	Sodium Lauryl Sulphate (10\%) solution	10%	100 ml
87545	Sodium Lauryl Sulphate (20\%) solution	20%	250 ml
34378	Sodium Lauryl Sulphate BP	min. 85%	1 kg
93117	Sodium Lauryl Sulphate IP	min. 85%	1 kg
14374	Sodium Lauryl Sulphate pure	min. 85% (dry basis)	$500 \mathrm{~g}, 5 \mathrm{~kg}$

Part B

Bioreagents,

 Biochemicals \& Speciality Fine Chemicals
Linkers \& Cross-Linkers for Protein Chemistry

Cross-linking is the process of chemically joining two or more molecules by a covalent bond. SRL introduced linking and cross-linking reagents are important reagents used in protein chemistry applications. Typically, they are commonly used reagents to modify nucleic acids, drugs and solid surfaces. Areas of research where these products find application are bioconjugation, immobilization, surface modification and bio-molecule labeling. These reagents contain reactive ends to specific functional groups, such as primary amines and sulfhydryls, on proteins or other molecules. The availability of several chemical groups in proteins and peptides make them targets for conjugation and for study using cross-linking methods. Some common applications of cross-linkers is for the identification of near-neighbor protein relationships and for ligandreceptor interactions.

- 3-(Acetamidomethylthio)propanoic Acid (MPA(Acm))
- 3-(Benzylthio)-Propionic Acid
- DABCYL-N-Succinimidyl Ester
- DHP Linker (3,4-Dihydro-2H-Pyran-2-Methanol)
- 5-(Ethylthio)-1H-Tetrazole (ETT)
- HMBA Linker (4-(Hydroxymethyl)benzoic Acid)
- HMPA Linker
- Ramage Linker
- Rink Amide Linker (Knorr Linker)
- Sieber Linker
- Weinreb Linker

Compounds for Peptide Synthesis

Peptide synthesis is characterized as the formation of a peptide bond between two amino acids. While the definition of a peptide is not definitive, it usually refers to chains of up to $30-50$ amino acids. Peptide synthesis today is a common approach in even high-throughput biological research and product and drug development, although it is a technique about 100 years old. We offer various types of peptide reagents that can be used for biological production and research work.

Amino Acids and Derivatives • BOC • FMOC • L/D/DL • Z/CBZ
N,N'-Dicyclohexylcarbodimide DCC
Diisopropylcarbodimide DIPC
1-(3 Dimethylaminopropyl)-3-
Carbodimide Hydrochloride
(EDC.HCI), EDAC.HCI)
1,4 Dithioerythritol (DTE)

DL-Dithiothreitol (DTT)
EEDQ
1,2 Ethanedithiol (EDT)
9-Fluorenylmethanol
9-Fluorenylmethyl-N-succinimidyl
Carbonate
1-Fluoro-2,4 Dinitrobenzene
HABU
HOAT
HOBT

Hydrobromic Acid
2-Hydroxypyridine-N-oxide (1-Hydroxy-2-pyridone) (HOPO)
N-Hydroxysuccinamide
Di-(n-succinimidyl) Carbonate
TBTU
TNTU
Trifluoroacetic Acid
Wang Resin (100-200 mesh)
Z-OSU

For more details, please feel free to mail us at marketing@srlchem.com

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 66308 \\ & {[21293-29-8]} \end{aligned}$	(+)-Abscisic Acid Natural (S-ABA) for tissue culture, 98\% (Dormin, Abscissin II)	$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$	19.35 53.96	$\begin{gathered} 24168 \\ {[66-23-9]} \end{gathered}$	Acetylcholine Bromide extrapure, 98\%	5 Gms 25 Gms	$\begin{array}{r} 36.32 \\ 121.07 \end{array}$
		500 Mg	248.72	$\begin{aligned} & 17884 \\ & {[97-69-8]} \end{aligned}$	\& N-Acetyl-L-Alanine extrapure, 99%	5 Gms 25 Gms	$\begin{aligned} & 16.45 \\ & 66.33 \end{aligned}$
$31240 \quad$ (+/-)-Abscisic Acid Synthetic (ABA) $[14375-45-2]$ for tissue culture, 98% (Dormin, Abscissin II) 		25 Mg	22.11				
		100 Mg	56.72	$\begin{aligned} & 70538 \\ & {[997-55-7]} \end{aligned}$	』 N-Acetyl-L-Aspartic Acid extrapure, 98\%	5 Gms 25 Gms	$\begin{array}{r} 26.32 \\ 111.86 \end{array}$
40157 - ABTS extrapure AR (2,2-Azino-bis [30931-67-0] (3-ethylbenzothiazoline-6-sulfonic acid) Diammonium Salt), 98.5\%		100 Mg	36.85				
		500 Mg	111.86	23157 [6974-32-9]	\& 1-O-Acetyl-2,3,5-Tri-O-Benzoyl-b-D- Ribofuranose extrapure, 98\% (b-D-Ribofuranose 1-Acetate 2,3,5-Tribenzoate)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	$\begin{array}{r} 32.90 \\ 105.28 \end{array}$
$\begin{aligned} & 28042 \bigcirc A \\ & {[30931-67-0]} \end{aligned}$	ABTS extrapure (2,2-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) Diammonium Salt), 98\%	$\begin{gathered} 500 \mathrm{Mg} \\ 1 \mathrm{Gms} \\ 5 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 60.54 \\ 92.12 \\ 355.06 \end{array}$				
				$\begin{aligned} & 23598 \\ & {[3080-30-6]} \end{aligned}$	\& 1-O-Acetyl-2,3,5-Tri-O-Benzoyl-b-L- Ribofuranose extrapure, 98\% (b-L-Ribofuranose 1-Acetate 2,3,5-Tribenzoate)	1 Gms 5 Gms	$\begin{aligned} & 160.68 \\ & 520.35 \end{aligned}$
83088 (ABTS Peroxidase Stop Solution (5% SDS solution) suitable for molecular biology	$\begin{gathered} 25 \mathrm{ml} \\ 100 \mathrm{ml} \end{gathered}$	$\begin{aligned} & 21.45 \\ & 58.96 \end{aligned}$				
				41439 [14215-97-5]	1-O-Acetyl-2,3,5-Tri-O-Benzoyl-D-Ri bofuranose extrapure, 98\% (D-Ribofuranose 1-Acetate 2,3,5-Tribenzoate)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	$\begin{array}{r} 32.24 \\ 145.42 \end{array}$
$33108 \text { \& }$	ABTS Substrate Solution (Single Solution)	25 ml 100 ml	21.45 45.67				
$\begin{aligned} & 65457 \\ & {[56180-94-0]} \end{aligned}$	Acarbose extrapure, 95\%	1 Gms 5 Gms	78.96 263.20	72981 \& 1-O-Acetyl-2,3,5-Tri-O-Benzyl-b-D-R [91110-24-6] ibofuranose extrapure, 95%		$\begin{array}{r} 50 \mathrm{Mg} \\ 200 \mathrm{Mg} \end{array}$	$\begin{aligned} & 298.47 \\ & 658.00 \end{aligned}$
66822 [7365-82-4]	ACES Buffer extrapure, 99\% (2-[(2-Amino-2-Oxoethylamino)Ethane] Sulphonic Acid)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 250 \mathrm{Gms} \end{array}$	$\begin{array}{r} 25.00 \\ 97.38 \\ 236.88 \end{array}$	32993 \& 1-O-Acetyl-2,3,5-Tri-O-Benzyl-D-Rib [58381-23-0] ofuranose extrapure, 98%		$\begin{array}{r} 50 \mathrm{Mg} \\ 200 \mathrm{Mg} \end{array}$	$\begin{aligned} & 298.47 \\ & 658.00 \end{aligned}$
27907 A	ACES Buffer for molecular biology,	5 Gms	23.88 9.48	62929 \& Acetylcholine Chloride extrapure,$[60-31-1] \quad 99 \%$		25 Gms	75.14
[7365-82-4] 9	99.5\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	35.53 121.07	71332 \& Acetylcholine lodide extrapure, [2260-50-6] 99\%		$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	$\begin{array}{r} 33.16 \\ 118.44 \end{array}$
$\begin{aligned} & 62316 \\ & {[540-92-1]} \end{aligned}$	Acetone Sodium Bisulfite pure, 98\% (2-Hydroxy-2-Propanesulfonic Acid Monosodium Salt)	100 Gms 250 Gms	$\begin{array}{r} 52.38 \\ 118.44 \end{array}$	26904 Acetyl Coenzyme A Trilithium Salt[75520-41-1] extrapure, 90%		$\begin{array}{r} 5 \mathrm{Mg} \\ 25 \mathrm{Mg} \end{array}$	$\begin{array}{r} 38.82 \\ 152.79 \end{array}$
				$\begin{aligned} & 47866 \\ & {[616-91-1]} \end{aligned}$	N-Acetyl-L-Cysteine ExiPlus, Multi-Compendial, 99\%	10 Gms 25 Gms	
$\begin{aligned} & 89561 \\ & {[127-06-0]} \end{aligned}$	Acetoxime (Acetone Oxime) extrapure, 98%	25 Gms	16.58				11.05
		100 Gms	37.37			100 Gms	34.61
		250 Gms	89.88			500 Gms	110.54
89204 AEBSF Hydrochloride extrapure [30827-99-7] AR, 98\% (4- $(2$-Aminoethyl)benzenesulfonylfluoride Hydrochloride)		$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \\ 500 \mathrm{Mg} \end{array}$	$\begin{array}{r} 15.13 \\ 46.72 \\ 222.01 \end{array}$	meets compendial specs of BP			
		$\begin{aligned} & 99328 \\ & {[14215-68-0]} \end{aligned}$		N-AcetyI-D-Galactosamine extrapure, 98\%	$100 \mathrm{Mg}$ 1 Gms	$\begin{aligned} & 33.16 \\ & 99.36 \end{aligned}$	
		N-Acetyl-D-Glucosamine extrapure AR, 99\%		$10 \text { Gms }$	12.37		
$\underset{[132489-69-1]}{59750} \square$	PUGNAc extrapure, 95\% (O- (2-Acetamido-2-Deoxy-D-Glucopyrano sylidenamino) N-Phenylcarbamate)		5 Mg	213.59	[7512-17-6]	50 Gms 100 Gms 500 Gms	34.48 60.54 275.57
$\begin{aligned} & 20140 \bullet 3 \\ & {[52574-08-0]} \end{aligned}$	3-(Acetamidomethylthio)propanoic Acid (MPA(Acm)) extrapure, 98\%	1 Gms	69.22	$\begin{aligned} & 50241 \\ & {[1188-37-0]} \end{aligned}$	N-Acetyl-L-Glutamic Acid extrapure, 99%	$\begin{array}{r} 10 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 6.58 \\ 56.32 \end{array}$
$\begin{aligned} & 12052 \text { \& } 4 \\ & {[14691-89-5]} \end{aligned}$	4-Acetamido-2,2,6,6-Tetramethylpip eridine-1-Oxyl (Acetamido TEMPO) pure, 97\%	$\begin{array}{r} 1 \text { Gms } \\ 5 \text { Gms } \\ 25 \text { Gms } \end{array}$	$\begin{array}{r} 25.66 \\ 56.98 \\ 135.28 \end{array}$	$\begin{aligned} & 68761 \\ & {[2490-97-3]} \end{aligned}$	N-Acetyl-L-Glutamine extrapure, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 20.40 \\ & 64.22 \end{aligned}$
$\underset{[572-09-8]}{34437} \text { C }$	Acetobromo-D-Glucose Stab. 1\% CaCO3 extrapure, 98\%	10 Gms 25 Gms	$\begin{array}{r} 68.43 \\ 157.92 \end{array}$	$\begin{aligned} & 56115 \\ & {[543-24-8]} \end{aligned}$	N -Acetylglycine extrapure, 99\% (Acetamidoacetic Acid, Aceturic Acid)	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{gathered}$	$\begin{aligned} & 13.55 \\ & 36.85 \\ & 86.86 \end{aligned}$
$\underset{[3068-32-4]}{28590} \text { ■ }$	Acetobromo-D-Galatose w/ 2\% Calcium Carbonate extrapure, 98%	5 Gms	85.54	$\begin{aligned} & 76097 \\ & {[1188-21-2]} \end{aligned}$	N-Acetyl-L-Leucine extrapure, 99%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 5.92 \\ 23.69 \\ 68.43 \end{array}$
$\begin{aligned} & 43717 \\ & {[941-98-0]} \end{aligned}$	1-Acetonaphthone pure, 98\% (Acetylnaphthalene, Naphthyl Ketone)	$\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned}$	18.03 35.01				
$\begin{array}{cc} 21009 & \mathbf{2} \\ {[93-08-3]} & (A \\ & \mathrm{K} \end{array}$	2-Acetonaphthone pure, 98\% (Acetylnaphthalene, Methyl-2-Naphthyl Ketone)	100 Gms 250 Gms	17.11 39.48	$\begin{aligned} & 26124 \\ & {[65-82-7]} \end{aligned}$	N-Acetyl-L-Methionine extrapure, 99\%	$\begin{array}{r} 5 \text { Gms } \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	10.66 44.48 155.55

Part B - Bioreagents, Biochemicals \& Speciality Fine Chemicals

Catalogue 2024-25

Code N	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\underset{\text { 38211 }}{3} \mathrm{1596-84-5]}$ \& Alar extrapure AR, 99\%		1 Gms	5.26	46822 [33864-99-2]	Alcian Blue for tissue culture (C.I. No. 74240, Alcian Blue 8 GX)		
			$\begin{aligned} & 18.42 \\ & 78.96 \end{aligned}$			25 Gms	228.72
		$\begin{aligned} & 90008 \\ & \text { [9031-72-5] } \end{aligned}$		Alcohol Dehydrogenase (ALD) ex. Bakers Yeast, 300U/mg protein	7500 Units	61.33	
97350 Albumin Bovine (pH 5.2) fraction V $[9048-46-8]$ (Bovine Serum Albumin, BSA), 98\%			5 Gms				10.92
		50 Gms	102.65	$\begin{aligned} & 67482 \\ & {[1715-30-6]} \end{aligned}$	Alexidine Dihydrochloride extrapure, 96\% (1,1-Hexamethylene-bis(5- [2-Ethylhexyl]biguanide))	250 Mg	72.51
		100 Gms	200.69				
		250 Gms	460.60				
$\begin{array}{ll} 83803 \quad \text { AI } \\ {[9048-46-8]} \end{array} \quad \text { (B }$	Albumin Bovine (pH 7) fraction V (Bovine Serum Albumin, BSA), 98\%	5 Gms	10.53	$\begin{aligned} & 86220 \\ & {[9005-32-7]} \end{aligned}$	Alginic Acid ex. Brown Algae, 19-25\%	100 Gms	5.26
		25 Gms	50.01			250 Gms	12.37
		100 Gms	190.82			500 Gms	23.42
		250 Gms	447.44	$\begin{aligned} & 84554 \\ & {[109-57-9]} \end{aligned}$	N-Allylthiourea extrapure, 98\% (1-Allyl-2-thiourea, Thiosinamine)	25 Gms	17.77
$\begin{array}{ll} 85171 & \mathrm{Al} \\ {[9048-46-8]} \end{array} \mathrm{fo}$	Albumin Bovine (pH 7) fraction V for molecular biology (Bovine Serum Albumin, BSA), 98\%	5 Gms	11.84			100 Gms	63.17
		25 Gms	52.64	$\begin{aligned} & 29186 \\ & {[130-22-3]} \end{aligned}$	Alizarin Red S (C.I. No. 58005)	25 Gms	9.87
		100 Gms	207.93			100 Gms	35.53
		500 Gms	947.52			500 Gms	171.08
14438 - Albumin Bovine (pH 7) fraction V [9048-46-8] Lipid Enhanced (Bovine Serum Albumin, BSA), 98\%		25 Gms	104.75	$\begin{aligned} & 60352 \\ & {[130-22-3]} \end{aligned}$	Alizarin Red S for tissue culture (C.I. No. 58005)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 12.50 \\ & 42.11 \end{aligned}$
		100 Gms	318.87				
32257 - Albumin Bovine (pH 7) fraction V [9048-46-8] for tissue culture (Bovine Serum Albumin, BSA), 98\%		5 Gms 25 Gms	30.66 116.07	$\begin{aligned} & 95786 \\ & {[584-42-9]} \end{aligned}$	Alizarin Yellow GG, 90\% (Metachrome Yellow, Mordant Yellow 1, Salicyl Yellow) (C.I. No. 14025)	5 Gms 25 Gms	$\begin{array}{r} 8.69 \\ 17.37 \end{array}$
	Albumin Bovine (pH 7) fraction V Reagent Grade (Bovine Serum Albumin, BSA), 99\%	10 Gms	67.38	$\begin{aligned} & 12151 \\ & {[9001-78-9]} \end{aligned}$	Alkaline Phosphatase (ALP, AP, CIP) ex. Calf Intestine Mucosa, 20 DEA U/mg solids	$\begin{array}{r} 100 \mathrm{Mg} \\ 500 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{array}$	$\begin{array}{r} 85.41 \\ 157.92 \\ 276.36 \end{array}$
		25 Gms	121.99				
		100 Gms	264.65				
$\begin{aligned} & 93630 ~ © ~ A I \\ & {[9048-46-8]} \end{aligned}$	Albumin Bovine (pH 7) fraction V Cohn Analog (Bovine Serum Albumin, BSA), 96\%	10 Gms	67.38	97534	Alkalophilic Proteinase ex. Streptomyces Sp., 20U/mg	100 Units 200 Units	$\begin{aligned} & 474.42 \\ & 887.51 \end{aligned}$
		25 Gms	121.99				
		100 Gms	264.65	$\begin{aligned} & 58020 \\ & {[315-30-0]} \end{aligned}$	Allopurinol extrapure, 98\%	5 Gms 25 Gms	7.90
19007 \& Albumin Bovine Solution (20mg/ml) [9048-46-8]		$\begin{array}{r} 1 \mathrm{ml} \\ 5 \times 1 \mathrm{ml} \end{array}$	$\begin{aligned} & 15.79 \\ & 31.58 \end{aligned}$				28.95
		$\begin{aligned} & 46287 \\ & {[7283-09-2]} \end{aligned}$		B-D-Allose extrapure, 98\%	100 Mg	101.86	
 [9048-46-8]	Albumin Bovine Solution 10\% Diluent Solution in PBS (BSA 10\% Diluent/Blocking Solution in PBS)		10 ml				43.43
		$\begin{aligned} & 35401 \\ & {[7635-11-2]} \end{aligned}$		L-Allose extrapure, 97\%	25 Mg 50 Mg	$\begin{aligned} & 166.74 \\ & 287.02 \end{aligned}$	
$\begin{aligned} & 45017 \bullet A \mid \\ & {[9006-59-1]} \end{aligned} \quad 78$	Albumin Egg Powder extrapure, 78\%	100 Gms 500 Gms	9.87 46.06	$\begin{aligned} & 73583 \\ & {[9046-28-0]} \\ & 61973 \\ & {[1990-29-0]} \end{aligned}$	L-Alpha Glycerophosphate Oxidase (GPO) ex. Microorganism, 15U/mg	500 Units	69.22
$\begin{aligned} & 56587 \text { © } \quad \bullet \text { A } \end{aligned}$	Albumin Egg Flakes extrapure, 85\%	100 Gms 500 Gms	$\begin{array}{r} 22.37 \\ 102.12 \end{array}$		D-Altrose extrapure	$\begin{gathered} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \\ 200 \mathrm{Mg} \end{gathered}$	$\begin{array}{r} 193.58 \\ 740.64 \\ 1651.19 \end{array}$
$\begin{aligned} & 21840 \text { ■ } \quad \text { ■ } \\ & \hline 70024-90-7] \end{aligned}$	Albumin Human Serum (Lipid Enhanced), 95\%	$\begin{gathered} 100 \mathrm{Mg} \\ 1 \mathrm{Gms} \\ 5 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 52.25 \\ 134.36 \\ 253.72 \end{array}$				
				74880 \& 7-Amino-4-Methylcoumarin [26093-31-2] (7-AMC) extrapure, 99\%		1 Gms	39.87
				$\begin{aligned} & 81396 \\ & {[37517-28-5]} \end{aligned}$	Amikacin (AMK) free base, 98\%	$\begin{array}{r} 50 \mathrm{Mg} \\ 250 \mathrm{Mg} \end{array}$	$\begin{array}{r} 78.96 \\ 329.00 \end{array}$
80879 [70024-90-7]	r-Albumin Human - Type Standard ACF ex. Plants, 97\% (Human Serum Albumin Recombinant, rHSA)	$\begin{array}{r} 100 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{array}$	$\begin{array}{r} 52.64 \\ 394.80 \end{array}$				
				$\begin{aligned} & 18036 \\ & {[39831-55-5]} \end{aligned}$	Amikacin Sulphate (AMKS)	1 Gms 5 Gms	$\begin{array}{r} 30.40 \\ 130.15 \end{array}$
	r-Albumin Human - Type EG ex. Yeast, 99\% (Human Serum Albumin, rHSA)	$\begin{array}{r} 100 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{array}$	$\begin{array}{r} 59.22 \\ 460.60 \end{array}$	$\begin{aligned} & 98062 \\ & {[122-80-5]} \end{aligned}$	p-Aminoacetanilide pure, 98\%	100 Gms 500 Gms	6.7123.95
$\begin{aligned} & 83428 \\ & {[70024-90-7]} \end{aligned}$	r-Albumin Human - Type LE ex. Yeast, 98\% (Human Serum Albumin Recombinant, rHSA)	$\begin{array}{r} 100 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{array}$	$\begin{array}{r} 72.38 \\ 513.24 \end{array}$	$\begin{aligned} & 40182 \\ & {[99-92-3]} \end{aligned}$	p-Aminoacetophenone extrapure AR, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 11.19 \\ & 39.74 \end{aligned}$
				$\begin{aligned} & 62360 \\ & {[7620-28-2]} \end{aligned}$	D-a-Amino Adipic Acid extrapure, 98\%	250 Mg 1 Gms	$\begin{aligned} & 28.95 \\ & 78.96 \end{aligned}$
$\begin{aligned} & 48261 \\ & {[33864-99-2]} \end{aligned}$	Alcian Blue (C.I. No. 74240, Alcian Blue 8 GX)	$\begin{array}{r} 5 \mathrm{Gms} \\ 10 \mathrm{Gms} \end{array}$	$\begin{aligned} & 25.79 \\ & 48.43 \end{aligned}$				
				$\begin{aligned} & 35418 \\ & {[1118-90-7]} \end{aligned}$	L-a-Amino Adipic Acid extrapure, 98\%	250 Mg 1 Gms	$\begin{aligned} & 31.58 \\ & 92.12 \end{aligned}$

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
46832	Amino Acids Kit	1 Kit	49.09	$\begin{aligned} & 51812 \\ & {[115-69-5]} \end{aligned}$	2-Amino-2-Methyl-1,3-Propanediol (AMPD Buffer) extrapure, 99\%	25 Gms 100 Gms	50.01
86936	L-Amino Acids Kit	1 Kit	58.30		(Ammediol)		
				$\begin{aligned} & 91085 \\ & {[84-89-9]} \end{aligned}$	5-Aminonaphthalene-1-Sulphonic Acid pure, 90\% (1-Naphthylamine-5-Sulfonic Acid, Laurents Acid)	25 Gms	34.61
$\begin{aligned} & 68384 \\ & {[9000-88-8]} \end{aligned}$	D-Amino Acid Oxidase (DAA, DAO, DAMOX) ex. Porcine Kidney, 6000U/g	50 Units 100 Units	$\begin{aligned} & 148.18 \\ & 259.25 \end{aligned}$			100 Gms	124.36
$\begin{aligned} & 98437 \\ & {[60-09-3]} \end{aligned}$	p-Aminoazobenzene pure, 98\%	100 Gms	8.16	$\begin{aligned} & 98372 \\ & {[119-79-9]} \end{aligned}$	5-Aminonaphthalene-2-Sulphonic Acid pure, 98\%	25 Gms	38.69
		500 Gms	31.58			100 Gms	131.34
$\begin{aligned} & 79793 \\ & {[99-05-8]} \end{aligned}$	m-Aminobenzoic Acid pure, 98\%	100 Gms	9.21	$\begin{aligned} & 79911 \\ & {[116-63-2]} \end{aligned}$	1-Amino-2-Naphthol-4-Sulphonic Acid (1,2,4-Acid) , ACS, 90\% (1-Amino-2-Hydroxy-4-Naphthalenesulf onic acid)	25 Gms	6.84
		500 Gms	34.22			100 Gms	22.90
$\begin{aligned} & 74004 \\ & {[99-05-8]} \end{aligned}$	m-Aminobenzoic Acid extrapure AR, 99\%	25 Gms	10.53				
		100 Gms	32.90	$\begin{aligned} & 21407 \\ & {[1775-95-7]} \end{aligned}$	2-Amino-5-Nitrobenzophenone extrapure, 98\%	25 Gms	38.69
$\begin{aligned} & 99839 \\ & {[150-13-0]} \end{aligned}$	p-Aminobenzoic Acid pure, 99\% (PABA)	100 Gms	7.90			100 Gms	127.26
		250 Gms	16.45	58513	2-Aminophenyl-Acetonitrile pure,	250 Mg	78.70
		500 Gms	31.58	[2973-50-4]		1 Gms	200.43
$\begin{aligned} & 19196 \\ & {[150-13-0]} \end{aligned}$	p-Aminobenzoic Acid ExiPlus, Multi-Compendial, 99\% (PABA) meets compendial specs of USP, BP, Ph.Eur	100 Gms	9.48	$\begin{aligned} & 33993 \\ & {[919-30-2]} \end{aligned}$	(3-Aminopropyl)triethoxysilane (APTES) extrapure, 98\% (3-(Triethoxysilyl)Propylamine)	100 ml	15.79
		500 Gms	35.53			500 ml	44.74
				$\begin{aligned} & 17081 \\ & {[452-06-2]} \end{aligned}$	2-Aminopurine extrapure, 98\%	100 Mg	42.38
						250 Mg	90.94
$\begin{aligned} & 56960 \\ & {[2835-77-0]} \end{aligned}$	2-Aminobenzophenone pure, 98\%	5 Gms	23.69			1 Gms	306.63
		25 Gms	61.06	$\begin{aligned} & 65377 \\ & {[504-29-0]} \end{aligned}$	2-Aminopyridine pure, 98\%	100 Gms	6.58
$\begin{aligned} & 26345 \\ & {[56-12-2]} \end{aligned}$	4-Aminobutyric Acid extrapure CHR, 99\%	10 Gms	4.74			250 Gms	15.79
		25 Gms	11.71			500 Gms	28.95
$\begin{aligned} & 65081 \\ & {[2835-81-6]} \end{aligned}$	DL-a-Aminobutyric Acid extrapure, 99\% (DL-2-Aminobutyric Acid)	25 Gms	25.79	$\begin{aligned} & 29786 \\ & {[462-08-8]} \end{aligned}$	3-Aminopyridine pure, 98\%	25 Gms	11.84
		100 Gms	76.99			100 Gms	39.48
$\begin{aligned} & 10498 \\ & {[719-59-5]} \end{aligned}$	2-Amino-5-Chlorobenzophenone pure, 98\%	100 Gms	49.48			500 Gms	138.18
			241.49	$\begin{aligned} & 16104 \\ & {[504-24-5]} \end{aligned}$	4-Aminopyridine pure, 98%	10 Gms	6.19
$\begin{aligned} & 18125 \\ & {[127946-77-4]} \end{aligned}$	1-Amino-1-Cyclopropanecarbonitril e Hydrochloride extrapure, 98\%	1 Gms	32.90			25 Gms	11.19
		5 Gms	105.28			100 Gms	36.85
$\begin{aligned} & 68678 \\ & {[132-32-1]} \end{aligned}$	3-Amino-9-Ethyl Carbazole (AEC) extrapure, 95\%	1 Gms	10.53	$\begin{gathered} 12920 \text { \& } \\ {[584-13-4]} \end{gathered}$	4-Amino-1,2,4-Triazole pure, 98\%		
		10 Gms	46.06			100 Gms	39.48
		25 Gms	111.86	40057	Ammonium Phosphomolybdate	25 Gms	34.61
$\begin{aligned} & 44285 \\ & {[1750-12-5]} \end{aligned}$	4-Amino-3-Hydrazino-5-Mercapto-1, 2,4-Triazole (AHMT), 98\%	1 Gms 5 Gms	28.95 118.44	[54723-94-3]	Hydrate extrapure, 61\% Mo (Ammonium-12-Molybdophosphate,M olybdophosphoric Acid	100 Gms	52.51
$\begin{aligned} & 94283 \\ & {[16867-03-1]} \end{aligned}$	2-Amino-3-Hydroxypyridine pure, 98\%	25 Gms	15.79		Ammonium,Phosphomolybdic Acid Ammonium Hydrate)		
		100 Gms	63.17	31438	Ammonium Tetrachloropalladate	250 Mg	39.48
$\begin{aligned} & 33864 \\ & {[5451-09-2]} \end{aligned}$	5-Amino Levulinic Acid Hydrochloride extrapure, 97\%	$100 \mathrm{Mg}$ $500 \mathrm{Mg}$	28.95 59.75	[13820-40-1]	(II) extrapure, 98% (Palladium (II) Ammonium Chloride)	1 Gms	98.70
		1 Gms	90.41	$\begin{aligned} & 32285 \\ & {[13820-41-2]} \end{aligned}$	Ammonium Tetrachloroplatinate (II) extrapure, 99%	$250 \mathrm{Mg}$	46.06
$\begin{aligned} & 19902 \\ & {[144-90-1]} \end{aligned}$	DL-3-Aminoisobutyric Acid extrapure, 98% (2-Amino-2-Methyl-Propionic Acid)	1 Gms	55.27		(Platinum (II) Ammonium Chloride)		
		5 Gms	165.82	$\begin{aligned} & 24645 \\ & {[61336-70-7]} \end{aligned}$	Amoxicillin Trihydrate (AMOT), 97\%	1 Gms 5 Gms	3.95 16.98
$\begin{aligned} & 86898 \\ & {[214139-20-5]} \end{aligned}$	DL-3-Aminoisobutyric Acid Hydrate extrapure, 98\%		15.27 34.61			10 Gms	30.66
				54713 \&	Amphotericin B (AMT)	250 Mg	16.98
$\begin{aligned} & 87907 \\ & {[99-31-0]} \end{aligned}$	5-Aminoisophthalic Acid (5-AIPA) pure, 99\% (5-Aminobenzene-1,3-Dicarboxylic acid)	$25 \mathrm{Gms}$	15.66	[1397-89-3]		1 Gms	64.62
		100 Gms	49.88			5 Gms	315.18
				61314 \&	Ampicillin Sodium Salt (AMP-Na)	1 Gms	5.00
$\begin{aligned} & 50407 \\ & {[124-68-5]} \end{aligned}$	2-Amino-2-Methyl-1-Propanol (AMP Buffer) pure, 95\%	500 ml	26.32			5 Gms	22.77
		2500 ml	125.81			25 Gms	82.78

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price	
$\begin{aligned} & 92468 \\ & {[5794-13-8]} \end{aligned}$	L-Asparagine Monohydrate for tissue culture, 99%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 6.58 \\ 14.48 \\ 59.22 \end{array}$	$\begin{aligned} & 13741 \\ & {[78110-38-0]} \end{aligned}$	Aztreonam (AZN), 96\%	100 Mg	78.96	
				$\begin{aligned} & 53953 ~ \& \\ & {[1192-88-7]} \end{aligned}$	1-Cyclohexene-1-Carboxaldehyde extrapure, 97\%	1 Gms 5 Gms	$\begin{array}{r} 78.96 \\ 355.32 \end{array}$	
$\begin{aligned} & 44444 \\ & {[5794-13-8]} \end{aligned}$	L-Asparagine Monohydrate ExiPlus, Multi-Compendial, 99\% meets compendial specs of BP,USP \& EU Ph	$\begin{array}{r} 100 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{aligned} & 11.84 \\ & 82.91 \end{aligned}$					
				76432 [21668-81-5]	3-(Carbamimidoylthio) -1-Propanesulfonic Acid extrapure, 98\%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	26.32 59.22 92.12	
90601 [1783-96-6]	D-Aspartic Acid extrapure CHR, 99\%	5 Gms 25 Gms	10.53 32.90	$\begin{aligned} & 11730 \\ & {[531-55-5]} \end{aligned}$	Azure B (Azure I) (C.I. No. 52010) (N,N,N-Trimethylthionin, Methylene Azure A)	25 Gms 100 Gms	8.55 31.58	
71353 \& L-Aspartic Acid Diethyl Ester [16115-68-7] Hydrochloride extrapure, 98\%		5 Gms 25 Gms	$\begin{aligned} & 26.32 \\ & 78.96 \end{aligned}$			500 Gms	144.76	
		62151		Azur II	10 Gms	4.47		
$\begin{aligned} & 50144 \\ & {[32213-95-9]} \end{aligned}$	L-Aspartic Acid Dimethyl Ester Hydrochloride extrapure, 98\%		1 Gms 5 Gms	13.95 51.85	[37247-10-2]	(C.I. 52010/52015) (3-Chloro-6-Hydroxy-2-Pyridinecarboxy lic Acid, Methylene Azure II)	25 Gms 100 Gms	7.90 28.95
		25 Gms	159.37	$\begin{aligned} & 25003 \\ & {[531-53-3]} \end{aligned}$	Azure A Chloride (C.I. No. 52005) (3-Amino-7- (Dimethylamino)phenothiazin-5-ium Chloride)	25 Gms	8.55	
		100 Gms	541.40			100 Gms 500 Gms	$\begin{array}{r} 31.58 \\ 144.76 \end{array}$	
$\begin{aligned} & 21505 \\ & {[1405-69-2]} \end{aligned}$	Avidin ex. Egg White for molecular biology, 10U/mg Protein	10 Mg	28.56					
		25 Mg 100 Mg	66.98 227.80	$\begin{aligned} & 17327 \\ & {[1405-87-4]} \end{aligned}$	Bacitracin (BCT) ex. Bacillus Licheniformis	50000 Units	18.95	
$\begin{aligned} & 34476 \\ & {[320-67-2]} \end{aligned}$	5-Azacytidine extrapure, 98\%	$\begin{gathered} 100 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{gathered}$	$\begin{aligned} & 23.03 \\ & 39.48 \end{aligned}$			250000 Units	47.77	
				52571	Barfoed`s Reagent	250 ml	8.03	
59070 [76801-85-9]	Azaerythromycin (AZAE)	1 Gms 5 Gms	$\begin{aligned} & 29.74 \\ & 70.27 \end{aligned}$					
				$\begin{aligned} & 29090 \\ & {[6211-24-1]} \end{aligned}$	Barium Diphenylamine Sulphonate ACS	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	$\begin{array}{r} 4.08 \\ 12.63 \end{array}$	
$\begin{gathered} 81947 \\ {[932-53-6]} \end{gathered}$	6-Azathymine extrapure, 98\%	1 Gms	76.99					
```61898 - 3-Azido-3-Deoxythymidine [30516-87-1] extrapure, 99% (AZT, Azidothymidine, ZDV, Zidovudine)```		25 Mg   1 Gms   5 Gms	$\begin{array}{r} 10.53 \\ 39.48 \\ 100.02 \end{array}$	$\begin{aligned} & 27297 \\ & {[4733-39-5]} \end{aligned}$	Bathocuproine (BCP) ACS, 99\%	500 Mg   1 Gms   5 Gms	$\begin{array}{r} 32.90 \\ 59.22 \\ 276.36 \end{array}$	
		28242		Bathocuproinedisulphonate		$\begin{array}{r} 23.69 \\ 55.27 \\ 184.24 \end{array}$		
$\begin{aligned} & 17156 \\ & {[117772-70-0} \end{aligned}$	Azithromycin Dihydrate (AZA), 96\%		$\begin{array}{r} 1 \text { Gms } \\ 5 \mathrm{Gms} \\ 10 \mathrm{Gms} \end{array}$	$\begin{array}{r} 9.21 \\ 43.43 \\ 78.96 \end{array}$	[52698-84-7]		Disodium Salt extrapure AR, 98\%	250 Mg   1 Gms
		$\begin{aligned} & 50221 \\ & {[1662-01-7]} \end{aligned}$			Bathophenanthroline extrapure AR, 99\%   (4,7-Diphenyl-1,10-Phenanthroline, BPhen)	1 Gms	42.11	
$\begin{aligned} & 47138 \\ & {[2997-92-4]} \end{aligned}$	2,2-Azobis(2-Methylpropionamidine   ) Dihydrochloride (AAPH)   extrapure, 98\%   a,a'-Azodiisobutyramidine   dihydrochloride		$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 32.90 \\ & 55.80 \\ & 90.15 \end{aligned}$		5 Gms	197.40	
		$\begin{gathered} 82626 \text { \& } \\ {[636-82-8]} \end{gathered}$			1-Cyclohexene-1-Carboxylic Acid extrapure, $97 \%$   (3,4,5,6-Tetrahydrobenzoic Acid)	1 Gms   5 Gms	$\begin{array}{r} 29.61 \\ 131.60 \end{array}$	
$\begin{aligned} & 11029 \\ & {[78-67-1]} \end{aligned}$	2,2-Azobisisobutyronitrile (AIBN) pure, 98\%   (2,2-Azobis(2-Methylpropionitrile))		$\begin{array}{r} 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 6.58 \\ 26.32 \\ 210.56 \end{array}$				
		$\begin{gathered} 69160 \text { \& } \\ {[100-50-5]} \end{gathered}$			3-Cyclohexene-1-Carboxaldehyde extrapure, $98 \%$   (1,2,3,6-Tetrahydrobenzaldehyde,   4-Formyl-1-cyclohexene)	$\begin{array}{r} 25 \mathrm{ml} \\ 100 \mathrm{ml} \end{array}$	$\begin{aligned} & 26.32 \\ & 68.43 \end{aligned}$	
95426 Azoalbumin (Bovine) prepared [102110-73-6] from Bovine fraction V powder extrapure			$\begin{array}{r} 250 \mathrm{Mg} \\ 500 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{array}$	$\begin{array}{r} 45.01 \\ 85.93 \\ 163.84 \end{array}$				
		$\begin{aligned} & 98680 \\ & {[52746-49-3,} \\ & 98645-86-4, \\ & 53744-42-6] \end{aligned}$			Bathophenanthroline Disulphonate Disodium Salt Hydrate extrapure, 99\%	$250 \mathrm{Mg}$   1 Gms   5 Gms	$\begin{array}{r} 46.06 \\ 151.34 \\ 658.00 \end{array}$	
$\begin{aligned} & 21070 \\ & {[102110-74-7]} \end{aligned}$	Azocasein extrapure, 98\%		250 Mg	36.85				
		500 Mg 1 Gms	68.43 128.97	$\begin{aligned} & 36333 \\ & {[21205-91-4]} \end{aligned}$	9-BBN Triflate Solution (0.5M in hexanes) pure   (9-[\{9-(Trifluoromethyl)sulfonyl\}   oxy]9-Borabicyclo(3.3.1)Nonane)	$\begin{gathered} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{gathered}$	$\begin{aligned} & 102.78 \\ & 167.79 \end{aligned}$	
$\begin{aligned} & 37020 \\ & {[206752-32-1]} \end{aligned}$	Azomethine H Monosodium Salt Hydrate, 97\%	1 Gms	9.21					
		5 Gms 25 Gms	40.80 144.76	$\begin{gathered} 64733 \\ {[112-85-6]} \end{gathered}$	Behenic Acid pure, 85\%   (Docosanoic acid, 1-Docosanoic acid,   n-Docosanoic acid, Docosoic acid)	25 Gms 250 Gms	$\begin{array}{r} 5.26 \\ 11.19 \end{array}$	
$\begin{aligned} & 78130 \\ & {[5941-07-1]} \end{aligned}$	Azomethine H Monosodium Salt, 97\%	1 Gms   5 Gms   25 Gms	14.48 59.22 157.92	$\begin{aligned} & 35591 \\ & {[112-85-6]} \end{aligned}$	Behenic Acid extrapure, 99\%   (Docosanoic acid, 1-Docosanoic acid, n-Docosanoic acid, Docosoic acid)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	$\begin{aligned} & 52.64 \\ & 92.12 \end{aligned}$	



Code Name	Packing	\$ Price	Code	Name	Packing	\$ Price		
$\underset{\text { [35150-07-3] }}{ } \mathbf{}$ - BOC-L-Prolinamide extrapure, 98\%	1 Gms	55.80	19219 d	Bradford Reagent for Proteins	100 ml	6.71		
	5 Gms	167.00			500 ml	22.37		
	10 Gms	241.09	51195   [76962-43-7]	Brassinolide (BR) synthetic technical grade, 90\%	25 Mg	46.06		
$\begin{aligned} & 93481 \text { BOC-D-Proline extrapure, } 99 \% \\ & {[37784-17-1]} \end{aligned}$	10 Gms   25 Gms	$\begin{array}{r} 46.98 \\ 105.67 \end{array}$			100 Mg	157.92		
			$\begin{aligned} & 64222 \\ & {[6104-58-1]} \end{aligned}$	Brilliant Blue G-250 for molecular biology   (Coomassie Brilliant Blue G250)	5 Gms	8.16		
$\begin{aligned} & 91894 \text { BOC-L-Proline extrapure, 99\% } \\ & {[15761-39-4] \text { (BOC-Pro-OH) }} \end{aligned}$	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 250 \mathrm{Gms} \end{array}$	$\begin{array}{r} 23.69 \\ 77.64 \\ 184.24 \end{array}$			25 Gms	30.40		
			$\begin{aligned} & 93473 \\ & {[6104-59-2]} \end{aligned}$	Brilliant Blue R-250 for molecular biology	$5 \text { Gms }$	7.63 28.95		
71026 BOC-D-Proline Methyl Ester [733323-65-6] extrapure, 98\%	25 Gms	220.30385.59		(Coomassie Brilliant Blue R250)				
			84778	Brilliant Blue R Staining Solution (Coomassie Brilliant Blue R-250 solution)	100 ml	41.32		
31641 - BOC-L-Proline Methyl Ester [59936-29-7] extrapure, 98\%	10 Gms	200.30						
	25 Gms	350.45	$\begin{aligned} & 75824 \\ & \text { [81029-05-2] } \end{aligned}$	Brilliant Cresyl Blue   (C.I. No. 51010 Brilliant Blue C, Brilliant Blue ALD)	5 Gms	10.53		
$\begin{aligned} & 91810 \bullet \text { BOC-D-Serine extrapure, } 98 \% \\ & {[6368-20-3]} \end{aligned}$	10 Gms 25 Gms	178.32 401.12			25 Gms 100 Gms	39.48 105.28		
$\begin{aligned} & 77874 \text { BOC-L-Serine extrapure, } 99 \% \\ & {[3262-72-4]} \end{aligned}$	10 Gms	30.27	$\underset{\text { [9001-00-7] }}{60343}$	Bromelain ex. Pineapple Stem, 2400 GDU/g	25 Gms	9.21		
	25 Gms	67.91			100 Gms	26.32		
	100 Gms	210.82			500 Gms	52.64		
20256 - BOC-L-Serine Methyl Ester   [2766-43-0] extrapure, 98\%	10 ml   25 ml	114.62 200.30	$\begin{aligned} & 36953 \\ & {[7252-83-7]} \end{aligned}$	Bromoacetaldehyde Dimethyl Acetal pure (Stabilized), 97\% (2-Bromo-1,1-Dimethoxyethane)	$\begin{array}{r} 25 \mathrm{ml} \\ 100 \mathrm{ml} \end{array}$	14.48 46.98		
$\begin{aligned} & 73138 \bullet \text { BOC-D-Threonine extrapure, } 98 \% \\ & {[55674-67-4]} \end{aligned}$	10 Gms	61.98			500 ml	214.90		
	25 Gms	144.50	$\begin{aligned} & 96141 \\ & {[683-57-8]} \end{aligned}$	2-Bromoacetamide pure, 97\%	5 Gms	27.24		
$\begin{aligned} & 77340 \text { BOC-L-Threonine extrapure, } 99 \% \\ & {[2592-18-9]} \end{aligned}$	10 Gms	15.66			25 Gms	90.80		
	25 Gms	35.14	$\begin{aligned} & 25038 \\ & {[103-88-8]} \end{aligned}$	p-Bromoacetanilide pure, 98\%   (4-Bromoactanilide)	100 Gms	18.69		
	100 Gms	118.44			500 Gms	81.86		
61017 BOC-D-Tryptophan extrapure, $99 \%$$[5241-64-5]$ (BOC-D-Trp-OH)	10 Gms	52.64	$\begin{aligned} & 39903 \\ & {[79-08-3]} \end{aligned}$	, Bromoacetic Acid pure, 99\%	100 Gms	10.66		
	25 Gms	118.44			500 Gms	46.98		
86659 - BOC-L-Tryptophan extrapure, 99\% [13139-14-5] (BOC-L-Trp-PH, BOC-Trp-OH)	25 Gms	28.29	$\begin{aligned} & 15180 \\ & {[99-90-1]} \end{aligned}$	4-Bromoacetophenone pure, 98\%   (p-Bromoacetophenone)	25 Gms	6.32		
	100 Gms	105.28			100 Gms	17.24		
61475 - BOC-L-Tyrosine extrapure, 99\%	10 Gms	33.43			500 Gms	84.22		
[3978-80-1]	25 Gms	70.27	$\begin{aligned} & 30930 \\ & {[2142-63-4]} \end{aligned}$	3-Bromoacetophenone extrapure, 99\%   (1-Acetyl-3-Bromobenzene, m-Bromoacetophenone)	25 Gms	12.90		
	100 Gms	223.59			100 Gms	37.90		
$\begin{aligned} & 77170 \text { BOC-L-Tyrosine Methyl Ester } \\ & {[4326-36-7] \text { extrapure, } 98 \%} \end{aligned}$	10 Gms	133.57						
	25 Gms	233.72	$\begin{aligned} & 47085 \\ & {[591-19-5]} \end{aligned}$	m-Bromoaniline pure, 97\%	25 ml	24.61		
$\begin{aligned} & 35049 \bullet \text { BOC-D-Valine extrapure, } 99 \% \\ & {[22838-58-0]} \end{aligned}$	25 Gms	50.01			100 ml	88.30		
			$\begin{aligned} & 22912 \\ & {[106-40-1]} \end{aligned}$	p-Bromoaniline pure, 98\% (4-Bromoaniline)	100 Gms   500 Gms	17.11		
80577 - BOC-L-Valine extrapure, $99 \%$[13734-41-3]	$\begin{array}{r} 10 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	9.08				72.38		
		18.16	$\begin{aligned} & 47405 \\ & \text { [2398-37-0] } \end{aligned}$	3-Bromoanisole pure, 98\% (m-Bromoanisole)	$\begin{array}{r} 50 \mathrm{ml} \\ 100 \mathrm{ml} \\ 500 \mathrm{ml} \end{array}$	12.90		
		65.67				23.69		
97810 - BOC-L-Valine Methyl Ester   [58561-04-9] extrapure, 98\%	10 Gms   25 Gms	96.46 168.71				105.28		
		168.71	$\begin{aligned} & 54364 \\ & {[104-92-7]} \end{aligned}$	4-Bromoanisole pure, $98 \%$   (p-Bromoanisole)	100 Gms   500 Gms	13.29		
BOP Reagent extrapure AR, 98\%   (Castros Reagent)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	9.87				42.11		
		46.06	$\begin{aligned} & 27879 \\ & {[108-86-1]} \end{aligned}$	Bromobenzene extrapure, 99\%	$\begin{gathered} 250 \mathrm{ml} \\ 1000 \mathrm{ml} \end{gathered}$	12.11		
		177.66				46.98		
Boron Trifluoride in Methanol (50\%) Complex	$\begin{array}{r} 50 \mathrm{ml} \\ 250 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{gathered} 57.51 \\ 243.46 \\ 526.40 \end{gathered}$	$\begin{aligned} & 61714 \\ & {[108-86-1]} \end{aligned}$	Bromobenzene extrapure AR, 99\%	250 ml	14.48		
			$\begin{aligned} & 20107 \\ & {[585-76-2]} \end{aligned}$	3-Bromobenzoic Acid extrapure, 99\%	10 Gms	11.71		
Boron Trifluoride in Methanol (14\%) Solution	25 ml	63.83			25 Gms	33.56		
	100 ml	90.01						
	500 ml	169.11						
Code	Name	Packing	\$ Price	Code $\quad \mathrm{N}$	Name	Packing	\$ Price	
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	
$\begin{aligned} & 17833 \\ & {[90-90-4]} \end{aligned}$	p-Bromobenzophenone pure, 98\%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	15.53 50.53 160.03	$\begin{array}{cc} 20077 \\ {[114162-64-0]} \\ & \mathbf{u} \\ & \mathbf{S} \\ & \end{array}$	5-Bromo-4-Chloro-3-IndolyI-B-D-GI ucuronide Cyclohexylammonium Salt (X-Gluc CHX) for tissue culture,	$\begin{aligned} & 100 \mathrm{Mg} \\ & 500 \mathrm{Mg} \end{aligned}$	46.06 121.73	
$\begin{aligned} & 69530 \\ & {[589-15-1]} \end{aligned}$	p-Bromobenzyl Bromide pure, 98\%	100 Gms	88.17	59056 - 5-Bromo-6-Chloro-3-Indolyl-ß-D-GI   [144110-43-0] ucuronide Cyclohexylammonium   Salt extrapure, 98\%   (Magenta-GlcA, Magenta Glucuronide)		$\begin{array}{r} 50 \mathrm{Mg} \\ 250 \mathrm{Mg} \end{array}$	$\begin{array}{r} 65.80 \\ 118.44 \end{array}$	
$\begin{gathered} 79118 \\ {[536-38-9]} \end{gathered}$	2-Bromo-4-Chloro Acetophenone pure, 98\%   (O-Bromo-4-Chloro Acetophenone)	100 Gms	69.75					
$\begin{aligned} & 88685 \\ & {[106-39-8]} \end{aligned}$	1-Bromo-4-Chloro Benzene pure, 98\%	100 Gms 500 Gms	10.40 41.32	82224 - 5   [93863-88-8]	5-Bromo-6-Chloro-3-Indoxyl-B-D-G alactopyranoside (Magenta-Gal) extrapure, 98.\%   (Magenta-beta-D-Gal)	$\begin{array}{r} 50 \mathrm{Mg} \\ 250 \mathrm{Mg} \end{array}$	32.90 78.96	
$\begin{aligned} & 11447 \\ & {[107-04-0]} \end{aligned}$	1-Bromo-2-Chloroethane pure, 97\%	100 Gms   500 Gms	$\begin{array}{r} 26.32 \\ 118.44 \end{array}$			1 Gms	157.92	
				$\begin{array}{lll} 62949 & \text { 5- } \\ {[15548-60-4]} & \text { uc } \\ & \text { tis } \end{array}$	5-Bromo-4-Chloro-3-Indolyl-b-D-GI ucopyranoside (X-Glu, X-GIc) for tissue culture, $98 \%$	25 Mg	15.79	
83788 - 5-Bromo-4-Chloro-3-Indolyl Acetate   [3252-36-6] (X-3-Acetate, X-Acetate) extrapure, 98\%		$\begin{array}{r} 25 \mathrm{Mg} \\ 250 \mathrm{Mg} \end{array}$	$\begin{array}{r} 39.48 \\ 157.92 \end{array}$			100 Mg	31.58	
		$\begin{aligned} & 51683 \quad 5 \\ & {[15548-60-4]} \end{aligned}$		5-Bromo-4-Chloro-3-Indolyl-ß-D-GI ucopyranoside (X-Glu, X-GIc) for molecular biology, 98\% (X-Glucoside)	100 Mg	19.74		
$\begin{gathered} 49199 \\ {[129541-42-0]} \end{gathered}$	5-Bromo-4-Chloro-3-Indolyl Caprylate (X-Caprylate) extrapure, 98\%		$\begin{aligned} & 10 \mathrm{Mg} \\ & 25 \mathrm{Mg} \end{aligned}$		11.84 26.32	500 Mg 1 Gms	46.06 78.96	
$\begin{aligned} & (5 \\ & 0 \end{aligned}$	(5-Bromo-4-chloro-3-Indolyl Octanoate)	250 Mg	105.28	$\underset{[102185-33-1]}{24714} \bullet \bullet .$	5-Bromo-4-Chloro-3-Indolyl Phosphate Disodium Salt (BCIP)	$\begin{aligned} & 100 \mathrm{Mg} \\ & 250 \mathrm{Mg} \end{aligned}$	31.58 57.90	
```82860 - 5-Bromo-6-Chloro-3-Indolyl-Capryl [209347-94-4] ate (Magenta Caprylate) extrapure, 97%```		$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \\ 500 \mathrm{Mg} \end{array}$	$\begin{array}{r} 16.45 \\ 39.48 \\ 144.76 \end{array}$	(X-Phosphate Disodium Salt)		500 Mg   1 Gms	105.28 171.08	
		$\underset{[102185-33-1]}{66620} \bullet 5$		5-Bromo-4-Chloro-3-Indolyl Phosphate Disodium Salt (BCIP) for tissue culture, 98%	100 Mg	45.14		
93775 [107021-38-5]	5-Bromo-4-Chloro-3-Indolyl-a-D-Gal actopyranoside (X-a-Gal) for molecular biology, 99\% (X-a-D-Galactoside)		$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$		$\begin{aligned} & 30.27 \\ & 65.80 \end{aligned}$	500 Mg	169.90	
		$\begin{aligned} & 14847 \\ & {[6769-80-8]} \end{aligned}$		5-Bromo-6-Chloro-3-IndolyIphosph ate-p-Toluidine Salt (BCIP Red)		$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$	$\begin{aligned} & 26.32 \\ & 52.64 \end{aligned}$	
74021 - 5-Bromo-4-Chloro-3-Indolyl-a-D-Glu [108789-36-2] copyranoside (X-a-GIc) for molecular biology, 98\% (X-a-D-Glucoside)		50 Mg	65.80	$\begin{aligned} & \mathbf{e x} \\ & \text { (N } \end{aligned}$	extrapure, 95% (Magenta Phosphate p-Toludine Salt)	500 Mg	105.28	
		$\begin{aligned} & 45366 \bullet 5 \\ & {[6578-06-9]} \end{aligned}$		5-Bromo-4-Chloro-3-Indolyl Phosphate p-Toluidine Salt (BCIP	25 Mg 100 Mg	32.24 59.22		
$\begin{aligned} & 90349 \bullet 5 \\ & {[177966-52-8]} \\ & \\ & x \end{aligned}$	5-Bromo-4-Chloro-3-Indolyl-b-D-Cel lobioside (X-Cellobioside, X-B-D-Cel) extrapure, 99\%		$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$	30.27 65.80		p -toluidine salt) for molecular biology, (X-phosphate p-Toluidine Salt)	500 Mg	118.44
$\begin{array}{cc} 45904 & \mathbf{5} \\ {[7240-90-6]} \end{array}$	5-Bromo-4-Chloro-3-Indolyl-b-D-Gal actopyranoside (X-Gal) for tissue culture, 98\%	$\begin{gathered} 100 \mathrm{Mg} \\ 500 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 23.69 \\ 93.44 \\ 157.92 \end{array}$	75531 - BC	BCIP Red/NBT Solution A (BCIP Red Solution)	100 ml	233.59	
				$73654 \text { - }$	BCIP Red/NBT Solution B (NBT Solution)	100 ml	29.87	
$\begin{aligned} & 10513 \\ & {[7240-90-6]} \end{aligned}$	5-Bromo-4-Chloro-3-IndolyI-ß-D-Gal actopyranoside (X-Gal) for molecular biology, 98\%	$\begin{gathered} 100 \mathrm{Mg} \\ 500 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{gathered}$	15.79 50.01 92.12	$\begin{aligned} & 71007 \\ & {[518033-33-5]} \end{aligned} \bigcirc$	5-Bromo-4-Chloro-3-Indolyl-ß-D-Rib ofuranoside extrapure, 95%	$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \\ 250 \mathrm{Mg} \end{array}$	$\begin{array}{r} 265.57 \\ 758.54 \\ 1517.08 \end{array}$	
19185 [93863-89-9]	5-Bromo-6-Chloro-3-Indolyl b-D-Glucopyranoside (Magenta-GIc) for molecular biology, 98\% (Magenta Glucoside)	250 Mg 1 Gms	104.75 314.13		5-Bromo-4-Chloro-3-Indoxyl-myo-In ositol-1-Phosphate Ammonium Salt (X-Phos-Inositol, X-IP) extrapure, (myo-Inositol 1- (5-Bromo-4-Chloro-3-IndoxyIphosphat	20 Mg 100 Mg	67.77 257.67	
16651 [129541-41-9]	5-Bromo-4-Chloro-3-IndolyI-B-D-GI ucuronide Sodium Anhydrous (X-Gluc Sodium) extrapure, 98\% (X-GIcA Sodium Salt, X-ß-D-GLcA-Na, X-Glucuronide, X-Glucurono Sodium Salt, BC-Indicator) (X-GIcA	$\begin{gathered} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \\ 250 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 28.95 \\ 63.17 \\ 128.97 \\ 421.12 \end{array}$		e) Ammonium Salt)			
				$\begin{aligned} & 62861 \\ & {[160369-85-7]} \end{aligned}$	5-Bromo-4-Chloro-3-Indoxyl-a-D-NAcetyIneuraminic Acid Sodium Salt extrapure (X-NANA.Na), 98\%	2 Mg 5 Mg	$\begin{aligned} & 222.54 \\ & 370.72 \end{aligned}$	
				$\begin{array}{cc} 37869 & \mathbf{1} \\ {[109-70-6]} & \mathbf{9} \end{array}$	1-Bromo-3-Chloropropane pure, 98\%	100 ml	10.13	
$\begin{aligned} & 55702 \bullet 5 \\ & {[370100-64-4] \mathbf{u}} \\ & \end{aligned}$	5-Bromo-4-Chloro-3-IndolyI-B-D-GI ucuronide Sodium Salt Trihydrate extrapure, 98%	25 Mg	28.95				42.1	
		$\begin{gathered} 100 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{gathered}$	57.90 210.56	$\begin{array}{ll} 78388 & 1- \\ {[112-29-8]} & \text { (D } \end{array}$	1-Bromodecane pure, 98\% (Decyl Bromide)	$\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned}$	$\begin{aligned} & 15.92 \\ & 37.77 \end{aligned}$	
$\begin{aligned} & 20402 \\ & {[114162-64-0]} \end{aligned}$	5-Bromo-4-Chloro-3-IndolyI-B-D-GI ucuronide Cyclohexylammonium Salt (X-Gluc CHX) extrapure, 99\% (X-beta-Glucuronide CHX Salt)	$\begin{gathered} 100 \mathrm{Mg} \\ 250 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{gathered}$	32.90 52.64 105.28	$\begin{aligned} & 14433 \text { ■ } \\ & {[3832-48-2]} \end{aligned}$	Bromodifluoroacetyl Chloride extrapure, 97%	1 Gms	121.07	

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price	
$\begin{aligned} & 58597 \\ & {[33564-30-6]} \end{aligned}$	Cefoxitin Sodium Salt (CTX), 94\%	100 Mg	15.79	32355 [7647-17-8]	Cesium Chloride ultrapure for molecular biology, 99.9\%	25 Gms	31.58	
		250 Mg	39.48			100 Gms	118.44	
		1 Gms	65.80			500 Gms	572.46	
80223 \& Cefsulodin Sodium Salt (CFS) [52152-93-9] extrapure, 97\%		10 Mg	11.84	$\begin{aligned} & 36117 \\ & {[13400-13-0]} \end{aligned}$	Cesium Fluoride extrapure AR, 99\%	25 Gms	28.29	
		250 Mg	98.57			100 Gms	107.91	
79364 - Ceftriaxone Disodium Salt [104376-79-6] Hemiheptahydrate (CFTZ) (Ceftriazone Sodium Salt)		1 Gms	18.42	22941 [7789-17-5]	Cesium lodide extrapure, 99.5\%	10 Gms	21.06	
		5 Gms	52.64			50 Gms	105.28	
$\begin{aligned} & 84755 \\ & {[56238-63-2]} \end{aligned}$	- Cefuroxime Sodium Salt, 86-100\%	2 Gms	16.45	73254 [7789-17-5]	Cesium lodide ultrapure, 99.999\%	5 Gms	19.74	
		10 Gms	46.06			10 Gms	36.85	
		25 Gms	105.28			25 Gms	69.09	
$\begin{aligned} & 85294 \\ & {[528-50-7]} \end{aligned}$	D-Cellobiose extrapure					100 Gms	210.56	
		25 Gms	63.69	88733 [7789-18-6]	Cesium Nitrate extrapure, 99\% (Nitric Acid Cesium Salt)	5 Gms	19.08	
		100 Gms	247.41			10 Gms	34.22	
$\begin{aligned} & 95382 \\ & {[9012-54-8]} \end{aligned}$	Cellulase (Meicellase) ex. Aspergillus Niger, 0.3 U/mg powder Cellulase (Meicellase) ex. Aspergillus Niger, 0.3U/mg powder	100 Mg	19.08			50 Gms	89.49	
		1 Gms	42.11	$\begin{aligned} & 57455 \\ & {[10294-54-9]} \end{aligned}$	Cesium Sulphate extrapure for molecular biology, 99.9\%	10 Gms	13.16	
		5 Gms	125.02			25 Gms	33.56	
		25 Gms	526.40	40649 -	Benzyldimethylhexadecylammoniu	100 Gms	10.00	
$\begin{aligned} & 32970 \\ & {[9012-54-8]} \end{aligned}$	Cellulase Onozuka FA ex. Trichoderma Viride, 2500U/g (Meicellase)	1 Gms	80.01	[122-18-9]	m Chloride (BDHDAC) pure, 97% (Cetyldimethylbenzylammonium Chloride, Cetalkonium Chloride)	1 Kg	65.80	
		5 Gms	308.34					
				77040	Cetylpyridinium Bromide (CPB) pure, 98\% (Hexadecylpyridinium Bromide)	100 Gms	15.79	
$\begin{aligned} & 24801 \\ & {[9012-54-8]} \end{aligned}$	Cellulase Onozuka R-10 ex. Trichoderma Viride, 10000U/g (Meicellase)	1 Gms 5 Gms	$\begin{aligned} & 105.28 \\ & 500.08 \end{aligned}$	[140-72-7]		500 Gms	65.80	
				$\begin{aligned} & 59088 \\ & {[6004-24-6]} \end{aligned}$	Cetylpyridinium Chloride (CPC) extrapure, 98\%	100 Gms	9.21	
$\begin{aligned} & 65480 \\ & {[9012-54-8]} \end{aligned}$	Cellulase Onozuka RS ex. Trichoderma Viride, 16000U/g (Meicellase)	1 Gms	158.31			500 Gms	32.90	
				$\begin{aligned} & 99698 \\ & {[6004-24-6]} \end{aligned}$	Cetylpyridinium Chloride (CPC) ExiPlus, Multi-Compendial, 98\%	100 Gms	10.53	
45662 [9004-38-0]	Cellulose Acetate Phthalate extrapure	100 Gms	9.21			500 Gms	39.48	
		500 Gms	39.48		meets compendial specs of BP, Ph			
33340 [9004-34-6]	Cellulose microcrystalline pure for TLC, 98\%	500 Gms	8.16	$\begin{aligned} & 66302 \\ & {[57-09-0]} \end{aligned}$	Cetyltrimethyl Ammonium Bromide (CTAB) extrapure AR, 99\% (Hexadecyltrimethyl Ammonium Bromide)	100 Gms	6.45	
		5 Kg	75.28			500 Gms	27.24	
		25 Kg	270.96			5 Kg	243.46	
56338 [15686-71-2]	Cephalexin Hydrate (CFL), 95-103\% (Cefalexin Hydrate)	1 Gms	29.22	$\begin{aligned} & 59771 \\ & {[57-09-0]} \end{aligned}$	Cetyltrimethyl Ammonium Bromide (CTAB) extrapure AR, ExiPlus, Multi-Compendial, 99\% (Hexadecyltrimethyl Ammonium Bromide) meets compendial specs of BP, Ph.Eur	100 Gms	7.11	
		5 Gms	108.44			500 Gms	32.11	
		25 Gms	255.04			5 Kg	289.52	
$\begin{aligned} & 36413 \\ & {[58-71-9]} \end{aligned}$	Cephalothin Sodium Salt (CF), 97\%	1 Gms	41.72					
		5 Gms	106.73					
$\begin{aligned} & 19660 \\ & {[64485-93-4]} \end{aligned}$	Cephotaxime Sodium Salt (CFT), 916-964ug/mg	1 Gms	18.42	$\begin{aligned} & 12779 \\ & {[57-09-0]} \end{aligned}$	Cetyltrimethyl Ammonium Bromide (CTAB) for molecular biology, 99\% (Hexadecyltrimethyl Ammonium Bromide)	100 Gms	7.37	
		5 Gms	39.48			500 Gms	34.74	
$\begin{aligned} & 40111 \\ & \text { [76089-77-5] } \end{aligned}$	Cerium (III) Trifluoromethanesulfonate extrapure, 98\% (Cerium triflate, Trifluoromethanesulfonic Acid Cerium Salt)	5 Gms 25 Gms	55.01			5 Kg	309.26	
			182.40	$\begin{aligned} & 23595 \\ & {[112-02-7]} \end{aligned}$	Cetyltrimethyl Ammonium Chloride (CTAC) extrapure AR, 99\% (Cetrimonium Bromide, Hexadecyltrimethyl Ammonium Bromide)	25 Gms	26.58	
						100 Gms	78.17	
						500 Gms	117.26	
54784	Cesium Bromide extrapure AR,	10 Gms	15.79	68623	Cetyltrimethyl Ammonium Chloride	25 Gms	39.09	
[7787-69-1]	99.5\%	50 Gms	71.06	[112-02-7]	(CTAC) for molecular biology, 99\%	100 Gms	106.33	
$\begin{aligned} & 95125 \\ & {[534-17-8]} \end{aligned}$	Cesium Carbonate extrapure, 99\%	25 Gms	20.27		Hexadecyltrimethyl Ammonium			
		100 Gms	79.62		Bromide)			
		500 Gms	296.10	87868 -	CHAPS Buffer extrapure, 99\%	1 Gms	11.84	
$\begin{aligned} & 22966 \\ & {[7647-17-8]} \end{aligned}$	Cesium Chloride extrapure AR for molecular biology, 99.9\%	25 Gms	25.66	[75621-03-3, 331717-45-4]	(3-[(3-Cholamidopropyl)	5 Gms	39.48	
		100 Gms	95.41		-1-Propanesulphonate)	25 Gms	171.08	
		500 Gms	447.44			100 Gms	605.36	
Code N	Name	Packing	\$ Price	Code	Name	Packing	\$ Price	
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	
$\begin{array}{lc} 21420 \vee c \\ \text { [75621-03-3, } & \text { bi } \\ 331717-45-4] \end{array}$	CHAPS Buffer for molecular biology, 99.5\%	1 Gms 5 Gms 25 Gms	$\begin{array}{r} 15.79 \\ 57.90 \\ 236.88 \end{array}$	$\begin{aligned} & 77863 \\ & {[539-03-7]} \end{aligned}$	p-Chloroacetanilide extrapure AR, ExiPlus, Multi-Compendial, 99\% meets compendial specs of USP, BP, Ph.Eur	100 Gms	26.98	
$\begin{aligned} & 66903 \quad \vee \\ & {[82473-24-3]} \end{aligned}$	CHAPSO Buffer extrapure, 99\% (3-[(3-Cholamidopropyl) Dimethylammonio]-2-Hydroxy 1-Propanesulphonate)	1 Gms 5 Gms	72.91 289.39	$\begin{aligned} & 70179 \\ & {[532-27-4]} \end{aligned}$	2-Chloroactophenone pure, 97\% (Phenacyl Chloride)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 100 \mathrm{ml} \end{array}$	30.27 96.07 18.69	
$\begin{gathered} 18081 \\ {[103-47-9]} \end{gathered}$	CHES Buffer extrapure, 99\% (2-(N-Cyclohexylamino) Ethanesulphonic Acid)	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 32.90 \\ 103.96 \\ 421.12 \end{array}$	$\begin{aligned} & 40585 \\ & {[99-91-2]} \end{aligned}$	p-Chloroacetophenone extrapure, 98\%	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	75.80 143.18	
$\begin{aligned} & 98507 \vee \mathbf{C} \\ & {[1398-61-4]} \\ & \mathbf{g} \end{aligned}$	Chitin (Poly-(b1-4)-N-acetyl glucosamine) extrapure	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$		$\begin{aligned} & 92804 \\ & {[108-42-9]} \end{aligned}$	m-Chloroaniline (MCA) pure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{aligned} & 18.42 \\ & 80.28 \end{aligned}$	
$\begin{aligned} & 27391 \quad \vee \mathrm{C} \\ & {[9012-76-4]} \end{aligned}$	Chitosan (Low MW) extrapure, 10-150m.Pas, 90\% DA (Deacetylated Chitin)	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	$\begin{aligned} & 12.63 \\ & 40.93 \end{aligned}$	$\begin{aligned} & 43265 \\ & {[89-98-5]} \end{aligned}$	o-Chlorobenzaldehyde pure, 98\% (2-Chlorobenzaldehyde)	$\begin{array}{r} 100 \mathrm{ml} \\ 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	3.95 9.87 43.43	
$\begin{gathered} 18824 \vee C \\ {[9012-76-4]} \end{gathered}$	Chitosan (Medium MW) extrapure, 150-500m.Pas, 90\% DA (Deacetylated Chitin)	10 Gms 25 Gms	148.31 7.63 14.87	$\begin{aligned} & 17927 \\ & {[104-88-1]} \end{aligned}$	p-Chlorobenzaldehyde pure, 97\% (4-Chlorobenzaldehyde)	$\begin{array}{r} 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 5.92 \\ 13.82 \\ 125.02 \end{array}$	
		100 Gms 500 Gms	48.43 160.03	$\begin{gathered} 91019 \\ {[119-56-2]} \end{gathered}$	4-Chlorobenzhydrol pure, 98\%	$\begin{gathered} 50 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	$\begin{aligned} & 31.58 \\ & 55.27 \end{aligned}$	
$96266 \vee$ Chitosan (High MW) extrapure, [9012-76-4] 800m.Pas, 90\% DA (Deacetylated Chitin)		$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 25.40 \\ 86.86 \\ 318.47 \end{array}$	$\begin{aligned} & 69159 \\ & {[118-91-2]} \end{aligned}$	o-Chlorobenzoic Acid pure, 98\%	100 Gms 500 Gms	3.95 15.79	
$\underset{[148411-57-8]}{44097} \text { © }$	Chitosan Oligosaccharide (water soluble) extrapure, 90\% DA	10 Gms 25 Gms	57.25 101.46	$\begin{aligned} & 30519 \\ & {[118-91-2]} \end{aligned}$	o-Chlorobenzoic Acid extrapure AR, 99.5\%	100 Gms 500 Gms	5.26 22.37	
		100 Gms	171.74	$\begin{aligned} & 34366 \\ & {[535-80-8]} \end{aligned}$	m-Chlorobenzoic Acid extrapure, 99\%	$25 \mathrm{Gms}$ $100 \text { Gms }$	$\begin{aligned} & 10.66 \\ & 39.87 \end{aligned}$	
59811 \& Chitosan Dimer Dihydrochloride [577-76-4] extrapure, 98\% (Chitobiose Dihydrochloride)			$\begin{aligned} & 263.20 \\ & 434.28 \end{aligned}$			500 Gms	125.55	
				$\begin{aligned} & 24711 \\ & {[74-11-3]} \end{aligned}$	p-Chlorobenzoic Acid pure, 99\%	100 Gms	4.34	
		5 Mg	761.70			500 Gms	15.79	
		$\begin{aligned} & 97199 \\ & {[74-11-3]} \end{aligned}$		p-Chlorobenzoic Acid extrapure AR, 99.7\%	100 Gms	7.90		
62506 Chitosan Tetramer [117399-50-5] Tetrahydrochloride extrapure, 98\% (Chitotetraose Tetrahydrochloride) 			5 Mg	289.52	$\begin{aligned} & 53378 \\ & {[134-85-0]} \end{aligned}$	p-Chlorobenzophenone extrapure, 99\%	100 Gms 500 Gms	7.90 28.95
80517 [35061-50-7]	Chitosan Pentamer Pentahydrochloride extrapure, 98\% (Chitopentaose Pentahydrochloride)	5 Mg	204.24	$\begin{aligned} & 98001 \\ & {[89-97-4]} \end{aligned}$	2-Chlorobenzylamine pure, 98\% (o-Chlorobenzylamine)	$\begin{array}{r} 25 \mathrm{ml} \\ 100 \mathrm{ml} \end{array}$	15.79 55.27	
36824 [41708-95-6]	Chitosan Hexamer Hexahydrochloride extrapure, 95\% (Chitohexaose Hexahydrochloride)	5 Mg	552.72	$\begin{aligned} & 95074 \\ & {[628-20-6]} \end{aligned}$	4-Chlorobutyronitrile pure, 98\%	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{array}{r} 39.74 \\ 172.92 \end{array}$	
	a-Chloralose pure, 98\% (Anhydro-D-Glucochloral, a-D-Glucochloralose)	25 Gms	39.09	$\begin{aligned} & 29440 \\ & {[4635-59-0]} \end{aligned}$	4-Chlorobutyryl Chloride pure, 98\%	$\begin{array}{r} 250 \mathrm{ml} \\ 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{aligned} & 14.48 \\ & 26.32 \\ & 47.38 \end{aligned}$	
$\begin{aligned} & 50146 \vee C \\ & {[2829-43-8]} \end{aligned}$	Chloranitine Fast Red BB (C.I. No. 25380)	1 Gms 5 Gms	$\begin{aligned} & 44.74 \\ & 62.64 \end{aligned}$	$\begin{aligned} & 23843 \\ & {[999-81-5]} \end{aligned}$	Chlorocholine Chloride (CCC) extrapure, 98\% (2-Chloroethyl)trimethylammonium chloride, Chlormequat chloride, Choline dichloride, Cycocel)	5 Gms 25 Gms	17.11 52.64	
$\underset{[56-75-7]}{28812} \bigcirc$	Chloramphenicol (CFP) for tissue culture, 98-102\%	5 Gms 25 Gms	14.34 33.29					
$\underset{[56-75-7]}{97686} \bullet c$	Chloramphenicol (CFP), 98-102\%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 10.92 \\ & 30.40 \\ & 75.28 \end{aligned}$	$\begin{aligned} & 10231 \\ & {[3140-73-6]} \end{aligned}$	2-Chloro-4,6 Dimethoxy-1,3,5 Triazine extrapure, 99\%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 11.84 \\ 46.06 \\ 157.92 \end{array}$	
$\begin{array}{cc} 37281 & \mathrm{p} \\ {[539-03-7]} & 9 S \end{array}$	p-Chloroacetanilide extrapure AR, 99\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	8.29 25.40	$\begin{aligned} & 42687 \\ & {[97-00-7]} \end{aligned}$	1-Chloro-2,4-Dinitrobenzene extrapure, 99\%	500 Gms	9.74	
				$\begin{aligned} & 69297 \\ & {[97-00-7]} \end{aligned}$	1-Chloro-2,4-Dinitrobenzene extrapure AR, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	2.50 7.50	

Part B - Bioreagents, Biochemicals \& Speciality Fine Chemicals

Catalogue 2024-25

Code N	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 93937 \\ & {[97-00-7]} \end{aligned}$	1-Chloro-2,4-Dinitrobenzene extrapure AR, ExiPlus, Multi-Compendial, 99\% meets compendial specs of BP	100 Gms 500 Gms	8.03 33.82	$\underset{[467214-46-6]}{89432} \square$	6-Chloro-3-Indoxyl-a-D-Glucopyran oside (Salmon-a-D-GIc) extrapure, 98\% (Salmon-alpha-D-Glucoside)	500 Mg	228.72
$\begin{aligned} & 17691 \vee 2 \\ & {[2578-45-2]} \end{aligned}$	2-Chloro-3,5-Dinitropyridine extrapure AR, 99\%	1 Gms 5 Gms	67.38 206.88	$\begin{aligned} & 71848 \\ & {[130-26-7]} \end{aligned}$	5-Chloro-7-Iodo-8-Quinolinol (Clioquinol, lodochlorohydroxyquinoline) ExiPlus, 97-103\% (5-Chloro-8-Hydroxy-7-lodoquinoline)	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	28.95 76.33
$\begin{aligned} & 38825 \\ & {[1679-18-1]} \end{aligned}$	4-Chlorophenylboronic Acid extrapure, 97%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	23.69 97.78			500 Gms	289.52
$\begin{array}{ll} 22654 & \mathbf{2} \\ {[16672-87-0]} & \mathbf{1} \end{array}$	2-ChloroethyIphosphonic Acid (ETHREL, Ethephon) 40\% soln.	$\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned}$	10.53 22.37	$\begin{aligned} & 25898 \\ & {[14110-97-5]} \end{aligned}$	4-Chloromercuribenzenesulphonic Acid Monosodium Salt (pCMBS) extrapure, 95% (p-Chloromercuriphenylsulfonic Acid Sodium Salt)	10 Mg	402.70
$\begin{aligned} & 10455 \\ & {[367-21-5]} \end{aligned}$	3-Chloro-4-Fluoroaniline pure, 98\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 9.21 \\ 18.42 \\ 78.96 \end{array}$				
				$\begin{aligned} & 26004 \\ & {[138-85-2]} \end{aligned}$	p-Chloromercuribenzoic Acid Sodium Salt extrapure, 98\%	1 Gms 5 Gms	$\begin{array}{r} 44.61 \\ 161.34 \end{array}$
$\begin{aligned} & 17703 \\ & {[2252-51-9]} \end{aligned}$	2-Chloro-4-Fluorobenzoic Acid pure, 98\%	5 Gms 25 Gms	$\begin{aligned} & 21.71 \\ & 70.27 \end{aligned}$	$\begin{aligned} & 81929 \\ & {[604-44-4]} \end{aligned}$	4-Chloro-1-Naphthol Substrate Grade extrapure, 99\%	$\begin{array}{r} 2.5 \mathrm{Gms} \\ 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	$\begin{aligned} & 34.61 \\ & 52.38 \end{aligned}$
$\begin{aligned} & 36393 \\ & {[2252-50-8]} \end{aligned}$	2-Chloro-5-Fluorobenzoic Acid pure, 98%	$\begin{array}{r} 10 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 38.69 \\ 201.35 \end{array}$				253.46
				$\underset{[121-73-3]}{85267}$	1-Chloro-3-Nitrobenzene pure, 98\%	250 Gms 500 Gms	$\begin{array}{r} 7.11 \\ 13.69 \end{array}$
$\begin{aligned} & 84538 \\ & {[434-75-3]} \end{aligned}$	2-Chloro-6-Fluorobenzoic Acid pure, 98\%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	$\begin{aligned} & 36.32 \\ & 84.88 \end{aligned}$				
$\begin{aligned} & 33676 \\ & {[161957-55-7]} \end{aligned}$	3-Chloro-2-Fluorobenzoic Acid pure, 98\%	$\begin{array}{r} 5 \mathrm{Gms} \\ 10 \mathrm{Gms} \end{array}$	$\begin{array}{r} 58.96 \\ 101.07 \end{array}$	$\begin{array}{ll} 77459 & 2 \\ {[2516-96-3]} & 9 \end{array}$	2-Chloro-5-Nitrobenzoic Acid pure, 99\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 4.74 \\ 13.82 \\ 52.64 \end{array}$
$\begin{gathered} 69932 \bullet 2 \\ {[157381-11-8]} \end{gathered}$	2-Chloro-4-Nitrophenyl 4-O-b-D-GalactopyranosyImaltosid e (Gal-G2-a-CNP, Gal CNPG2) extrapure, 90%	250 Mg 1 Gms 5 Gms	$\begin{array}{r} 157.92 \\ 460.60 \\ 1974.00 \end{array}$	$\begin{gathered} 21259 \\ {[157843-41-9]} \\ \\ \\ \\ \\ e \end{gathered}$	2-Chloro-4-Nitrophenyl a-L-Fucopyranoside (CNPF) extrapure, 98% (AFU)	25 Mg	111.20
	(a-(2-Chloro-4-Nitrophenyl) - β-1,4-Galactopyranosylmaltoside)			$\begin{gathered} 48958 \text { 2 } \\ {[118291-90-0]} \\ \end{gathered}$	2-Chloro-4-Nitrophenyl a-D-Maltotrioside (CNPG3) extrapure, 95%	$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$	$\begin{array}{r} 51.59 \\ 118.44 \end{array}$
85563 C	Chloroform : Isoamyl Alcohol (24:1) for molecular biology	100 ml 500 ml	$\begin{aligned} & 14.87 \\ & 31.19 \end{aligned}$				
				$\begin{aligned} & 66684 \\ & {[3970-40-9]} \end{aligned}$	2-Chloro-3-Nitrotoluene extrapure, 98\%	1 Gms 5 Gms	$\begin{aligned} & 19.74 \\ & 78.96 \end{aligned}$
$\begin{array}{cc} 41117 & \checkmark \\ \text { [936-59-4] } \end{array}$	3-Chloro-1-Phenyl Propanone pure, 98\% (3-Chloropropiophenone, B-Chloropropiophenone)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 31.19 \\ 114.49 \end{array}$				
				$\begin{aligned} & 41107 \\ & {[108-43-0]} \end{aligned}$	3-Chlorophenol pure, 98\% (m-Chlorophenol)	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 12.90 \\ 46.06 \\ 223.72 \end{array}$
$\begin{aligned} & 72928 \\ & \text { [1914-99-4] } \end{aligned}$	Chlorophosphonazo III for Spectrophotometry (Bis(4-chloro-2-Phosphonobenzolazo) Chromotropic acid)	$\begin{aligned} & 100 \mathrm{Mg} \\ & 500 \mathrm{Mg} \end{aligned}$	$\begin{array}{r} 55.01 \\ 231.62 \end{array}$				
				$\begin{aligned} & 94280 \\ & {[95-57-8]} \end{aligned}$	o-Chlorophenol pure, 98\%	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{aligned} & 11.58 \\ & 22.77 \\ & 43.95 \end{aligned}$
$\begin{aligned} & 51562 \\ & {[6001-76-9]} \end{aligned}$	Chlorogenic Acid Hemihydrate extrapure, 98\%	100 Mg 1 Gms	$\begin{array}{r} 6.32 \\ 30.27 \end{array}$				
				$\begin{aligned} & 74230 \\ & {[106-48-9]} \end{aligned}$	p-Chlorophenol pure, 98\% (4-Chlorophenol)	500 Gms	11.84
$\begin{aligned} & 78193 \\ & {[10310-21-1]} \end{aligned}$	6-Chloroguanine extrapure, 98\% (2-Amino-6-Chloropurine)	1 Gms 5 Gms	$\begin{aligned} & 25.00 \\ & 99.75 \end{aligned}$				
				$\begin{aligned} & 18344 \\ & {[4430-20-0]} \end{aligned}$	Chlorophenol Red		$\begin{array}{r} 8.16 \\ 31.98 \end{array}$
$\begin{aligned} & 99721 \\ & {[159954-35-5]} \end{aligned}$	6-Chloro-3-Indolyl-Caprylate (Salmon Caprylate) for molecular biology, 97\% (6-Chloro-3-Indoxyl-Octanoate)	50 Mg	78.96	$\begin{aligned} & 87976 \end{aligned} \bigcirc$	Chlorophenol Red-ß-D-Galactopyranoside (CPRG) extrapure, 90\%	25 Mg	111.60
$\begin{aligned} & 79621 \bullet 4 \\ & {[135313-63-2]} \end{aligned}$	4-Chloro-3-Indolyl-ß-Galactopyrano side extrapure, 98%	100 Mg	79.62	$\underset{[122-88-3]}{21524}$	Chlorophenoxyacetic Acid (4-CPA) for tissue culture, 98\% (Parachlorophenoxyacetic acid)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 5.92 \\ 20.92 \\ 96.99 \end{array}$
98551 - 6	6-Chloro-3-Indolyl	100 Mg	44.74				
[138182-21-5]	B-D-Galactopyranoside (Salmon Gal) extrapure, 98% (Red Gal, Rose Gal)	500 Mg	86.59	$\begin{array}{cc} 91145 & \checkmark 2 \\ {[101-10-0]} \end{array}$	2-(3-Chlorophenoxy)-Propionic Acid (3-CPA) technical grade, 99\%	10 Gms 25 Gms	$\begin{aligned} & 26.32 \\ & 52.64 \end{aligned}$
$\begin{aligned} & 82947 \\ & {[138182-20-4]} \end{aligned}$	6-Chloro-3-Indolyl-ß-D-Glucuronide Cyclohexylammonium Salt extrapure, 98\%	10 Mg 50 Mg	$\begin{array}{r} 53.56 \\ 178.19 \end{array}$	28272 [1878-66-6]	4-Chlorophenylacetic Acid pure, 98\%	100 Gms 500 Gms	$\begin{array}{r} 23.69 \\ 105.28 \end{array}$

(RED-GLUC, Rose-Glucuronide CHA
Salt, Salmon-Glucuronide CHA Salt)

∞ Part B - Bioreagents, Biochemicals \& Speciality Fine Chemicals

Catalogue 2024-25

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{gathered} 95225 \text { C } \\ {[55672-92-9} \\ (\text { (anhy })] \\ 8 \end{gathered}$	Coenzyme A Sodium Salt Hydrate (CoA Na2) for molecular biology, 85\%	10 Mg 25 Mg	85.54 151.34	$\begin{aligned} & 29121 \\ & {[596-27-0]} \end{aligned}$	o-Cresolphthalein AR, 95\%	$5 \text { Gms }$ $25 \text { Gms }$	$\begin{aligned} & 2.11 \\ & 7.63 \end{aligned}$
64147 Coenzyme A Trilithium Salt ex. [18439-24-2] Yeast extrapure, 90\% CoA		25 Mg	79.62	$\begin{aligned} & 64982 \\ & {[2411-89-4]} \end{aligned}$	o-Cresolphthalein Complexone (Phthalein Purple) extrapure AR, 80\%	1 Gms	6.32
$\underset{[303-98-0]}{15039} \text { ■ }$	Coenzyme Q10 extrapure, 99\%	$\begin{aligned} & 100 \mathrm{Mg} \\ & 500 \mathrm{Mg} \end{aligned}$	9.61 36.85			$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	24.35 78.96
		1 Gms 5 Gms	73.04 142.92	72278 [94442-10-1]	o-Cresolphthalein Complexone Disodium Salt extrapure	1 Gms 5 Gms	17.37 72.38
$\underset{[64-86-8]}{17701} \vee C$	Colchicine extrapure, 98\%	$\begin{aligned} & 1 \mathrm{Gms} \\ & 5 \mathrm{Gms} \end{aligned}$	$\begin{array}{r} 24.21 \\ 116.07 \end{array}$	$\begin{aligned} & 31393 \\ & {[2303-01-7]} \end{aligned}$	m-Cresol Purple extrapure AR	1 Gms 5 Gms	$\begin{array}{r} 3.42 \\ 15.00 \end{array}$
		10 Gms	225.56	$\begin{aligned} & 60837 \\ & {[107-93-7]} \end{aligned}$	Crotonic Acid pure, 99\%	100 Gms	8.29
$\begin{aligned} & 93156 \\ & {[64-86-8]} \end{aligned}$	Colchicine ExiPlus, Multi-Compendial, 98\%	1 Gms 5 Gms	29.35 138.31			250 Gms 500 Gms	14.48 27.11
	meets compendial specs of USP, BP, Ph.Eur			51665 ■	r-CRP ex. E.Coli (Recombinant C-reactive protein) extrapure	1 Mg	155.29
$\underset{[64-86-8]}{45830} \checkmark$	Colchicine for tissue culture, 98\%	1 Gms 5 Gms	$\begin{array}{r} 27.50 \\ 132.13 \end{array}$	$\begin{aligned} & 12295 \\ & {[3572-06-3]} \end{aligned}$	Cuelure pure, 95\% (4-[4-(Acetyloxy)phenyl]-2-Butanone)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	9.87 33.03
$\begin{aligned} & 51681 \text { \& C } \\ & {[1264-72-8]} \end{aligned}$	Colistin Sulphate (CLS)	500 Mg	21.71			500 Gms	153.05
		1 Gms	43.43			1 Kg	293.20
		5 Gms	130.28			2.5 Kg	649.05
$\begin{aligned} & 90443 \vee C \\ & {[9007-34-5]} \end{aligned} 9$	Collagen ex. Marine Fish extrapure, 95\%	5 Gms 25 Gms	28.95 86.86	$\begin{aligned} & 37870 \quad \checkmark \\ & {[126747-14-6]} \end{aligned}$	4-Cyanophenylboronic Acid extrapure, 95%	1 Gms 5 Gms	$\begin{aligned} & 19.74 \\ & 85.54 \end{aligned}$
		100 Gms	275.04			25 Gms	250.04
$51581 \checkmark$ C	Colloidal Protein Staining Solution	100 ml	44.74	$\begin{aligned} & 86320 \vee \checkmark \\ & {[150255-96-2]} \end{aligned}$	3-Cyanophenylboronic Acid extrapure, 97%	1 Gms 5 Gms	$\begin{aligned} & 17.77 \\ & 44.22 \end{aligned}$
94278	2,4,6-Collidine pure, 98\% (2,4,6-Trimethylpyridine)	$100 \mathrm{ml}$	18.42			25 Gms	183.98
[108-75-8]	(2,4,6-Trimethylpyridine)	$500 \mathrm{ml}$	81.59	57446 [108-77-0]	Cyanuric Chloride extrapure, 99\% (2,4,6-Trichloro-1,3,5-Triazine)	100 Gms	3.95
$\begin{aligned} & 24275 \\ & {[573-58-0]} \end{aligned}$	Congo Red ACS, 75\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	4.74 17.11			250 Gms 500 Gms	7.90 14.48
$\underset{[8064-90-2]}{10408} \bullet C$	Cotrimoxazole (CTX), 95\%	100 Mg 500 Mg	$\begin{array}{r} 33.29 \\ 157.92 \end{array}$	51458 [59016-56-7]	1-Cyano-4-Dimethylaminopyridiniu m Tetrafluoroborate (CDAP) extrapure, 97.5\%	$\begin{aligned} & 100 \mathrm{Mg} \\ & 250 \mathrm{Mg} \end{aligned}$	90.01 204.37
$\begin{gathered} 42074 \\ {[91-64-5]} \end{gathered} \quad \vee C$	Coumarin pure, 98\% (1-Benzopyran-2-one)	100 Gms	7.90			1 Gms	792.76
		500 Gms	36.06	$57902 \checkmark 1$	1-(3-Cyanopropyl)	5 Gms	87.12
$\begin{array}{ll} 76072 & C \\ {[6020-87-7]} & 9 \end{array}$	Creatine Monohydrate extrapure, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{array}{r} 4.21 \\ 12.50 \\ 118.44 \end{array}$	[879866-74-7] -3	-3-Methylimidazolium Dicyanamide (CPMIM.DC) pure, 98\% (1-Methyl-3- (3-Cyanopropyl)imidazolium	25 Gms	368.48
$\begin{array}{ll} 25758 \text { © } \\ {[71519-72-7]} & \mathrm{C} \\ & \text { (S } \\ & \mathrm{T} \\ & \mathrm{D} \end{array}$	Creatine Phosphate Disodium Salt Tetrahydrate extrapure, 99\% (Sodium Creatine Phosphate Dibasic Tetrahydrate, Phosphocreatine Disodium Salt Tetrahydrate)	1 Gms 5 Gms	16.45		Dicyanamide)		
				$\begin{aligned} & 65291 \\ & {[506-68-3]} \end{aligned}$	Cyanogen Bromide pure, 98\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 11.19 \\ & 29.48 \end{aligned}$
				31787	Cyanogen Bromide ExiPlus,	25 Gms	13.82
$\underset{[9025-13-2]}{25074} \text { E }$	Creatininase ex. Recombinant E.Coli, 500U/mg	2 K.Units 5 K.Units	$\begin{array}{r} 88.70 \\ 193.32 \end{array}$		meets compendial specs of USP	100 Gms	33.43
$\underset{[60-27-5]}{65142} \text { V C }$	Creatinine extrapure CHR, 99\%	25 Gms	10.26	$\begin{gathered} 81778 \\ {[506-68-3]} \end{gathered}$	Cyanogen Bromide Solution (5.0M in Acetonitrile)	100 ml	78.96
		100 Gms 500 Gms	$\begin{array}{r} 39.48 \\ 157.92 \end{array}$	$\begin{aligned} & 94952 \\ & {[5457-28-3]} \end{aligned}$	3-Cyanoindole pure, 98\%	5 Gms 25 Gms	$\begin{array}{r} 37.64 \\ 155.29 \end{array}$
$\underset{[60-27-5]}{19428} \checkmark \mathrm{C}$	Creatinine extrapure AR, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 11.84 \\ 44.74 \\ 184.24 \end{array}$	$\begin{aligned} & 33202 \\ & {[15861-24-2]} \end{aligned}$	5-Cyanoindole pure, 98\%	10 Gms 25 Gms	$\begin{aligned} & 347.82 \\ & 863.16 \end{aligned}$
$\begin{aligned} & 62000 \\ & {[37289-15-9]} \\ & \hline \end{aligned}$	Creatinine Deiminase ex. Microorganism, 10U/mg solids	250 Units	128.84	$\begin{aligned} & 83244 \\ & {[7585-39-9]} \end{aligned}$	B-Cyclodextrin, base (BCD) for tissue culture, 98%	100 Gms 500 Gms	9.21 27.64

Part B - Bioreagents, Biochemicals \& Speciality Fine Chemicals

Catalogue 2024-25

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Code \& Name \& Packing \& \$ Price \& Code \& Name \& Packing \& \$ Price \\
\hline \[
\begin{aligned}
\& 48467 \\
\& {[112-30-1]}
\end{aligned}
\] \& \begin{tabular}{l}
Decyl Alcohol pure, 99\% \\
(1-Decanol)
\end{tabular} \& \[
\begin{array}{r}
100 \mathrm{ml} \\
500 \mathrm{ml} \\
2500 \mathrm{ml}
\end{array}
\] \& 3.68
11.45
55.93 \& \multicolumn{2}{|l|}{\begin{tabular}{ll}
\(52942 \square\) \& Deoxyribonuclease I - Type 2B \\
[9003-98-9] \& (DNase I) ex. Bovine Pancreas for \\
\& MB, 180Kunitz U/mg
\end{tabular}} \& \[
\begin{array}{r}
10 \mathrm{Mg} \\
100 \mathrm{Mg} \\
1 \mathrm{Gms}
\end{array}
\] \& 8.16
77.38
289.91 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{ll}
43940 \& Decyltrimethylammonium Bromide \\
[2082-84-0] \& (DTMAB) extrapure, \(98 \%\)
\end{tabular}} \& 25 Gms
100 Gms \& 32.90
105.28 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{74322 Deoxyribonucleic Acid Free Acid
[100403-24-5] (DNA) ex. Fish Sperm}} \& \[
\begin{gathered}
5 \mathrm{Gms} \\
10 \mathrm{Gms}
\end{gathered}
\] \& \[
\begin{aligned}
\& 27.64 \\
\& 52.64
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
40133 - Deoxy Big CHAPS extrapure, 95\% \\
[86303-23-3] N,N'-Bis(3-D-gluconamidopropyl deoxycholamide
\end{tabular}}} \& \multirow[t]{2}{*}{500 Mg} \& \multirow[t]{2}{*}{327.03} \& \& \& 25 Gms \& 105.28 \\
\hline \& \& \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{30295 Deoxyribonucleic Acid Sodium Salt
\begin{tabular}{ll}
[9007-49-2, \& (DNA Sodium Salt) ex. Salmon Milt \\
\(68938-01-2]\) \& (SS-DNA, sm-DNA)
\end{tabular}}} \& 5 Gms \& 29.61 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
83158 - 2-Deoxyadenosine Monohydrate \\
[16373-93-6] extrapure, 98\%
\end{tabular}}} \& 1 Gms \& 16.71 \& \& \& \& \\
\hline \& \& 5 Gms \& 74.49 \& \multirow[t]{2}{*}{\begin{tabular}{l}
68451 \\
[73049-39-5]
\end{tabular}} \& Deoxyribonucleic Acid Sodium Salt \& 25 Mg \& 36.19 \\
\hline \[
\begin{gathered}
39192 \\
{[2922-74-9]}
\end{gathered}
\] \& 2'-Deoxyadenosine-5'-Monophosph ate Disodium Salt (dAMP-Na2) extrapure, \(98 \%\) \& 100 Mg \& 37.77 \& \& (DNA Sodium Salt Highly Polymerized) ex. Calf Thymus extrapure \& \[
\begin{aligned}
\& 100 \mathrm{Mg} \\
\& 250 \mathrm{Mg}
\end{aligned}
\] \& 78.96
184.24 \\
\hline \[
\underset{[951-77-9]}{49092} \bullet_{2}
\] \& 2-Deoxycytidine extrapure, 98\% \& \[
\begin{array}{r}
100 \mathrm{Mg} \\
500 \mathrm{Mg} \\
1 \mathrm{Gms}
\end{array}
\] \& 10.40
29.48
47.51 \& \[
\begin{aligned}
\& 84384 \\
\& {[533-67-5]}
\end{aligned}
\] \& - 2-Deoxy-D-Ribose extrapure \& \begin{tabular}{l}
1 Gms \\
5 Gms \\
25 Gms
\end{tabular} \& 6.58
26.19
96.59 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
55193 - 2`-Deoxycytidine \\
[13085-50-2] -5`-Monophosphate Disodium Salt (dCMP-Na2) extrapure, \(98 \%\)
\end{tabular}}} \& \multirow[t]{2}{*}{500 Mg} \& \multirow[t]{2}{*}{131.60} \& \[
\begin{aligned}
\& 92627 \\
\& {[951-78-0]}
\end{aligned}
\] \& 2'-Deoxyuridine extrapure, 98\% \& \begin{tabular}{l}
250 Mg \\
1 Gms
\end{tabular} \& 30.27
109.89 \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 41602 \\
\& {[42155-08-8]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
2`-Deoxyuridine-5`-Monophosphat \\
e Disodium Salt (dUMP-Na2) \\
extrapure, \(98 \%\)
\end{tabular}} \& 100 Mg \& 65.80 \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{ll}
84476 \& 2 \\
{[1949-89-9]}
\end{array} 9
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
2-Deoxy-D-Galactose extrapure, 98\% \\
(2-Deoxygalactose)
\end{tabular}} \& \begin{tabular}{l}
1 Gms \\
5 Gms
\end{tabular} \& 118.44
447.44 \& \& \& \& \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 41143 \\
\& {[83-44-3]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{- Deoxycholic Acid extrapure, 99\%} \& 25 Gms \& 47.38 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
43421 \bigcirc 2 \\
{[154-17-6]}
\end{gathered}
\]} \& \multirow[t]{2}{*}{2-Deoxy-D-Glucose (2-DG) extrapure AR, 99.9\%} \& 1 Gms \& 11.84 \& \& \& 100 Gms \& 168.45 \\
\hline \& \& \[
\begin{array}{r}
5 \mathrm{Gms} \\
25 \mathrm{Gms}
\end{array}
\] \& 53.96
263.20 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 24417 \\
\& {[302-95-4]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Deoxycholic Acid Sodium Salt (Sodium Deoxycholate) Bacto grade, 99\%} \& 25 Gms
100 Gms \& 28.95
104.23 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
22350 - 2-Deoxyguanosine Monohydrate \\
[312693-72-4] extrapure, 99\%
\end{tabular}}} \& \& 34.22 \& \& \& 500 Gms \& 509.56 \\
\hline \& \& \begin{tabular}{l}
1 Gms \\
5 Gms
\end{tabular} \& 105.67
178.71
563.91 \& \[
\begin{aligned}
\& 96876 \\
\& {[145224-92-6]}
\end{aligned}
\] \& \begin{tabular}{l}
Deoxycholic Acid Sodium Salt \\
] Monohydrate (Sodium \\
Deoxycholate Monohydrate) Bacto grade, 99\%
\end{tabular} \& 25 Gms
100 Gms
500 Gms \& 31.85
107.12
535.61 \\
\hline \multicolumn{2}{|l|}{25695 - \({ }^{2}\) '-Deoxyguanosine
\begin{tabular}{ll}
{\([52558-16-4\),} \& -5'-Monophosphate Sodium Salt \\
\(33430-61-4]\) \& (dGMP) extrapure, \(98 \%\)
\end{tabular}} \& \begin{tabular}{l}
500 Mg \\
1 Gms \\
5 Gms
\end{tabular} \& \[
\begin{array}{r}
220.69 \\
392.30 \\
1797.92
\end{array}
\] \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 43767 \text { \& } \\
\& \text { [87413-09-0] }
\end{aligned}
\]} \& \multirow[t]{2}{*}{Dess Martin Periodinane extrapure,
97\%} \& 1 Gms
5 Gms \& 3.68
8.55 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
\& 16516 \bullet \text { 2'-Deoxyinosine extrapure, } 98 \% \\
\& {[890-38-0]}
\end{aligned}
\]}} \& \[
100 \mathrm{Mg}
\]
\[
250 \mathrm{Mg}
\] \& 8.29
19.35 \& \& \& 100 Gms \& 35.93
135.81 \\
\hline \& \& \& 68.70 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 47601 \\
\& {[9004-54-0]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Dextran ex. Leuconostoc Sp. - Tech 10 (9-11)} \& 5 Gms
25 Gms \& 39.48
72.38 \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{ll}
66280 \& \text { D } \\
{[93919-41-6]}
\end{array}
\]} \& \multirow[t]{2}{*}{Deoxyguansine Triphosphate Trisodium Salt (dGTP), 97\% dGTP} \& \[
\begin{aligned}
\& 10 \mathrm{Mg} \\
\& 25 \mathrm{Mg}
\end{aligned}
\] \& 37.64
71.85 \& \& \& 100 Gms
500 Gms \& 210.56
631.68 \\
\hline \& \& \[
500 \mathrm{Mg}
\] \& \[
\begin{array}{r}
261.62 \\
1217.69
\end{array}
\] \& \[
\begin{aligned}
\& 41570 \\
\& \text { [9004-54-0] }
\end{aligned}
\] \& \& Dextran ex. Leuconostoc Sp. - Tech 40 (35-45) \& 5 Gms
25 Gms \& 39.48
72.38 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 61824 \\
\& {[9003-98-9]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Deoxyribonuclease I (DNase I) Type 1A ex. Bovine Pancreas for MB, 2000Kunitz U/mg Protein, 80\% Pr} \& 10 K.Units 50 K.Units \& 31.85
101.33
332.95 \& \& \& 100 Gms
500 Gms \& 72.38
184.24
421.12 \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 12891 \\
\& {[9004-54-0]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Dextran ex. Leuconostoc Sp. - Tech 70 (65-75)} \& 5 Gms \& 39.48 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
15409 Deoxyribonuclease I (DNase I) - \\
[9003-98-9] Type 1B ex. Bovine Pancreas for MB, 2000Kunitz U/mg Protein, 80\% Pr
\end{tabular}} \& 10 Mg
50 Mg
100 Mg \& 51.46
231.62
419.80 \& \& \& 25 Gms
100 Gms
500 Gms \& 72.38
184.24
552.72 \\
\hline \multicolumn{2}{|l|}{\[
\begin{array}{ll}
14658 \& \text { Deoxyribonuclease I - Type 2A } \\
\text { [9003-98-9] } \& \text { (DNase I) ex. Bovine Pancreas for } \\
\& \text { MB, 180Kunitz U/mg, 85\% Protein }
\end{array}
\]} \& \[
\begin{aligned}
\& 5000 \text { Units } \\
\& 50000 \\
\& \text { Units } \\
\& 100000 \\
\& \text { Units }
\end{aligned}
\] \& 14.48
73.70

138.97 \& | 35270 |
| :--- |
| [9004-54-0] | \& d Dextran ex. Leuconostoc Sp. - Tech 110 (100-120) \& 5 Gms

25 Gms
100 Gms

500 Gms \& $$
\begin{array}{r}
39.48 \\
72.38 \\
210.56 \\
631.68
\end{array}
$$

\hline
\end{tabular}

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 62753 ~ \& \\ & {[9004-54-0]} \end{aligned}$	Dextran ex. Leuconostoc Sp. - Tech$250 \text { (225-275) }$	5 Gms 25 Gms	39.48 72.38 210.56	$\begin{aligned} & 10006 \\ & {[6342-17-2]} \end{aligned}$	1,4-(Diacryloyl) Piperazine extrapure, 99\% (Piperazine Diacrylamide)	5 Gms	228.85
		500 Gms	631.68	$\begin{aligned} & 62736 \\ & {[1482-98-0]} \end{aligned}$	L-2,4 Diaminobutyric Acid Monohydrochloride extrapure, 98\%	1 Gms 5 Gms	$\begin{array}{r} 32.77 \\ 155.29 \end{array}$
19301 \& Dextran ex. Leuconostoc Sp. - Tech [9004-54-0] 500 (450-550)		10 Gms 25 Gms	39.48			25 Gms	596.67
		100 Gms 500 Gms	72.38 210.56 631.68	$\begin{aligned} & 94524 \\ & {[91-95-2]} \end{aligned}$	3,3-Diaminobenzidine (DAB) pure, 98\%	5 Gms 25 Gms 100 Gms	$\begin{array}{r} 21.71 \\ 86.33 \\ 300.31 \end{array}$
$\begin{aligned} & 28354 ■ \text { Dextran Blue } 5 \text { ex. Leuconostoc Sp. } \\ & {[87915-38-6]} \end{aligned}$		500 Mg	283.07	17076 [868272-85-9]	3,3'-Diaminobenzidine Tetrahydrochloride Hydrate (DAB.4HCI.xH2O) extrapure AR, 98\%	1 Gms 5 Gms 25 Gms	$\begin{array}{r} 17.24 \\ 59.22 \\ 210.56 \end{array}$
$\begin{aligned} & 82575 \\ & {[87915-38-6]} \end{aligned}$	Dextran Blue 40 ex. Leuconostoc Sp .	1 Gms	302.68				
$\underset{[87915-38-6]}{57356} \square$	Dextran Blue 110 ex. Leuconostoc Sp.	1 Gms	302.68	98465	\& 3,3-Diaminobenzidine Tetrahydrochloride (DAB.4HCI) Buffer Substrate Solution for Peroxidase	100 ml	98.17
$\begin{aligned} & 14420 \text { ■ D } \\ & {[87915-38-6]} \end{aligned}$	Dextran Blue 500 ex. Leuconostoc Sp.	1 Gms	302.68				
67045 Dextran Blue 2000 ex. Leuconostoc[87915-38-6] $\mathbf{S p}$.		1 Gms	210.56	$\begin{aligned} & 17758 \\ & {[535-87-5]} \end{aligned}$	3,5-Diaminobenzoic Acid extrapure, 98\%	100 Gms 500 Gms	$\begin{aligned} & 12.11 \\ & 54.88 \end{aligned}$
		5 Gms	789.60				
	DEAE-Dextran 500 ex. Leuconostoc Sp.	1 Gms 5 Gms	127.39 327.55	$\begin{aligned} & 20723 \\ & {[618-56-4]} \end{aligned}$	3,5-Diaminobenzoic Acid Dihydrochloride extrapure, 98\%	25 Gms	72.51
$\begin{aligned} & 33434 \\ & {[9064-91-9]} \\ & \square \end{aligned}$	DEAE-Dextran Hydrochloride 500 ex. Leuconostoc Sp.	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 39.48 \\ 92.12 \\ 276.36 \end{array}$	16368 [125572-95-4]	trans-1,2-Diaminocyclohexane-N,N, N,N Tetraacetic Acid Monohydrate extrapure AR (CDTA), 99\%	$\begin{array}{r} 10 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 18.56 \\ 34.22 \\ 125.02 \end{array}$
	FITC-Dextran 4000 ex. Leuconostoc Sp . (Fluorescein Isothiocyanate-Dextran)	$\begin{aligned} & 100 \mathrm{Mg} \\ & 250 \mathrm{Mg} \end{aligned}$	$\begin{array}{r} 86.86 \\ 188.19 \end{array}$	$\begin{aligned} & 85122 \\ & {[137-09-7]} \end{aligned}$	2,4-Diaminophenol Dihydrochloride (Amidol) extrapure, 98\%	5 Gms 25 Gms	$\begin{array}{r} 50.67 \\ 122.65 \end{array}$
				$\begin{aligned} & 34124 \\ & {[1904-98-9]} \end{aligned}$	2,6-Diaminopurine extrapure, 98%	1 Gms 5 Gms 25 Gms	$\begin{array}{r} 10.53 \\ 50.01 \\ 203.98 \end{array}$
$\begin{aligned} & 36454 \text { \& } F \\ & {[60842-46-8]} \end{aligned}$	FITC-Dextran 40000 ex. Leuconostoc Sp. (Fluorescein Isothiocyanate-Dextran)	$\begin{aligned} & 100 \mathrm{Mg} \\ & 250 \mathrm{Mg} \end{aligned}$	$\begin{array}{r} 94.09 \\ 217.14 \end{array}$				
$\begin{aligned} & 92901 ~ \& ~ \\ & {[60842-46-8]} \end{aligned}$	FITC-Dextran 70000 ex. Leuconostoc Sp. (Fluorescein Isothiocyanate-Dextran)	100 Mg 250 Mg	86.86 188.19	$\begin{aligned} & 13261 \\ & {[20325-40-0]} \end{aligned}$	o-Dianisidine Dihydrochloride extrapure, 98\% (3,3-Dimethoxybenzidine Dihydrochloride)	1 Gms 5 Gms 25 Gms	$\begin{array}{r} 11.19 \\ 26.32 \\ 125.02 \end{array}$
$\begin{gathered} 82221 ~ \& ~ F \\ {[60842-46-8]} \end{gathered}$	FITC-Dextran 2000000 ex. Leuconostoc Sp. (Fluorescein Isothiocyanate-Dextran)	$\begin{aligned} & 100 \mathrm{Mg} \\ & 250 \mathrm{Mg} \end{aligned}$	$\begin{array}{r} 85.41 \\ 173.71 \end{array}$				
				$\begin{aligned} & 94912 \\ & {[82-22-4]} \end{aligned}$	1,1-Dianthrimide extrapure AR, 98\% (Di(1-anthraquinoyl)amine) (1,1-Iminodianthraquinone) (for determination of Boron)	1 Gms 5 Gms	$\begin{array}{r} 40.53 \\ 173.71 \end{array}$
65163 - D	Dextran Phenyl 40 (30-50)	1 Gms 5 Gms	$\begin{array}{r} 96.20 \\ 315.45 \end{array}$				
76203 \& D	Dextran Sulphate Sodium Salt	10 Gms	55.93	$\begin{aligned} & 90405 \text { Diaphorase ex. Clostridium Sp., } \\ & {[9001-18-7] \quad \text { 30U/mg }} \end{aligned}$		500 Units	70.27
[9011-18-1] 30	30-50(DSS 35-50) ex. Leuconostoc	25 Gms	125.02	$\begin{aligned} & 23144 \\ & {[103-49-1]} \end{aligned}$	Dibenzylamine pure, 98\%	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{aligned} & 11.32 \\ & 53.17 \end{aligned}$
		100 Gms	427.70				
		250 Gms	822.50	96661[103-50-4]	Dibenzyl Ether pure, 97\% (Benzyl Ether)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{aligned} & 11.98 \\ & 43.30 \end{aligned}$
99629 \& D	Dextran Sulphate Sodium Salt 500	10 Gms	52.64				
[9011-18-1]	(DSS 500) ex. Leuconostoc Sp. for molecular biology	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	118.44 394.80	$\begin{gathered} 88749 \\ {[106-37-6]} \end{gathered}$	1,4-Dibromobenzene pure, 98\%	500 Gms	31.85
		250 Gms	789.60	$\begin{aligned} & 43589 \\ & {[110-52-1]} \end{aligned}$	1,4-Dibromobutane pure, 98%	250 ml	27.64
17379 \&	DHP Linker	$\begin{array}{r} 5 \mathrm{ml} \\ 25 \mathrm{ml} \end{array}$	$\begin{aligned} & 161.74 \\ & 583.12 \end{aligned}$				
[3749-36-8]	(3,4-Dihydro-2H-Pyran-2-Methanol) extrapure, 98\%			$\begin{aligned} & 74600 \\ & {[77-48-5]} \end{aligned}$	1,3-Dibromo-5,5-Dimethylhydantoin (DBDMH) extrapure, 98\% (Dibromantin)	500 Gms	15.79
34224 [582-52-5]	Diacetone-D-Glucose (DAG) extrapure, 98\% (1,2:5,6-Di-O-Isopropylidene-a-D-Gluc ofuranose, D-Glucose Diacetonide)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 34.48 \\ 104.62 \\ 392.30 \end{array}$	$\begin{aligned} & 33384 \\ & {[106-93-4]} \end{aligned}$	1,2-Dibromoethane pure, 98\% (Ethylene Dibromide)	$\begin{gathered} 250 \mathrm{ml} \\ 1000 \mathrm{ml} \end{gathered}$	$\begin{aligned} & 18.82 \\ & 62.38 \end{aligned}$
$\begin{aligned} & 72352 \\ & {[57-71-6]} \end{aligned}$	DiacetyImonoxime extrapure AR, 99\% (2,3-Butanedione Monoxime)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 6.45 \\ 20.79 \\ 101.46 \end{array}$	$\begin{aligned} & 31575 \\ & {[626-41-5]} \end{aligned}$	3,5-Dibromophenol pure, 98\%	1 Gms 5 Gms	$\begin{array}{r} 40.53 \\ 183.58 \end{array}$

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 34890 \\ & {[109-64-8]} \end{aligned}$	1,3-Dibromopropane pure, 99\% (Trimethylene Dibromide)	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	14.87 60.54	$\begin{aligned} & 21942 \text { \& } \\ & {[13965-03-02]} \end{aligned}$	Dichlorobis(Triphenylphosphine)Pa Iladium(II) extrapure, 98\% (Pd(PPh2)2C)	1 Gms 5 Gms	$\begin{array}{r} 34.22 \\ 157.92 \end{array}$
$\begin{aligned} & 96763 \text { \& } \\ & {[24424-99-5]} \end{aligned}$	Di-tert-Butyldicarbonate (BOC Anhydride, DiBOC) extrapure, 98\%	25 Gms	4.61			25 Gms	723.80
		100 Gms 500 Gms 5 Kg	7.24 23.69 197.40	$\begin{array}{ll} 85048 & \mathbf{2 ,} \\ {[4091-99-0]} & \text { (D } \\ & \text { (D) } \\ & 2, \end{array}$	2,7-Dichlorofluorescein Diacetate (DCFH) extrapure, 97\% (DCFH-DA, 2,7-Dichlorodihydrofluorescein Diacetate)	$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$	$\begin{aligned} & 34.22 \\ & 94.75 \end{aligned}$
$\begin{aligned} & 69246 \\ & {[16980-89-5]} \end{aligned}$	N6,2-O-Dibutyryl-Adenosine-3,5-Cy clic-Monophosphate Sodium Salt, 97\%	$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$	$\begin{array}{r} 73.70 \\ 179.90 \end{array}$				
				$\begin{array}{cc} 86428 & \& 2 \\ {[84-58-2]} \end{array}$	2,3-Dichloro-5,6-Dicyano-1,4-Benzo quinone (DDQ) pure, 98\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 18.56 \\ 66.19 \\ 322.81 \end{array}$
$\begin{aligned} & 26414 \\ & {[1918-00-9]} \end{aligned}$	DICAMBA for tissue culture, 95\% (3,6-Dichloro-2-Methoxybenzoic Acid)	250 Mg 1 Gms 5 Gms	$\begin{array}{r} 19.74 \\ 72.38 \\ 157.92 \end{array}$				
				$\begin{array}{ll} 52979 & \vee \\ {[4885-02-3]} \end{array}$	Dichloromethyl Methyl Ether pure, 97\%	$\begin{array}{r} 5 \mathrm{ml} \\ 25 \mathrm{ml} \\ 100 \mathrm{ml} \end{array}$	$\begin{array}{r} 28.95 \\ 72.38 \\ 276.36 \end{array}$
$\begin{aligned} & 62578 \\ & {[74124-79-1]} \end{aligned}$	Di-(N-Succinimidyl) Carbonate extrapure, 95%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	11.19 36.85 94.75				
				$\begin{aligned} & 88912 \\ & {[89-61-2]} \end{aligned}$	2,5-Dichloronitrobenzene pure, 99\% (1,4-Dichloro-2-Nitrobenzene)	100 Gms 250 Gms	$\begin{array}{r} 5.92 \\ 11.84 \end{array}$
$\begin{aligned} & 29154 \\ & {[2234-16-4]} \end{aligned}$	2,4-Dichloroacetophenone pure, 98\%	100 Gms 500 Gms	$\begin{array}{r} 9.21 \\ 28.95 \end{array}$				
				$\begin{aligned} & 52039 \vee 2, \\ & {[120-83-2]} \end{aligned}$	2,4-Dichlorophenol pure, 98\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 250 \mathrm{Gms} \end{array}$	$\begin{array}{r} 6.58 \\ 19.74 \end{array}$
$\begin{aligned} & 94453 \\ & {[541-73-1]} \end{aligned}$	1,3-Dichlorobenzene extrapure, 99\% (m-Dichlorobenzene)	$\begin{array}{r} 250 \mathrm{ml} \\ 1000 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 9.21 \\ 34.22 \\ 76.33 \end{array}$				
				$\begin{aligned} & 87188 \\ & {[87-65-0]} \end{aligned}$	2,6-Dichlorophenol extrapure, 99\%	$\begin{array}{r} 10 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 4.08 \\ & 9.08 \end{aligned}$
$\begin{aligned} & 91427 \\ & {[50-45-3]} \end{aligned}$	2,3-Dichlorobenzoic Acid pure, 98\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	$\begin{aligned} & 15.79 \\ & 55.27 \end{aligned}$				30.93
				$\begin{array}{ll} 42180 & 2, \\ {[68716-47-2]} & \text { e } \end{array}$	2,4-Dichlorophenylboronic Acid extrapure, 98\%	1 Gms 5 Gms 25 Gms	14.08
$\begin{aligned} & 62122 \\ & {[50-84-0]} \end{aligned}$	2,4-Dichlorobenzoic Acid extrapure, 98\%	100 Gms 500 Gms	$\begin{array}{r} 4.61 \\ 21.06 \end{array}$				39.09 136.60
$\begin{aligned} & 66481 \\ & {[51-44-5]} \end{aligned}$	3,4-Dichlorobenzoic Acid pure, 98\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 30.27 \\ & 92.12 \end{aligned}$	$\begin{array}{ll} 93611 \\ {[151169-75-4]} \end{array}$	3,4-Dichlorophenylboronic Acid extrapure, 97%	$\begin{array}{r} 1 \text { Gms } \\ 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	$\begin{array}{r} 13.16 \\ 32.90 \\ 117.12 \end{array}$
$\underset{[95408-45-0]}{40583}$	Dichloro[1,1`-bis(di-t-Butylphosphi no)Ferrocene]Palladium(II) extrapure, 98\% \\ (1,1`-Bis(di-tert-Butylphosphino)Ferroc ene)Dichloropalladium(II))	250 Mg 1 Gms 5 Gms	$\begin{array}{r} 38.16 \\ 63.17 \\ 250.04 \end{array}$				
				$\begin{gathered} 33017 \\ {[101-38-2]} \end{gathered}$	2,6-Dichloroquinone-4-Chlorimide (Gibbs Reagent) extrapure AR, 99\% ($\mathrm{N}, 2,6$-Trichloro-p-Benzoquinoneimide)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 21.19 \\ 85.93 \\ 280.97 \end{array}$
33604 [19978-61-1]	Dichloro(1,2-bis(Diphenylphosphin o) Ethane)Palladium (II) extrapure, 98\% ([1,2-Bis(Diphenylphosphino)Ethane]Di chloropalladium(II))	250 Mg 1 Gms 5 Gms	$\begin{array}{r} 25.00 \\ 52.64 \\ 256.62 \end{array}$	$\begin{gathered} 38762 \vee 2, \\ {[2831-66-5]} \end{gathered}$	2,4-Dichloro-1,3,5-Triazine pure, 98\%	1 Gms 5 Gms	$\begin{aligned} & 232.27 \\ & 773.94 \end{aligned}$
				$\underset{[101-83-7]}{57262} \quad \mathrm{Di}$	Dicyclohexylamine pure, 99\%	$500 \mathrm{ml}$ $2500 \text { ml }$	$\begin{aligned} & 10.92 \\ & 50.01 \end{aligned}$
97111 [59831-02-6]	Dichloro(1,3-bis(Diphenylphosphin o)Propane)Palladium(II) extrapure, 98\% ([1,2-Bis(Diphenylphosphino)Ethane]Di chloropalladium(II))	$\begin{gathered} 250 \mathrm{Mg} \\ 1 \mathrm{Gms} \\ 5 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 36.85 \\ 72.38 \\ 329.00 \end{array}$	$\begin{gathered} 79596 \\ {[538-75-0]} \end{gathered}$	N,N-Dicyclohexyl Carbodiimide (DCC) pure, 99\%	100 Gms 500 Gms 5 Kg 5 Mg	$\begin{array}{r}7.24 \\ 27.64 \\ 236.88 \\ \hline 38.69\end{array}$
99494 [29964-62-3]	Dichloro[1,4-bis(Diphenylphosphin o)Butane]Palladium(II) extrapure, 98\%	$\begin{gathered} 250 \mathrm{Mg} \\ 1 \mathrm{Gms} \\ 5 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 36.85 \\ 72.38 \\ 329.00 \end{array}$	$\begin{gathered} 47248 \text { ■ } \\ {[7481-89-2]} \end{gathered}$	2,3-Dideoxycytidine (ddC) extrapure, 98%	25 Mg	41.45
70264	Dichloro- [1,3-bis(Diisopropylphenyl)	$\begin{gathered} 250 \mathrm{Mg} \\ 1 \mathrm{Gms} \\ 5 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 39.48 \\ 121.07 \\ 526.40 \end{array}$	73273 2,3-Dideoxyinosine (ddI, ddIno)[69655-05-6]extrapure, 98%		25 Mg	68.43
	-2-Imidazolidinylidene]- (3-Chloropyridyl) Palladium(II), 98\%			$22328 \square$ 2,3-Dideoxythymidine $[3416-05-5]$ (3-Deoxythymidine, ddT) extrapure, 98%		25 Mg	82.91
	98\% ((1,3-Bis(2,6-Diisopropylpheny))Imidaz olidene)(3-Chloropyridyl) Palladium(II) Dichloride)			$\underset{[5983-09-5]}{17412} \text { e }$	2,3-Dideoxyuridine (ddU) extrapure, 98%	$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$	$\begin{aligned} & 110.54 \\ & 331.63 \end{aligned}$
$\begin{gathered} 18602 \\ {[821-10-3]} \end{gathered}$	1,4-Dichloro-2-Butyne pure, 97\%	$5 \text { Gms }$ 25 Gms	$\begin{array}{r} 39.48 \\ 138.18 \end{array}$	$\begin{aligned} & 16312 \\ & {[165534-43-0]} \end{aligned}$	DEPBT (3-(Diethoxyphosphoryloxy) 1,2,3-benzotriazin-4(3H)-one) extrapure, 98\%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	$\begin{array}{r} 48.43 \\ 134.76 \end{array}$

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{gathered} 86283 \\ {[120-21-8]} \end{gathered}$	p-Diethylaminobenzaldhyde pure, 99\%	100 Gms	34.35	$\begin{gathered} 86580 \\ {[110-87-2]} \end{gathered}$	3,4-Dihydro-2H-pyran (3,4-DHP) pure, 97\%	$\begin{gathered} 25 \mathrm{ml} \\ 100 \mathrm{ml} \end{gathered}$	9.34 21.58
$\begin{gathered} 19885 \\ {[869-24-9]} \end{gathered}$	2-Diethylaminoethyl Chloride Hydrochloride extrapure, 99\% (2-Chlorotriethylamine Hydrochloride)	25 Gms	10.53	(2,3-Dihydropyran)		500 ml	80.01
		100 Gms	21.06	65437		25 Gms	9.21
		500 Gms	78.96	[89-84-9]	2,4-Dihydroxyacetophenone extrapure, 99\% (Resacetophenone)	100 Gms	29.22
$\begin{aligned} & 33684 \\ & {[10369-83-2]} \end{aligned}$	Diethyl Aminoethyl Hexanoate (DA-6) technical grade, 98\%	5 Gms	28.95				
		25 Gms	101.46	$\begin{aligned} & 41384 \\ & {[490-78-8]} \end{aligned}$	2,5-Dihydroxyacetophenon extrapure, 99\% (2-Acetylhydroquinone, Quinacetophenone)	5 Gms	16.45
$\begin{aligned} & 12915 \\ & {[20605-01-0]} \end{aligned}$	Diethyl bis(hydroxymethyl)malonate pure, 97\%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	31.58 78.96			25 Gms	65.80
			289.52	$\begin{aligned} & 58494 \\ & {[699-83-2]} \end{aligned}$	2,6-Dihydroxyacetophenone extrapure, 99% (2-Acetylresorcin)	5 Gms	18.69
	2,2-bis(hydroxymethyl)malonate)					10 Gms	33.69
$\begin{aligned} & 79628 \\ & {[814-49-3]} \end{aligned}$	Diethyl Chlorophosphate pure, 97\% (Chlorophosphoric Acid Diethyl Ester, Diethyl Phosphoryl Chloride)	25 Gms	50.01			25 Gms	73.83
		100 Gms	157.92			100 Gms	257.54
				$\begin{aligned} & 15395 \\ & {[89-86-1]} \end{aligned}$	2,4-Dihydroxybenzoic Acid pure, 98\% (B-Resocylic Acid)	25 Gms	12.50
$\begin{aligned} & 56701 \\ & {[298-06-6]} \end{aligned}$	O,O-Diethyl Dithiophosphate extrapure, 95\%	5 Gms	23.69			100 Gms	24.61
		25 Gms	55.27			500 Gms	94.36
		100 Gms	197.40				
$\begin{aligned} & 64699 \\ & {[67-43-6]} \end{aligned}$	Diethylenetriaminepentaacetic Acid (DTPA) extrapure AR, 99\% (Pentetic Acid)	100 Gms 500 Gms	6.45 25.14	$\begin{aligned} & 69911 \\ & {[132-86-5]} \end{aligned}$	1,3-Dihydroxynaphthalene (Naphthoresorcinol) extrapure AR, 99\% (1,3-Naphthalenediol)	1 Gms 5 Gms 25 Gms	32.90 131.60 500.08
$\begin{aligned} & 81346 \\ & {[140-01-2]} \end{aligned}$	Diethylenetriaminepentaacetic Acid Pentasodium Salt (DTPA) extrapure, 40\% (Liquid)	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	9.34 18.03	$\underset{[83-56-7]}{41110}$	1,5-Dihydroxynaphthalene pure, 98\%	100 Gms 500 Gms	33.16 127.65
$\begin{aligned} & 17598 \\ & {[111-40-0]} \end{aligned}$	Diethylenetriamine pure, 98\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	11.19 50.01	$\begin{aligned} & 65796 \\ & {[575-38-2]} \end{aligned}$	1,7-Dihydroxynaphthalene pure, 97\% (1,7-Naphthalenediol)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	78.17 280.97
$\begin{aligned} & 46791 \\ & {[1609-47-8]} \end{aligned}$	Diethyl Pyrocarbonate (DEPC) for molecular biology, 99\%	5 ml	15.79	$\begin{aligned} & 33580 \\ & {[582-17-2]} \end{aligned}$	2,7-Dihydroxynaphthalene pure, 98\% (2,7-Naphthalenediol)	5 Gms	17.11
		25 ml	33.03			25 Gms	34.22
		100 ml	116.86			100 Gms	75.54
$\begin{aligned} & 84254 \\ & {[91-67-8]} \end{aligned}$	N,N-Diethyl-m-Toluidine pure, 98\%		13.29	$\begin{aligned} & 63370 \\ & {[116313-85-0]} \end{aligned}$	3,4-Dihydroxy-5-Nitro Benzaldehyde pure, 98\%	25 Gms	49.09
		500 ml	41.45			100 Gms	122.65
$\begin{aligned} & 99823 \\ & {[367-25-9]} \end{aligned}$	2,4-Difluoroaniline extrapure, 99\%	25 Gms	17.63	$\underset{[608-25-3]}{33878}$	2-Methylresorcinol pure, 98\% (2,6-Dihydroxytoluene)	25 Gms	17.11
		100 Gms	63.04			100 Gms	51.06
$\begin{aligned} & 29553 \\ & {[372-18-9]} \end{aligned}$	1,3-Difluorobenzene (MDFB) extrapure, 99% (m-Diflourobenzene)	25 ml	13.16			250 Gms	125.28
		100 ml	27.77	16517	DL-Dihydrozeatin (DHZ) pure, 98\%	10 Mg	85.93
		500 ml	130.68	[14894-18-9]	(6-	25 Mg	142.00
$\begin{aligned} & 72081 \\ & {[1583-58-0]} \end{aligned}$	2,4-Difluorobenzoic Acid pure, 98\%	5 Gms	29.74		(4-Hydroxy-3-Methylbutylamino)Purine)		
		25 Gms	101.46	$\begin{aligned} & 19022 \\ & {[83-73-8]} \end{aligned}$	5,7-Diiodo-8-Quinolinol (Diiodohydroxyquinoline, lodoquinol) ExiPlus, 96.5\% (5,7-Diiodo-8-Hydroxyquinoline)	$25 \text { Gms }$	
$\begin{aligned} & 83488 \\ & {[327-92-4]} \end{aligned}$	1,5-Difluoro-2,4-Dinitrobenzene (DFDNB) pure, 97\%	5 Gms 25 Gms	36.85 144.76			500 Gms	289.52
$\begin{aligned} & 10670 \\ & {[446-35-5]} \end{aligned}$				$\begin{aligned} & 43913 \\ & {[693-13-0]} \end{aligned}$	N,N-Diisopropyl Carbodiimide (DIPC) extrapure, 99\%	25 Gms	14.08
	2,4-Difluoronitrobenzene extrapure, 99\%	25 Gms	26.19			100 Gms	51.59
		500 Gms	286.10			500 Gms	237.27
$\begin{aligned} & 90309 \\ & {[144025-03-6]} \end{aligned}$	2,4-Difluorophenylboronic Acid extrapure, 95\%	5 Gms	71.85	95423	1,2,3,4-Di-O-Isopropylidene L-Arabinopyranoside extrapure	10 Gms	90.94
		10 Gms	124.89	$\begin{aligned} & 94784 \\ & {[4064-06-6]} \end{aligned}$	1,2,3,4-Di-O-Isopropylidene a-D-Galactopyranoside extrapure, 98\%	10 Gms	90.94
$\begin{aligned} & 53755 \\ & {[11024-24-1]} \end{aligned}$	Digitonin (Digitin) extrapure, 50\%	$100 \mathrm{Mg}$	41.85 358.22				
				$\begin{gathered} 10232 \\ {[304-55-2]} \end{gathered}$	2,3-Dimercaptosuccinic Acid (DMSA, Succimer) extrapure, 98\% (meso-2,3-Dimercaptosuccinic Acid)	1 Gms	22.90
$\begin{aligned} & 48712 \\ & \text { [20830-75-5] } \end{aligned}$	Digoxin extrapure, 95\%	$\begin{aligned} & 50 \mathrm{Mg} \\ & 1 \mathrm{Gms} \end{aligned}$	7.90 46.06			5 Gms	75.54
		5 Gms	197.40	$\begin{aligned} & 98526 \\ & {[1072-71-5]} \end{aligned}$	Bismuthiol (2,5-Dimercapto-1,3,4-Thiadiazole, DMTD) pure, 98\% (1,3,4-Thiadiazole-2,5-Dithiol)	25 Gms	12.50
$\begin{aligned} & 91374 \\ & {[28230-32-2]} \end{aligned}$	3,4-Dihydro-3-Hydroxy-4-Oxo-1,2,3Benzotriazine (DHOBT, DHBT) extrapure, 98%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	24.87 85.67			100 Gms 500 Gms	30.27 46.06

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 87943 \\ & {[63-84-3]} \end{aligned}$	DL-Dopa extrapure, 99\% (DL-Dihydroxy Phenylalanine)	1 Gms 5 Gms 25 Gms	4.34 9.87 39.48	$\begin{aligned} & 59508 \\ & {[21087-74-1]} \end{aligned}$	Epiprogoitrin Potassium Salt Reference Standard Grade, 80\% ((S)-2-Hydroxy-3-Butenylglucosinolate Potassium Salt)	10 Mg	346.24
$\begin{aligned} & 45462 \\ & {[62-31-7]} \end{aligned}$	Dopamine Hydrochloride (Dopamine HCl) extrapure, 98\%	5 Gms 25 Gms	13.82 48.43	$\begin{aligned} & 97857 \\ & {[56390-09-1]} \end{aligned}$	Epirubicin Hydrochloride (EPR.HCI), 97\%	10 Mg 25 Mg	47.38 92.12
		100 Gms	177.66	$\begin{aligned} & 49470 \\ & {[16052-06-5]} \end{aligned}$	EPPS Buffer extrapure, 99.5\%	10 Gms	24.48
$\begin{aligned} & 65094 \bullet D \\ & {[24390-14-5]} \end{aligned}$	Doxycycline Hyclate (DXH), 800U/mg	$\begin{aligned} & 1 \mathrm{Gms} \\ & 5 \mathrm{Gms} \end{aligned}$	29.74 57.77			50 Gms 100 Gms	77.91 154.24
		10 Gms	85.93	$\underset{\text { [55750-63-5] }}{50062} \square$	N -(epsilon-Maleimidocaproyloxy) Succinimide extrapure, 98\% (EMCS)	10 Mg	67.25
78985 [7688-25-7]	DPPB (1,4-Bis(Diphenylphosphino)Butan e) extrapure, 98% (1,4-Butanediylbis(Diphenylphosphine)	5 Gms 25 Gms	$\begin{aligned} & 23.42 \\ & 93.70 \end{aligned}$			50 Mg	122.91
				$\begin{aligned} & 41120 \\ & {[10025-75-9]} \end{aligned}$	Erbium (III) Chloride Hexahydrate ultrapure, 99.99\%	$5 \mathrm{Gms}$ $25 \mathrm{Gms}$	$\begin{array}{r} 41.45 \\ 103.70 \end{array}$
	Tetramethylenebis(Diphenylphosphine)			$\begin{aligned} & 54788 \\ & {[13476-05-6]} \end{aligned}$	Erbium (III) Nitrate Hexahydrate extrapure, 99.9\%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	$\begin{array}{r} 43.43 \\ 108.57 \end{array}$
$\begin{aligned} & 48237 \vee D \\ & {[1663-45-2]} \end{aligned}$	DPPE (1,2-Bis(Diphenylphosphino)Ethane) extrapure, 98\% (Diphos, Ethylenebis(Diphenylphosphine))	$\begin{gathered} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{gathered}$	$\begin{aligned} & 12.63 \\ & 62.51 \end{aligned}$	$\begin{aligned} & 29831 \\ & {[12061-16-4]} \end{aligned}$	Erbium (III) Oxide ultrapure, 99.99\%	5 Gms 25 Gms	$\begin{array}{r} 41.45 \\ 103.70 \end{array}$
				$\begin{aligned} & 12485 \\ & {[139177-64-3]} \end{aligned}$	Erbium (III) Trifluoromethanesulfonate extrapure, 97% (Erbium Triflate, Trifluoromethanesulfonic Acid Erbium Salt)	5 Gms 25 Gms	$\begin{array}{r} 46.98 \\ 152.00 \end{array}$
$\begin{aligned} & 23660 \text { レ } \\ & {[12150-46-8]} \end{aligned}$	DPPF (1,1-Bis(Diphenylphosphino)Ferroc ene) extrapure, 98\% (1,1-Ferrocenediyl-bis(Diphenylphosph	1 Gms 5 Gms 25 Gms	12.63 47.38 161.47				
	ine))			$\begin{gathered} 56488 \\ {[149-32-6]} \end{gathered}$	Erythritol extrapure, 99\% (Erythrite, meso-Erythritol)	25 Gms	6.84
$\begin{aligned} & 34103 \vee \\ & {[6737-42-4]} \end{aligned}$	DPPP (1,3-Bis(Diphenylphosphino)Propa ne) extrapure, 98%	1 Gms 5 Gms	9.48 28.16 124.89			100 Gms 500 Gms	20.00 65.54
				$\underset{[114-07-8]}{48535} \text { \& E }$	Erythromycin for tissue culture	1 Gms	5.00
$\begin{aligned} & 75470 \\ & {[608-66-2]} \end{aligned}$	Dulcitol (D-Galactitol) extrapure, 99\% (D-Galactitol)	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	$\begin{aligned} & 19.21 \\ & 65.67 \end{aligned}$			5 Gms	21.58
				$\begin{array}{cc} 51114 \text { \& } \\ {[66778-17-4,} & 9 \\ 531-75-9] & (A \end{array}$	Esculin Sesquihydrate extrapure, 98\% (Aesculin)	5 Gms	16.98
$\begin{aligned} & 62813 \\ & {[16357-59-8]} \end{aligned}$	EEDQ extrapure, 99\% (N-Ethoxycarbonyl-2-Ethoxy-1,2-di- Hydroxyquinoline)	$\begin{array}{r} 10 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 18.82 \\ 30.27 \\ 105.28 \end{array}$			25 Gms	78.30
				$\begin{aligned} & 77688 \\ & {[1070-11-7]} \end{aligned}$	Ethambutol Dihydrochloride (ETB.2HCl), 98\%	1 Gms 5 Gms	9.87 26.19
17398 E	Ehrlich`s Aldehyde Reagent & 100 ml & 2.11 & \multirow{2}{*}{\[\begin{aligned} & 89737 \\ & {[540-63-6]} \end{aligned} \]} & \multirow[t]{2}{*}{1,2-Ethanedithiol extrapure, \(98.5 \%\)} & 25 ml & 46.06 \\ \hline 99640 E & Ehrlich`s Amino Sugar Reagent	100 ml	2.37			$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	171.08 789.60
$\begin{array}{cc} 81802 & \text { E } \\ {[112-79-8]} \\ & 9! \\ & (t) \\ & t r \end{array}$	Elaidic Acid Reference Standard, 99\%(GC) (trans-9-Octadecenoic Acid, trans-Oleic Acid)	5 Gms	236.88	$\begin{aligned} & 16844 \quad \checkmark \\ & {[31005-02-4]} \end{aligned}$	7-Ethoxycoumarin extrapure, 98\%	25 Mg 100 Mg	23.42 62.51
				$\begin{aligned} & 23545 \\ & {[578-54-1]} \end{aligned}$	2-Ethylaniline pure, 98\%	100 ml	17.77
$\underset{[39445-21-1]}{11814} \text { P }$	Elastase (ELA, PPE) ex. Porcine Pancreas, 10U/mg Protein	10 Mg	104.62			500 ml	52.64
$\begin{array}{ll} 19764 & E \\ {[155569-91-8]} \end{array}$	Emamectin Benzoate extrapure, 90\%	100 Mg 1 Gms	$\begin{aligned} & 33.16 \\ & 82.91 \end{aligned}$	$\begin{aligned} & 96669 \\ & {[105-39-5]} \end{aligned}$	Ethyl Chloroacetate pure, 98\%	500 ml 2500 ml	6.05 26.32
73363 [518-82-1]	Emodin ex. Polygonum Cuspidatum, 90\% (Emodin ex. Fallopia Japonica, 1,3,8-Trihydroxy-6-Methyl-9,10-Anthrac enedione, 1,3,8-Tri-hydroxy-6-M	25 Mg 500 Mg 1 Gms 5 Gms	$\begin{array}{r} 28.95 \\ 78.96 \\ 118.44 \\ 236.88 \end{array}$	$\begin{aligned} & 95953 \\ & {[535-13-7]} \end{aligned}$	Ethyl 2-Chloropropionate practical grade, 95%	100 ml	16.58
				$\begin{aligned} & 92052 \\ & {[105-56-6]} \end{aligned}$	Ethyl Cyanoacetate extrapure, 98\%	500 ml 2500 ml	9.48 43.43
				69674 \&	3,4-Ethylenedioxythiophene		36.85
90310	Emulgen B-66 (Eumulgin B66) (Polyoxyethylene Alkyl Ether)	100 ml 500 ml	$\begin{array}{r} 53.82 \\ 206.09 \end{array}$	[126213-50-1]	(EDOT) pure, 98\%	$25 \mathrm{Gms}$	78.96 28.95
$\begin{aligned} & 20790 \bullet E \\ & {[93106-60-6]} \end{aligned}$	Enrofloxacin (EFX), 98\%	5 Gms	25.66	[67-42-5]	(2-Aminoethyl) N,N,N,N-Tetraacetic Acid (EGTA) extrapure, 98\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 52.64 \\ 131.60 \end{array}$

Catalogue 2024-25

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 62003 \\ & {[14726-29-5]} \end{aligned}$	Fast Blue RR Hemi(Zinc Chloride) Salt 4-Benzoylamino-2,5-Dimethoxybenzen ediazonium Chloride Hemi(Zinc Chloride) salt, Azoic Diazo No. 24S	5 Gms	236.88	$\begin{aligned} & 50389 \\ & {[2321-07-5]} \end{aligned}$	Fluorescein Free Acid (C.I. No. 45350:1), 96\% (Solvent Yellow 94)	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 3.55 \\ 11.84 \end{array}$
				$\begin{aligned} & 73698 \\ & {[3326-32-7]} \end{aligned}$	Fluorescein Isothiocyanate Isomer I (FITC) extrapure, 95\%	25 Mg	30.40
$\begin{aligned} & 60339 \\ & {[2353-45-9]} \end{aligned}$	Fast Green FCF (Food Green 3), 85\% (C.I. No. 42053)	5 Gms 25 Gms	$\begin{array}{r} 5.26 \\ 20.00 \end{array}$			250 Mg 1 Gms	107.91 282.94
$\begin{aligned} & 79950 \\ & {[89453-69-0]} \end{aligned}$	Fast Red TR Salt Hemi Zinc Chloride Salt (4-Chloro-2-Methylbenzenediazonium Salt, Azoic Diazo No.11) (C.I. No. 37085)	$\begin{aligned} & 100 \mathrm{Mg} \\ & 500 \mathrm{Mg} \end{aligned}$	$\begin{array}{r} 35.14 \\ 140.55 \end{array}$	$\begin{aligned} & 55091 \\ & {[518-47-8]} \end{aligned}$	Fluorescein Sodium Salt (C.I. No. 45350) (Acid Yellow 73)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{array}{r} 4.21 \\ 15.79 \\ 138.18 \end{array}$
				$\begin{aligned} & 92458 \\ & {[403-42-9]} \end{aligned}$	4-Fluoroacetophenone pure, 98\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 18.82 \\ & 59.22 \end{aligned}$
$\begin{gathered} 14977 \\ {[102-54-5]} \end{gathered}$	Ferrocene extrapure, 98\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 6.58 \\ 25.00 \\ 111.86 \end{array}$				
				$\begin{aligned} & 57482 \\ & {[348-54-9]} \end{aligned}$	2-Fluoroaniline pure, 98\%	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{array}{r} 26.32 \\ 121.07 \end{array}$
$\begin{aligned} & 38082 \\ & {[69898-45-9]} \end{aligned}$	Ferrozine Monosodium extrapure, 97\% (5,6-Diphenyl-3-(2-pyridyl) -1,2,4-triazine-4',4"-disulfonic acid sodium salt, PDT disulfonate)	1 Gms 5 Gms 25 Gms	$\begin{array}{r} 27.77 \\ 123.05 \\ 584.17 \end{array}$	$\begin{aligned} & 61820 \\ & {[372-19-0]} \end{aligned}$	3-Fluoroaniline pure, 98\%	$\begin{array}{r} 25 \mathrm{ml} \\ 100 \mathrm{ml} \end{array}$	$\begin{array}{r} 39.48 \\ 151.34 \end{array}$
				$\begin{aligned} & 62395 \\ & {[371-40-4]} \end{aligned}$	4-Fluoroaniline pure, 98\%	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	23.69
$\begin{aligned} & 60096 \\ & {[1135-24-6]} \end{aligned}$	Ferulic Acid pure, 98\% (4-Hydroxy-3-Methoxycinnamic Acid)		$\begin{array}{r} 10.92 \\ 31.72 \\ 111.99 \end{array}$				110.54
				$\begin{aligned} & 55482 \\ & {[321-28-8]} \end{aligned}$	2-Fluoroanisole pure, 98\%	$\begin{gathered} 25 \mathrm{ml} \\ 100 \mathrm{ml} \end{gathered}$	$\begin{array}{r} 41.45 \\ 131.34 \end{array}$
$\begin{array}{ll} 45460 & \bullet \\ {[26873-85-8]} \end{array}$	Ficoll $400 ®$ for molecular biology (Polysucrose 400)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	27.37	$\begin{aligned} & 45810 \\ & {[456-49-5]} \end{aligned}$	3-Fluoroanisole pure, 98\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 34.61 \\ 124.36 \end{array}$
			$\begin{aligned} & 124.89 \\ & 468.10 \end{aligned}$				
				$\begin{aligned} & 51009 \\ & {[459-60-9]} \end{aligned}$	4-Fluoroanisole extrapure, 99\%	25 Gms	15.79
$\begin{aligned} & 87939 \\ & {[146-14-5]} \end{aligned}$	Flavine Adenine Dinucleotide Sodium Salt (FAD) extrapure, 95\%	25 Mg 100 Mg 250 Mg 500 Mg	$\begin{array}{r} 28.16 \\ 90.54 \\ 156.08 \\ 280.97 \end{array}$	[459-60-9]		100 Gms	59.22
				$\begin{aligned} & 90335 \\ & {[459-57-4]} \end{aligned}$	4-Fluorobenzaldehyde pure, 98\%	100 ml 500 ml	$\begin{array}{r} 46.06 \\ 184.24 \end{array}$
				$\begin{aligned} & 88879 \\ & {[462-06-6]} \end{aligned}$	Fluorobenzene pure, 99\%	100 ml	13.16
$\begin{aligned} & 69510 \\ & {[525-82-6]} \end{aligned}$	Flavone extrapure	5 Gms 25 Gms	$\begin{aligned} & 10.53 \\ & 47.38 \end{aligned}$	[462-06-6]		500 ml	52.64
						1000 ml	100.02
$\begin{aligned} & 89465 \\ & {[1343-88-0]} \end{aligned}$	Florisil 60-100 mesh for chromatography	$\begin{array}{r} 100 \mathrm{Gms} \\ 250 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{array}{r} 32.90 \\ 65.80 \\ 250.04 \end{array}$	$\begin{aligned} & 68427 \\ & {[456-22-4]} \end{aligned}$	4-Fluorobenzoic Acid pure, 98\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 11.05 \\ & 30.40 \end{aligned}$
				$\begin{aligned} & 94304 \\ & {[1194-02-1]} \end{aligned}$	4-Fluorobenzonitrile pure, 98\%	$\begin{array}{r} 25 \mathrm{ml} \\ 100 \mathrm{ml} \end{array}$	$\begin{array}{r} 31.98 \\ 111.20 \end{array}$
22239 [86386-73-4]	Fluconazole (FLC), 98\%	1 Gms 5 Gms	$\begin{aligned} & 10.53 \\ & 21.06 \end{aligned}$	[1194-02-1]			
				$\begin{aligned} & 13212 \\ & {[140-75-0]} \end{aligned}$	4-Fluorobenzylamine extrapure, 99\%	5 Gms	11.05
$\begin{aligned} & 54083 \\ & {[28920-43-6]} \end{aligned}$	9-Fluorenylmethyl Chloroformate (FMOC Chloride, FMOC-CI) extrapure, 99\%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 5.92 \\ 23.69 \\ 85.54 \end{array}$			25 Gms	29.08
				$\begin{aligned} & 11821 \\ & {[2341-22-2]} \end{aligned}$	5-Fluorocytidine (5-FCytd) extrapure, 99\%	1 Gms	55.27
$\begin{aligned} & 29175 \\ & {[24324-17-2]} \end{aligned}$	9-Fluorenylmethanol (FMOC-OH) extrapure, 98\% (9-Fluorenemethanol, 9- (Hydroxymethyl)fluorene)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 28.95 \\ & 92.12 \end{aligned}$	$\begin{aligned} & 24245 \\ & {[2022-85-7]} \end{aligned}$	```5-Fluorocytosine (5-FCtys) extrapure, 98% (5-FA, 4-Amino-5-Fluoro-2-Hydroxypyrimidine)```	1 Gms 5 Gms	$\begin{aligned} & 27.64 \\ & 89.88 \end{aligned}$
$\begin{aligned} & 46068 \\ & {[38183-12-9]} \end{aligned}$	Fluorescamine extrapure AR, 99\%	25 Mg 100 Mg 500 Mg 1 Gms	$\begin{array}{r} 22.11 \\ 56.72 \\ 124.36 \\ 183.19 \end{array}$	$\underset{[50-91-9]}{81015}$	5-Fluoro-2-Deoxyuridine extrapure, 98\%	$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{array}$	$\begin{array}{r} 22.11 \\ 69.22 \\ 426.91 \end{array}$
$\begin{aligned} & 85445 \\ & \text { [38183-12-9] } \end{aligned}$	Fluorescamine extrapure AR, ExiPlus, Multi-Compendial, 99\%	$25 \mathrm{Mg}$ 100 Mg	24.87 60.80 141.73	$\begin{aligned} & 67782 \\ & {[70-34-8]} \end{aligned}$	1-Fluoro-2,4-Dinitrobenzene (FDNB) extrapure AR, 99\%	$\begin{array}{r} 25 \mathrm{ml} \\ 100 \mathrm{ml} \\ 250 \mathrm{ml} \end{array}$	$\begin{array}{r} 18.42 \\ 63.17 \\ 134.89 \end{array}$
	meets compendial specs of USP, BP, Ph.Eur			$\begin{aligned} & 42199 \\ & {[70-34-8]} \end{aligned}$	1-Fluoro-2,4-Dinitrobenzene (FDNB) for HPLC, 99\% (Sanger Reagent)	5 ml	105.28

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
47834 [68858-20-8]	- FMOC-L-Valine extrapure, 99%	5 Gms 25 Gms	5.40 24.61	$\begin{aligned} & 81309 \\ & {[88-14-2]} \end{aligned}$	2-Furoic Acid pure, 98\% (Furan-2-Carboxylic Acid)	100 Gms 500 Gms	$\begin{aligned} & 13.16 \\ & 50.01 \end{aligned}$
		100 Gms	92.25	$\begin{aligned} & 81294 \\ & {[488-93-7]} \end{aligned}$	3-Furoic Acid pure, 98\% (Furan-3-Carboxylic Acid)	5 Gms 25 Gms	$\begin{array}{r} 32.90 \\ 125.02 \end{array}$
$\begin{aligned} & 79235 \\ & {[82911-69-1]} \end{aligned}$	FMOC-OSu extrapure AR, 99\%	5 Gms	8.55				
		25 Gms	31.58	$\begin{aligned} & 99124 \\ & {[527-69-5]} \end{aligned}$	2-Furoyl Chloride pure, 98\% (Furan-2-Carbonyl Chloride)	$\begin{gathered} 20 \mathrm{ml} \\ 100 \mathrm{ml} \end{gathered}$	$\begin{aligned} & 19.74 \\ & 65.80 \end{aligned}$
		100 Gms	95.41				
		500 Gms	434.28	$\begin{aligned} & 90068 \\ & {[26214-65-3]} \end{aligned}$	3-Furoyl Chloride pure, 97\% (Furan-3-Carbonyl Chloride)	1 Gms 5 Gms	$\begin{array}{r} 52.64 \\ 190.82 \end{array}$
$\begin{gathered} 33866 \\ {[5025-82-1 / 54} \\ 323-50-1] \end{gathered}$	Folcisteine (ATCA, NATCA) pure, 4 99\% (3-Acetyl-1,3-Thiazolidine-4-Carboxylic acid, R-Aminofol)	1 Gms	21.06				
		$5 \text { Gms }$	65.80	$\begin{gathered} 79108 \\ {[539-47-9]} \end{gathered}$	Furylacrylic Acid pure, 99\% (3-(2-Furyl)acrylic Acid, Furan-2-Acrylic Acid, Furfurylideneacetic Acid)	25 Gms	26.58
$\begin{aligned} & 43164 \\ & {[59-30-3]} \end{aligned}$	Folic Acid pure, 98\% (Vitamin B9, Vitamin M, Pteroyl-L-Glutamic acid)	25 Gms	6.58				
		100 Gms	23.69	$\begin{aligned} & 58327 \\ & {[108321-42-2} \end{aligned}$	\& G-418 Sulphate (Geneticin) 2] extrapure	$100 \mathrm{Mg}$ 1 Gms 5 Gms	$\begin{array}{r} 16.58 \\ 82.91 \\ 386.90 \end{array}$
			105.28				
$\begin{aligned} & 24791 \\ & {[59-30-3]} \end{aligned}$	Folic Acid ExiPlus, Multi-Compendial, 98\% (Vitamin B9, Vitamin M, Pteroyl-L-Glutamic acid) meets compendial specs of BP	10 Gms 25 Gms	$\begin{aligned} & 4.21 \\ & 8.55 \end{aligned}$				
				87858 [108321-42-2	\& G-418 Sulphate (Geneticin) for tissue culture	$100 \mathrm{Mg}$ 1 Gms 5 Gms	$\begin{array}{r} 29.22 \\ 106.07 \\ 480.47 \end{array}$
$\begin{gathered} 17989 \\ {[59-30-3]} \end{gathered}$	Folic Acid for tissue culture, 98\% (Vitamin B9, Vitamin M, Pteroyl-L-Glutamic acid)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 9.21 \\ 28.95 \\ 128.97 \end{array}$	45734	Gaby-Hadley Reagent A	100 ml	3.95
				94536	Gaby-Hadley Reagent B	100 ml	5.66
39520	Folin \& Ciocalteus Phenol (FCP) Reagent AR	100 ml	7.90	$\begin{aligned} & 45781 \\ & {[13450-84-5]} \end{aligned}$	Gadolinium (III) Chloride Hexahydrate ultrapure, 99.99\%	5 Gms 25 Gms	$\begin{aligned} & 32.90 \\ & 65.80 \end{aligned}$
		250 ml	18.42				
		500 ml	32.90	$\begin{aligned} & 10438 \\ & {[19598-90-4]} \end{aligned}$	Gadolinium (III) Nitrate Hexahydrate ultrapure, 99.99\%	$5 \mathrm{Gms}$	34.22
64684	Folin's Uric Acid Reagent	250 ml	7.76				69.75
49244 [68157-60-8]	Forchlorfenuron (KT-30, CPPU, N-(2-Chloro-4-pyridyl)-N-phenylurea) extrapure, 99%	1 Gms 5 Gms	$\begin{aligned} & 40.01 \\ & 96.86 \end{aligned}$	31353 [12064-62-9]	Gadolinium (III) Oxide extrapure, 99.9\%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 12.11 \\ 44.22 \\ 156.60 \end{array}$
53870	4-Formylphenylboronic Acid	5 Gms	20.40	$\begin{aligned} & 52480 \\ & {[52093-29-5]} \end{aligned}$	Gadolinium (III) Trifluoromethanesulfonate extrapure, 98\% (Gadolinium(III) Triflate, Trifluoromethanesulfonic Acid Gadolinium(III) Salt)	1 Gms 5 Gms	$\begin{aligned} & 24.87 \\ & 55.27 \end{aligned}$
[87199-17-5]] extrapure, 95%	25 Gms	81.59				
85925	Fouchet's Reagent	100 ml	3.29				
54704 [81028-91-3]	D-Fructose-1,6-Diphosphate Octahydrate Trisodium Salt extrapure, 99%	250 Mg 1 Gms	$\begin{array}{r} 6.32 \\ 16.45 \end{array}$				
				$\begin{aligned} & 14725 \\ & \text { [1772-03-8] } \end{aligned}$	D-Galactosamine Hydrochloride extrapure, 98\%	250 Mg 1 Gms 5 Gms	$\begin{array}{r} 7.63 \\ 18.42 \\ 55.27 \end{array}$
$\begin{aligned} & 25760 \\ & {[26177-86-6]} \end{aligned}$	D-Fructose-6-Phosphate Disodium Salt extrapure, 95\%	$\begin{aligned} & 100 \mathrm{Mg} \\ & 500 \mathrm{Mg} \end{aligned}$	$\begin{array}{r} 41.72 \\ 124.89 \end{array}$				
$\begin{aligned} & 73212 \\ & {[2438-80-4]} \end{aligned}$			$\begin{array}{r} 20.00 \\ 32.37 \\ 130.68 \end{array}$	$\begin{aligned} & 88176 \\ & {[59-23-4]} \end{aligned}$	D-Galactose extrapure	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 6.58 \\ 19.74 \\ 81.59 \end{array}$
	L-Fucose extrapure, 99\% (L-Fuc, 6-Deoxy-L-Galactose)	500 Mg 1 Gms 5 Gms					
				$\begin{aligned} & 27146 \\ & \text { [9031-11-2] } \end{aligned}$	B-Galactosidase (BGAL) ex. E. Coli, 500U/mg solids (Lactase, B-D-Galactoside Galactohydrolase)	5 K.Units	507.32
76007 \&	\& D-(+)-Fucose extrapure	500 Mg	94.75				
[3615-37-0]	(6-Deoxy-L-Galactose, Rhodeose)	1 Gms	164.50				
	Furfural pure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 9.21 \\ 36.85 \end{array}$				
[98-01-1]				$\begin{aligned} & 20096 \\ & \text { [4163-60-4] } \end{aligned}$	B-D-Galactose Pentaacetate extrapure, 99%	25 Gms	105.28
$\begin{aligned} & 86133 \\ & {[98-01-1]} \end{aligned}$	Furfural extrapure AR, ACS, 99\%	500 ml	14.87	83055 Galantamine Hydrobromide[1953-04-4]extrapure, 98%		250 Mg	92.12
11049	Furfurylamine pure, 98\%	500 ml	19.48	14101 [69365-72-6]	Gallium (III) Nitrate Hydrate extrapure, 99.9\%	5 Gms 25 Gms	$\begin{array}{r} 50.80 \\ 193.32 \end{array}$
[617-89-0]		2500 ml	76.06				
$\begin{aligned} & 18641 \\ & {[54-31-9]} \end{aligned}$	Furosemide (Frusemide), 98.5\%	5 Gms 25 Gms	$\begin{array}{r} 46.85 \\ 130.68 \end{array}$	$\begin{aligned} & 23813 \\ & {[30562-34-6]} \end{aligned}$	Geldanamycin (GLD), 98\%	5 Mg	858.16

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 72394 \\ & {[71010-52-1]} \end{aligned}$	Gelrite Gellan Gum	100 Gms 250 Gms 500 Gms	26.45 62.12 113.97	$\begin{aligned} & 57400 \\ & {[52153-09-0]} \end{aligned}$	L-Glucono-1,5-Lactone pure, 85\% (3,4,5-Trihydroxy-6- (Hydroxymethyl)Tetrahydro-2H-Pyran-2 -one, L-Gluconolactone)	25 Mg	85.67
		1 Kg 5 Kg	191.48 893.17	$\begin{aligned} & 55195 \\ & {[90-80-2]} \end{aligned}$	D-Glucono-1,5-Lactone extrapure, 99\% (D-(+)-Gluconic Acid d-Lactone, D-Gluconolactone, Glucono-Delta-Lactone)	100 Gms 500 Gms	$\begin{aligned} & 20.79 \\ & 31.85 \end{aligned}$
$\begin{aligned} & 53409 \\ & {[6902-77-8]} \end{aligned}$	Genipin extrapure, 98\%	$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$	39.48 105.28				
$\begin{aligned} & 37636 \\ & {[1405-41-0]} \end{aligned}$	Gentamicin Sulphate (GM)	1 Gms 5 Gms 25 Gms	5.40 21.58 80.01	$\begin{aligned} & 74587 \\ & {[21414-41-5]} \end{aligned}$	Glucoraphanin Potassium Salt Reference Standard Grade, 90\% (4-Methylsulfinylbutyl Glucosinolate Potassium Salt)	10 Mg	442.18
$\begin{aligned} & 50827 \\ & {[1405-41-0]} \end{aligned}$	Gentamicin Sulphate (GM) for tissue culture	1 Gms 5 Gms 25 Gms	12.63 31.58 103.83	$\begin{aligned} & 15546 \\ & {[108844-81-1} \end{aligned}$	Glucoraphenin Potassium Salt] Reference Standard Grade, 95\% (4-Methylsulfinyl 3-Butenylglucosinolate Potassium Salt)	10 Mg	483.63
$\begin{gathered} 95677 \\ {[554-91-6]} \end{gathered}$	B-D-Gentiobiose extrapure, 95\% (Amygdalose)	100 Mg 500 Mg	36.85 118.44	$\begin{aligned} & 73360 \\ & {[32449-92-6]} \end{aligned}$	D-Glucorono-3,6-Lactone extrapure, 99%	25 Gms	$\begin{aligned} & 30.40 \\ & 45.53 \end{aligned}$
32614	Germanium Dioxide electronic	10 Gms	93.70			500 Gms	135.42
[1310-53-8]	grade ultrapure, 99.999\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	221.09 616.28	$\begin{aligned} & 28453 \square \text { Glucoamylase ex. Rhizopus Sp., } \\ & \text { [9032-08-0] } 30 \mathrm{U} / \mathrm{mg} \end{aligned}$		1000 Units	92.78
$\begin{aligned} & 56397 \\ & {[4562-36-1]} \end{aligned}$	Gitoxin extrapure, 98\%	$\begin{array}{r} 5 \mathrm{Mg} \\ 25 \mathrm{Mg} \\ 500 \mathrm{Mg} \end{array}$	78.96 157.92 684.32	$\begin{aligned} & 45648 \\ & {[66-84-2]} \end{aligned}$	Glucosamine Hydrochloride extrapure, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 9.87 \\ 21.71 \\ 90.15 \end{array}$
$\begin{aligned} & 38490 \\ & {[5996-06-5]} \end{aligned}$	Glaucine Hydrobromide, 97\%	10 Gms	78.96	$\begin{aligned} & 14810 \quad \text { Glucose Dehydrogenase ex. } \\ & {[9028-53-9]} \end{aligned}$		5 K.Units	203.98
76052 [9074-98-0]	B-Glucanase ex. Aspergillus Niger, 10U/mg powder	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	11.84 52.64	61788 Glucose Oxidase (GOD) ex.[9001-37-0] Aspergillus Niger, 100U/mg solids		10 K.Units 25 K.Units	$\begin{aligned} & 28.56 \\ & 64.09 \end{aligned}$
$\begin{aligned} & 40193 \\ & {[21087-78-5]} \end{aligned}$	Glucobarbarin Potassium Salt Reference Standard Grade, 90\%	10 Mg	621.81	$\begin{aligned} & 12419 \\ & {[604-68-2]} \end{aligned}$	a-D-Glucose Pentaacetate extrapure, 99%	25 Gms	16.58
$\begin{aligned} & 63878 \quad \bullet \\ & {[15592-36-6]} \end{aligned}$	Glucocheirolin Potassium Salt Reference Standard Grade, 95\% (3-Methylsulfonylpropyl Glucosinolate Potassium Salt)	10 Mg	759.99	$\begin{aligned} & 65776 \\ & {[604-69-3]} \end{aligned}$	B-D-Glucose Pentaacetate extrapure, 99%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 14.21 \\ & 46.98 \end{aligned}$
				$\begin{aligned} & 23208 \\ & {[6736-77-2} \\ & \text { (anhy)] } \end{aligned}$	D-Glucose-1-Phosphate Dipotassium Salt Hydrate (G1P.K2 Hydrate) extrapure, 98\% (Cori Ester Dipotassium Salt Hydrate)	1 Gms 5 Gms	$\begin{aligned} & 19.35 \\ & 89.88 \end{aligned}$
$\begin{aligned} & 61404 \\ & {[15592-37-7]} \end{aligned}$	Glucoerucin Potassium Salt Reference Standard Grade, 95\%	10 Mg	773.81				
	(4-Methylthiobutyl Glucosinolate Potassium Salt)			62591	D-Glucose-1-Phosphate Disodium Salt Tetrahydrate (G1P.Na2	1 Gms	$\begin{array}{r}7.63 \\ \hline 7.64\end{array}$
$\begin{aligned} & 97968 \text {, } \\ & {[60046-25-5]} \end{aligned}$	D-Glucoheptonic Acid-1,4-Lactone pure, 98\% (D-Glycero-D-Gulo-Heptono-1,4-Lacto ne, D-Gluco-Heptono-Gamma-Lactone)	$\begin{array}{r} 5 \mathrm{Gms} \\ 10 \mathrm{Gms} \end{array}$	$\begin{aligned} & 100.02 \\ & 192.27 \end{aligned}$	[150399-99-8]	8] Salt Tetrahydrate (G1P.Na2 Tetrahydrate) extrapure, 98\% (Cori Ester Disodium Salt Tetrahydrate)	5 Gms 25 Gms	$\begin{array}{r} 27.64 \\ 127.92 \end{array}$
				$\begin{aligned} & 32994 \\ & {[3671-99-6]} \end{aligned}$	D-Glucose-6-Phosphate Disodium Salt Dihydrate (G6P.Na2 Dihydrate) extrapure, 99\% (Robinson Ester)	1 Gms 5 Gms 25 Gms	$\begin{array}{r} 13.42 \\ 57.90 \\ 276.36 \end{array}$
20378 -	- Glucoiberin Potassium Salt	10 Mg	469.81				
[15592-34-4]] Reference Standard, 85\% (3-Methylsulfinylpropyl Glucosinolate Potassium Salt)			$\begin{aligned} & 74262 \\ & {[9001-40-5]} \end{aligned}$	Glucose-6-Phosphate Dehydrogenase ex. Leuconostoc Mesenteroides, 400U/mg solids	1 K.Units 5 K.Units	$\begin{array}{r} 99.75 \\ 270.44 \end{array}$
$\begin{aligned} & 84553 \\ & {[245550-57-6]} \end{aligned}$	Gluconapin Potassium Salt 6] Reference Standard, 90\% (3-Butenyl Glucosinolate Potassium Salt)	10 Mg	469.81	```11997 r-Glucose-6-Phosphate-Dehydroge [9001-40-5] nase ex. Leuconostoc Mesenteroides, 500U/mg solids```		5 K.Units	110.81
$\begin{aligned} & 27429 \\ & {[18425-76-8]} \end{aligned}$	Gluconasturtiin Potassium Salt Reference Standard, 95\% (2-Phenylethyl Glucosinolate Potassium Salt)	10 Mg	580.36	$\begin{aligned} & 75551 \quad \text { a-Glucosidase (Maltase) ex. Yeast, } \\ & \begin{array}{ll} 79001-42-7] & \text { 100U/mg } \end{array} \end{aligned}$		$\begin{array}{r} 10 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$	$\begin{array}{r} 42.24 \\ 382.30 \end{array}$
				$\begin{aligned} & 13275 \\ & {[9001-22-3]} \end{aligned}$	B-Glucosidase ex. Sweet Almonds (Type 2A), 10U/mg solids (Gentiobiase, Cellobiase)	$\begin{aligned} & 250 \text { Units } \\ & 1000 \text { Units } \end{aligned}$	$\begin{array}{r} 49.22 \\ 111.86 \end{array}$
$\begin{aligned} & 45063 \\ & {[1198-69-2]} \end{aligned}$	D-Glucono-1,4-Lactone pure, 85\%	50 Mg	93.96				
				$\begin{aligned} & 41369 \\ & {[9001-22-3]} \end{aligned}$	B-Glucosidase ex. Sweet Almonds (Type 2B), 10U/mg solids (Gentiobiase, Cellobiase)	$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{array}$	$\begin{array}{r} 26.32 \\ 78.96 \\ 289.52 \end{array}$

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{gathered} 41675 \\ {[556-33-2]} \end{gathered}$	GlycyI-GlycyI-L-Glycine (Triglycine) extrapure, 99%	1 Gms 5 Gms	21.58 96.20	$\begin{aligned} & 11777 \text { D-Gulono-1,4-Lactone extrapure, } \\ & \text { [6322-07-2] } 98 \% \end{aligned}$		1 Gms 5 Gms	30.79 147.66
		25 Gms	353.61	$\begin{aligned} & 97514 \text { L-Gulono-1,4-Lactone extrapure, } \\ & {[1128-23-0] 98 \%} \end{aligned}$		10 Gms	71.59
27057 \& Glycyl-GlycyI-L- Isoleucine [69242-40-6] extrapure, 99\%		1 Gms	61.33			25 Gms	129.10
		5 Gms	252.41	37421	Gunzburg Reagent	100 ml	8.16
70039 \& Glycyl-Glycyl-L-Leucine extrapure, [14857-82-0] 99\%		1 Gms 5 Gms	58.83 248.72	95068 \& Haemoglobin Powder ex. Bovine [9008-02-0] Erythrocytes		100 Gms	25.66
$\begin{aligned} & 29764 \text { \& } \\ & {[20274-89-9]} \end{aligned}$	Glycyl-GlycyI-L-Valine extrapure, 99\%	$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$	93.70 280.97	$\begin{aligned} & 52293 \text { Harmaline pure, } 98 \% \\ & {[304-21-2]} \end{aligned}$		1 Gms	63.96
$\begin{aligned} & 82725 \\ & {[19461-38-2]} \end{aligned}$	Glycyl-L-Isoleucine extrapure, 99\%	1 Gms 5 Gms	25.79 99.62	$\begin{aligned} & 99132 \\ & {[148893-10-1]} \end{aligned}$	\& HATU extrapure, 98\%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 14.48 \\ 59.22 \\ 210.56 \end{array}$
96010	Glycyl-L-Leucine extrapure, 99\%	1 Gms	22.37				
[869-19-2]		5 Gms	98.83	$\begin{aligned} & 44424 \\ & {[94790-37-1]} \end{aligned}$	\& HBTU extrapure, 98\%	5 Gms	4.74
$\begin{gathered} 27587 \\ {[103213-38-3]} \end{gathered}$	Glycyl Leucine Phenylalanine extrapure, 99%	100 Mg	214.64			25 Gms 100 Gms	21.06 72.38
	GlycyI-L-Proline-7-Amido-4-Methylc oumarin Hydrobromide Salt extrapure, 98\% (H-Gly-Pro-AMC-HBr, GP-AMC.HBr Salt)	25 Mg	447.44			500 Gms	315.84
				73322 \& HCTU extrapure, 98% [330645-87-9] (O-(6-Chlorobenzotriazol-1-yl) -N,N,N',N'-Tetramethyluronium Hexafluorophosphate)		$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 11.19 \\ 31.58 \\ 111.86 \end{array}$
$\begin{gathered} 74329 \\ {[658-79-7]} \end{gathered}$	Glycyl-L-Tyrosine extrapure, 99\%	1 Gms 5 Gms	$\begin{array}{r} 25.79 \\ 103.04 \end{array}$	$\begin{aligned} & 23315 \\ & {[150-39-0]} \end{aligned}$	HEDTA (N-(2-Hydroxyethyl) ethylenediaminetriacetic acid) extrapure, 99%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 15.79 \\ & 48.69 \end{aligned}$
$\begin{aligned} & 34601 \text { \& } \\ & {[1963-21-9]} \end{aligned}$	Glycyl-L-Valine extrapure, 99\%	1 Gms 5 Gms	$\begin{array}{r} 32.51 \\ 134.36 \end{array}$			500 Gms	210.56
				$\begin{aligned} & 28394 \\ & {[517-28-2]} \end{aligned}$	Hematoxylin Monohydrate (Natural Black I)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 27.64 \\ 129.89 \\ 421.12 \end{array}$
$\begin{aligned} & 92245 \\ & {[107-22-2]} \end{aligned}$	Glyoxal 40\% aq. solution pure	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	5.66 22.11				
35657	Griess Reagent for Nitrite extrapure	100 ml	45.93	$\begin{aligned} & 78372 \\ & {[16009-13-5]} \end{aligned}$	Hemin Chloride cryst. ex. Bovine extrapure, 98\% (Hematin Hydrochloride, Chlorohemin)	1 Gms 5 Gms	$\begin{aligned} & 19.35 \\ & 69.09 \end{aligned}$
53613	Guaiacol extrapure, 99\%	250 Gms	11.84				
[90-05-1]		1 Kg	44.74	$\begin{aligned} & 98457 \\ & {[16009-13-5]} \end{aligned}$	Hemin Chloride cryst. ex. Porcine extrapure, 98\% (Hematin Hydrochloride, Chlorohemin)	1 Gms 5 Gms	$\begin{aligned} & 19.35 \\ & 69.09 \end{aligned}$
44260 \&	Guanine extrapure, 99\%	25 Gms	7.37				
[73-4		$\begin{array}{r} 100 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	15.79 125.02	$\begin{aligned} & 58389 \\ & {[9041-08-1]} \end{aligned}$	Heparin Sodium Salt ex. Bovine Intestinal Mucosa, 150 IU/mg	$\begin{array}{r} 20 \text { K.Units } \\ 100 \\ \text { K.Units } \end{array}$	$\begin{aligned} & 14.48 \\ & 44.74 \end{aligned}$
$\begin{gathered} 37567 \\ {[635-39-2]} \end{gathered}$	Guanine Hydrochloride extrapure, 98\%	$5 \mathrm{Gms}$$25 \text { Gms }$	$\begin{array}{r} 4.34 \\ 18.56 \end{array}$	$\begin{aligned} & 50661 \\ & {[9041-08-1]} \end{aligned}$			$\begin{aligned} & 15.79 \\ & 65.80 \end{aligned}$
					Heparin Sodium Salt ex. Bovine Intestinal Mucosa, 150 IU/mg	100 Mg 1 Gms	
$\begin{aligned} & 48306 \text { \& } \\ & \text { [10333-92-3] } \end{aligned}$	Guanine Sulphate extrapure, 98\%	1 Gms	21.06	29768 [161308-36-7]			65.80 97.52
$\begin{gathered} 57892 \\ {[118-00-3]} \end{gathered}$	Guanosine extrapure, 99\%	25 Gms 100 Gms	8.42 31.58		HEPBS Buffer extrapure, 99\%	10 Gms 25 Gms 100 Gms	129.89 470.60
		500 Gms	105.28	$\begin{aligned} & 63732 \\ & {[7365-45-9]} \end{aligned}$	HEPES Buffer extrapure, 99\% (N -[2-Hydroxyethyl] Piperazine-N[2-Ethane Sulphonic Acid])	25 Gms	6.97
$\begin{aligned} & 95494 \\ & {[5550-12-9]} \end{aligned}$	Guanosine-5-Monophosphate Disodium Salt (5-GMP-Na2) extrapure, 96\%	16 Gms 5 Gms 25 Gms	4.34 16.06 66.85			100 Gms 500 Gms 1 Kg	22.11 96.73 179.63
		100 Gms	228.72	$\begin{aligned} & 48489 \\ & {[7365-45-9]} \end{aligned}$	HEPES Buffer for tissue culture, 99\% (N -[2-Hydroxyethyl] Piperazine-N[2-Ethane Sulphonic Acid])	25 Gms 100 Gms	$\begin{aligned} & 10.40 \\ & 27.64 \end{aligned}$
70564 [56001-37-7]	Guanosine-5-Triphosphate Disodium Salt (5-GTP-Na2) extrapure, 90\%	100 Mg 500 Mg 25 Gms	39.48 65.80 30.40				
$\begin{aligned} & 11945 \\ & {[65202-07-5]} \end{aligned}$	Guayule (DCPTA) for tissue culture, 98\% (2-(3,4-Dichlorophenoxy) -N,N-diethylethanamine)	100 Gms	30.40 103.70	$\begin{aligned} & 16826 \\ & {[7365-45-9]} \end{aligned}$	HEPES Buffer for molecular biology, 99.5\% (N -(2-Hydroxyethyl) Piperazine-N(2-Ethane Sulphonic Acid)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 11.05 \\ 30.40 \\ 110.54 \end{array}$

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
78805 \&	HEPES Buffer 1M Solution pH-7.3 for molecular biology	100 ml	44.22	$\begin{aligned} & 97843 \\ & {[495-69-2]} \end{aligned}$	Hippuric Acid Reference Standard, 100\%	10 Gms	55.27
68744 [75277-39-3]	HEPES Sodium Salt extrapure, 99\% (N-2-Hydroxyethyl piperazine N -2-Ethane Sulphonic Acid Sodium Salt)	25 Gms	12.50	$\begin{aligned} & 98808 \\ & {[744-59-2]} \end{aligned}$	Hippuryl-L-Phenylalanine, 99\%	100 Mg	39.09
		100 Gms 500 Gms	$\begin{array}{r} 35.93 \\ 121.60 \end{array}$			250 Mg	92.12
				$\begin{aligned} & 83597 \\ & {[56-92-8]} \end{aligned}$	Histamine Dihydrochloride (HSM), 98\%	1 Gms	14.08
32225 [75277-39-3]	HEPES Sodium Salt for molecular biology, 99\% (N-2-Hydroxyethyl piperazine N-2-Ethane Sulphonic Acid Sodium Salt)	25 Gms	20.79			5 Gms	39.09
		100 Gms	49.74			25 Gms	105.28
		500 Gms	165.82	81240 [39968-33-7]	HOAT 1-Hydroxy-7-azobenzotriazole) pure, 98\%	1 Gms	10.26
						5 Gms	26.32
39764 [75277-39-3]	HEPES Sodium Salt for tissue culture, 99.5% (N-2-Hydroxyethyl piperazine N -2-Ethane Sulphonic Acid Sodium Salt)	25 Gms	19.35			25 Gms	111.86
		100 Gms	44.22	38653 [2592-95-2]	HOBT Anhydrous extrapure, 99\%	25 Gms	3.95
						100 Gms	13.82
						500 Gms	46.06
$\begin{aligned} & 86017 \\ & {[110-43-0]} \end{aligned}$	2-Heptanone (Methyl-n-Amyl Ketone, MAK) extrapure 99\% (Methyl Pentyl Ketone)	100 ml	5.26			1 Kg	85.54
		$500 \mathrm{ml}$	19.74	$\begin{aligned} & 27645 \\ & {[123333-53-} \end{aligned}$	HOBT Monohydrate pure, 99\%	25 Gms	3.95
$\begin{aligned} & 18338 \\ & {[2528-61-2]} \end{aligned}$	Heptanoyl Chloride pure, 98\% (Enanthic Chloride, Oenanthic Chloride)	25 Gms	25.00			100 Gms	14.21
		100 Gms	46.85			500 Gms	42.11
$\begin{aligned} & 29681 \\ & {[10534-89-1]} \end{aligned}$	Hexaammine Cobalt (III) Chloride extrapure, 99% (Cobalt Hexammine Trichloride, Hexaamminecobalt Trichloride, Luteo-cobaltic Chloride)	5 Gms 25 Gms	$\begin{array}{r} 39.48 \\ 118.44 \end{array}$	$\begin{aligned} & 93864 \\ & {[121080-96-2} \\ & \hline 94194 \end{aligned}$			
					D-Homocitrulline extrapure CHR,	1 Gms	112.39
] 98\%	5 Gms	382.30
					D-Homophenylalanine extrapure,	500 Mg	31.32
$\underset{[143-27-1]}{28373}$	Hexadecylamine (Cetylamine) pure, 98\%	5 Gms	10.53	[82795-51	97\%	5 Gms	124.89
		25 Gms	23.69	$\begin{gathered} 78523 \\ {[943-73-7]} \end{gathered}$	L-Ho97\%	500 Mg	23.42
		100 Gms	44.74			1 Gms	39.09
$\begin{aligned} & 21437 \\ & {[920-66-1]} \end{aligned}$	1,1,1,3,3,3-Hexafluoro-2-Propanol (HFIP) extrapure, 99\% (Hexafluoroisopropanol)	25 ml	31.58			5 Gms	93.70
		100 ml	94.75			25 Gms	296.49
			447.44	58931	Homophthalic Acid pure, 98\%	25 Gms	18.95
$\begin{aligned} & 98573 \\ & {[920-66-1]} \end{aligned}$	1,1,1,3,3,3-Hexafluoro-2-Propanol (HFIP) for UV spectroscopy, 99\% (Hexafluoroisopropanol)	25 ml	52.38	89-51-0]		100 Gms	67.25
			130.68	$\begin{aligned} & 69080 \\ & {[306-08-1]} \end{aligned}$	Homovanillic Acid extrapure, 99\%	250 Mg 1 Gms	15.40 51.32
$\begin{aligned} & 28437 \\ & {[999-97-3]} \end{aligned}$	1,1,1,3,3,3-Hexamethyldisilazane pure (HMDS), 98\%	$100 \mathrm{ml}$	5.26 19.74			10 Gms	296.63
		$2500 \mathrm{ml}$	85.54	$\begin{aligned} & 27698 \\ & {[9067-32-7]} \end{aligned}$	Hyaluronic Acid Sodium Salt - Type 1 (600-1000 KD) extrapure, 90\%	100 Mg	72.38
$\begin{aligned} & 79404 \text { \& } \\ & {[34338-96-0]} \end{aligned}$	(2S,5S)-2,5-Hexanediol extrapure, 99\%	1 Gms	202.53		(HA, Hyaluronan, Hyaluronate, Hyasis		
		2.5 Gms	497.84		850P, Sodium hyaluronate, Poly(b-glucuronic acid-[1?3]-b-N-acet		
$\begin{aligned} & 56464 \\ & {[111-27-3]} \end{aligned}$	n-Hexanol pure, 98\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 9.21 \\ 43.43 \end{array}$	$\begin{aligned} & 75810 \\ & {[9067-32-7} \end{aligned}$	Hyaluronic Acid Sodium Salt - Type 2 (1000-2000 kD) extrapure, 90\% (HA, Hyaluronan, Hyaluronate, Hyasis 850P, Sodium hyaluronate, Poly(b-glucuronic acid-[1?3]-b-N-acet	100 Mg	72.38
$\begin{aligned} & 98669 \\ & {[111-27-3]} \end{aligned}$	n-Hexanol extrapure AR, 99\%	$\begin{aligned} & 250 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	9.54 15.79				
		2500 ml	65.80	39678 [9067-32-7]	Hyaluronic Acid Sodium Salt - Type 3 (80-100 kD) extrapure, 90\% (HA, Hyaluronan, Hyaluronate, Sodium hyaluronate, Poly(b-glucuronic acid-[1->3]-b-N-acetylglucosamin	100 Mg	65.80
$\begin{aligned} & 68497 \\ & {[142-61-0]} \end{aligned}$	Hexanoyl Chloride pure, 98\%	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	14.48 55.27				
$\begin{aligned} & 69502 \square \text { Hexokinase ex. Saccharomyces Sp. } \\ & {[9001-51-8] \quad 150 \mathrm{U} / \mathrm{mg}} \end{aligned}$		5000 Units	85.93				
		$\begin{aligned} & 89002 \\ & {[9067-32-7]} \end{aligned}$		Hyaluronic Acid Sodium Salt - Type 4 (40-50 kD) extrapure, 90\% (HA, Hyaluronan, Hyaluronate, Sodium hyaluronate, Poly (b-glucuronic acid- [1?3]-b-N-acetylglucosamine	100 Mg	65.80	
$\begin{aligned} & 46639 \\ & {[136-77-6]} \end{aligned}$	4-Hexylresorcinol extrapure, 99\% (Antascarin, Ascarinol, 4-Hexyl-1,3-Dihydroxybenzene)		$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$		$\begin{array}{r} 13.82 \\ 48.69 \\ 147.39 \end{array}$		
$\begin{aligned} & 35696 \\ & {[495-69-2]} \end{aligned}$	Hippuric Acid pure, 99\% (Benzoylglycine, Benzoylaminoacetic Acid)	100 Gms 500 Gms	5.40 14.48				

Catalogue 2024-25

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 67317 \\ & {[31282-04-9]} \end{aligned}$	Hygromycin B (HGR), 90\%	250 Mg 1 Gms	$\begin{array}{r} 44.61 \\ 144.76 \end{array}$	$\begin{aligned} & 60704 \\ & {[1204-06-4]} \end{aligned}$	Indole-3-Acrylic Acid extrapure, 99.5\% (3-Indoleacrylic Acid)	1 Gms 5 Gms	38.16 190.43
$\begin{aligned} & 94663 \\ & {[31282-04-9]} \end{aligned}$	Hygromycin B (HGR Solution), $50 \mathrm{mg} / \mathrm{ml}$ in Aq. Solution	$\begin{gathered} 20 \mathrm{ml} \\ 100 \mathrm{ml} \end{gathered}$	128.97 506.66	$\begin{aligned} & 97637 \\ & {[830-96-6]} \end{aligned}$	\checkmark Indole-3-Propionic Acid pure, 98\%	5 Gms 25 Gms	14.48 43.30
$\begin{aligned} & 63573 \\ & {[68-94-0]} \end{aligned}$	Hypoxanthine extrapure, 99\%	5 Gms 25 Gms 100 Gms	3.55 11.05 41.45	$\begin{aligned} & 69447 \\ & {[487-89-8]} \end{aligned}$	\& Indole-3-Carboxyaldehyde extrapu re, 99% (3-Indolylaldehyde)	$\begin{array}{r} 10 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 16.45 \\ & 24.87 \\ & 78.96 \end{aligned}$
36693	4-Imidazolecarboxaldehyde pure,	1 Gms	32.37	96553 \& Indoxyl-ß-D-Galactopyranoside [126787-65-3] extrapure, 98\%		25 Mg	50.01
[3034-50-2]	98\% (4-Formylimidazole, 1H-Imidazole-4-Carbaldehyde, 5-Imidazolecarboxaldehyde)	5 Gms	72.38	$\begin{aligned} & 39627 \\ & {[3318-43-2]} \end{aligned}$	\& 3-Indoxyl Phosphate Disodium Salt extrapure, 98\%	$\begin{gathered} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \\ 500 \mathrm{Mg} \end{gathered}$	$\begin{array}{r} 44.61 \\ 84.62 \\ 292.15 \end{array}$
$\begin{aligned} & 52106 \\ & {[606-23-5]} \end{aligned}$	1,3-Indanedione pure, 96% (1,3-Diketohydrindene, 1,3-Dioxoindan)	$5 \text { Gms }$ $25 \text { Gms }$	$\begin{array}{r} 32.37 \\ 130.68 \end{array}$	$\begin{aligned} & 25670 \\ & {[2642-37-7]} \end{aligned}$	3-Indoxyl Sulfate Potassium Salt extrapure, 98\%	$\begin{array}{r} 50 \mathrm{Mg} \\ 250 \mathrm{Mg} \end{array}$	$\begin{aligned} & 33.95 \\ & 78.43 \end{aligned}$
$\begin{gathered} 32328 \\ {[615-13-4]} \end{gathered}$	2-Indanone pure, 98\%	$\begin{array}{r} 10 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 26.32 \\ 52.64 \\ 184.24 \end{array}$	$\begin{aligned} & 51113 \\ & {[58-63-9]} \end{aligned}$	\& Inosine extrapure, 99\%	$\begin{array}{r} 10 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	8.16 17.11 65.14
46486	Indigo Carmine extrapure AR	25 Gms	4.61			500 Gms	276.36
[860-22-0]		100 Gms 500 Gms	$\begin{aligned} & 13.82 \\ & 56.59 \end{aligned}$	$\begin{aligned} & 19594 \\ & {[352195-40-5]} \end{aligned}$	\& Inosine-5-Monophosphate 5] Disodium Salt Hydrate (5-IMP-Na2 Hydrate) extrapure, 99\% (Disodium Inosate)	5 Gms	15.27
31016	Indium (III) Chloride Tetrahydrate	5 Gms	59.22				
	(Indium Chloride)	25 Gms	105.28	$\begin{aligned} & 77985 \\ & {[36051-67-9]} \end{aligned}$	\& Inosine-5-Triphosphate Disodium Salt (ITP-Na2) extrapure, 97\%	25 Mg	39.09
$\begin{aligned} & 52859 \\ & {[20661-21-6]} \end{aligned}$	Indium (III) Hydroxide ultrapure, 99.99\%	5 Gms 25 Gms	$\begin{aligned} & 34.61 \\ & 96.73 \end{aligned}$			100 Mg 100 Gms	78.17 10.26
$\begin{aligned} & 84697 \\ & {[7440-74-6]} \end{aligned}$	Indium Metal Ingots, 99.9\%	10 Gms	46.06	$\begin{aligned} & 98211 \\ & {[87-89-8]} \end{aligned}$	Inositol pure, 99\% (Vitamin B8)	500 Gms 1 Kg	35.53 60.54
95867	Indium (III) Nitrate Hydrate	5 Gms	59.22			5 Kg	263.20
[207398-97-8]	extrapure, 99.9\%	10 Gms	105.28	87114 [87-89-8]	Inositol for tissue culture, 99\% (Vitamin B8)	100 Gms	11.19
		50 Gms	315.84			500 Gms	39.48
$\begin{aligned} & 43095 \\ & {[1312-43-2]} \end{aligned}$	Indium (III) Oxide extrapure, 99.9\% (Diindium Trioxide, Indium Sesquioxide)	$\begin{aligned} & 5 \mathrm{Gms} \\ & 10 \mathrm{Gms} \end{aligned}$	$\begin{aligned} & 59.22 \\ & 84.22 \end{aligned}$			1 Kg 5 Kg	65.80 289.52
		25 Gms	164.50	$\begin{aligned} & 53860 \\ & {[9005-80-5]} \end{aligned}$	Inulin extrapure	25 Gms	13.82
64331 [13464-82-9]	Indium (III) Sulphate Anhydrous extrapure, 99\%	10 Gms	28.95			100 Gms	46.32
75920 [13464-82-9]	Indium (III) Sulphate Anhydrous ultrapure, 99.99\%	$\begin{aligned} & 25 \mathrm{Gms} \\ & 10 \mathrm{Gms} \\ & 50 \mathrm{Gms} \end{aligned}$	65.80 59.22 276.36	$\begin{array}{ll} 61568 & \text { Invertase (Saccharase) ex. Candida } \\ \text { [9001-57-4] } & \text { Sp., 100U/mg } \\ & \text { (Invertase-B-D-Fructofuranoside } \\ & \text { Fructohydrolase) } \end{array}$		2 K. Units	161.21
$\begin{aligned} & 96535 \\ & {[7440-74-6]} \end{aligned}$	Indium Wire Ø 0.5 mm , 99.9\%		$\begin{aligned} & 50.01 \\ & 92.12 \end{aligned}$	$\begin{aligned} & 51611 \\ & {[88-67-5]} \end{aligned}$	\& 2-lodobenzoic Acid pure, 98\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	15.79 47.38
$\begin{aligned} & 19228 \\ & {[120-72-9]} \end{aligned}$	Indole crystalline extrapure AR, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	7.11 89.49	$\begin{aligned} & 55129 \\ & {[626-62-0]} \end{aligned}$	lodocyclohexane (Stabilized w/ Cu) extrapure, 98\% (Cyclohexyl lodide)	10 Gms 25 Gms	44.22 94.75
69522 \&	Indole-3-Acetic Acid Methyl Ester	1 Gms	21.58			100 Gms	142.13
[1912-33-0]	extrapure, 98\% (Methyl-3-Indolylacetate)	10 Gms	123.05	$\begin{aligned} & 82104 \\ & \text { [2050-77-3] } \end{aligned}$	1-lododecane (Stabilized with Cu) extrapure, 98\% (Decyl Iodide, Decyliodide)	25 ml	24.48 78.17
$\begin{aligned} & 63661 \\ & {[57105-50-7]} \end{aligned}$	Indole-3-Acetyl-L-Phenylalanine extrapure, 98\% (N-(3-Indolylacety)-L-Phenylalanine, IAA-L-Phe)	1 Gms 5 Gms	454.15 1362.32	$\begin{aligned} & 83441 \\ & {[54-42-2]} \end{aligned}$	5-lodo-2-Deoxyuridine extrapure, 98\%	100 ml 500 Mg 5 Gms	78.17 20.00 137.52
$\begin{aligned} & 13550 \text { \& } \\ & {[57105-42-7]} \end{aligned}$	Indole-3-Acetyl-L-Valine extrapure, 99\%	25 Mg	30.79	$\begin{array}{ll} 40686 & \text { 2(4-lodophenyl)-3 (4-Nitrophenyl) } \\ {[146-68-9]} & \text {-5-Phenyl-2H-Tetrazolium Chloride } \\ & \text { (INT) extrapure AR, 98\% } \end{array}$		1 Gms 5 Gms	$\begin{array}{r} 23.69 \\ 105.28 \end{array}$

Part B - Bioreagents, Biochemicals \& Speciality Fine Chemicals

Catalogue 2024-25

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 99918 \\ & {[696-07-1]} \end{aligned}$	- 5-lodouracil extrapure, 98\%		$\begin{aligned} & 26.32 \\ & 44.74 \end{aligned}$	$\begin{aligned} & 36321 \\ & {[108-21-4]} \end{aligned}$	Isopropyl Acetate pure, 99\%	$500 \mathrm{ml}$ $2500 \text { ml }$	$\begin{array}{r} 5.26 \\ 22.37 \end{array}$
$\begin{aligned} & 63088 \\ & {[538-93-2]} \end{aligned}$	Isobutyl Benzene pure, 98\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 6.32 \\ 30.27 \end{array}$	$\begin{aligned} & 61386 \\ & {[7724-76-7]} \end{aligned}$	N6-(2-Isopentenyl) Adenosine pure, 98\% (6-(?,?-Dimethylallylamino) purine riboside, N6- (3,3-Dimethylallylamino) purine riboside, 6-(3,3-Dimet	$\begin{array}{r} 50 \mathrm{Mg} \\ 200 \mathrm{Mg} \end{array}$	$\begin{aligned} & 26.32 \\ & 92.12 \end{aligned}$
$\begin{aligned} & 34516 \\ & {[84110-40-7]} \end{aligned}$	Isobutylboronic Acid extrapure, 98\% (2-Methylpropylboronic acid)	$\begin{gathered} 1 \text { Gms } \\ 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 20.13 \\ 45.53 \\ 204.51 \end{array}$				
$\begin{aligned} & 78521 \\ & {[78-77-3]} \end{aligned}$	Isobutyl Bromide (Stabilized w/ Ag) pure, 98\%	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	11.19 52.64	$\begin{aligned} & 58571 \\ & {[2210-25-5]} \end{aligned}$	N -Isopropylacrylamide (NIPAM) extrapure, 99\%	$\begin{array}{r} 10 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 21.06 \\ 42.11 \\ 157.92 \end{array}$
$\begin{aligned} & 30671 \\ & {[513-38-2]} \end{aligned}$	Isobutyl lodide (1-lodo-2-Methylpropane) (Stabilized w/Ag) pure, 97\%	$\begin{array}{r} 25 \mathrm{ml} \\ 100 \mathrm{ml} \\ 250 \mathrm{ml} \end{array}$	$\begin{array}{r} 52.64 \\ 144.76 \\ 329.00 \end{array}$	$\begin{aligned} & 45273 \\ & {[80041-89-0]} \end{aligned}$	Isopropylboronic Acid extrapure, 97\%	1 Gms 5 Gms 25 Gms	$\begin{array}{r} 39.09 \\ 171.74 \\ 304.26 \end{array}$
$\begin{aligned} & 39634 \\ & {[79-31-2]} \end{aligned}$	Isobutyric Acid extrapure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	13.16 61.59	$\begin{aligned} & 16390 \\ & {[75-26-3]} \end{aligned}$	Isopropyl Bromide (Stab w/ Ag) pure, 99\%	100 ml 500 ml	$\begin{array}{r} 4.61 \\ 18.56 \end{array}$
$\begin{aligned} & 35853 \\ & {[79-30-1]} \end{aligned}$	Isobutyryl Chloride pure, 98.5\%	$\begin{array}{r} 250 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	17.63 63.96	$\begin{aligned} & 18346 \\ & {[105-48-6]} \end{aligned}$	Isopropyl Chloroacetate pure, 98\%	500 ml	10.13
$\begin{aligned} & 70170 \\ & {[79-30-1]} \end{aligned}$	Isobutyryl Chloride specially purified, 98.5\%	$\begin{gathered} 250 \mathrm{ml} \\ 1000 \mathrm{ml} \end{gathered}$	$\begin{aligned} & 23.69 \\ & 80.28 \end{aligned}$	$\begin{aligned} & 38525 \\ & {[75-30-9]} \end{aligned}$	Isopropyl lodide pure, 98\%	$\begin{array}{r} 25 \mathrm{ml} \\ 100 \mathrm{ml} \end{array}$	$\begin{aligned} & 23.69 \\ & 81.59 \end{aligned}$
42615	DL-Isocitrate Trisodium Salt, 94\%	1 Gms	26.98			250 ml	197.40
[1637-73-6]		5 Gms	98.70	$\begin{aligned} & 52469 \\ & {[142-91-6]} \end{aligned}$	Isopropyl Palmitate pure, 90\%	500 ml	8.82
$\begin{aligned} & 90189 \\ & {[25339-17-7]} \end{aligned}$	Isodecanol pure, 98\%	500 ml	14.21			2500 ml	78.96 23.42
$\begin{aligned} & 60672 \\ & {[97-54-1]} \end{aligned}$	\& Isoeugenol (mixture of cis and trans) pure, 98\%	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{aligned} & 15.79 \\ & 65.80 \end{aligned}$	$\begin{gathered} 54110 \\ {[367-93-1]} \end{gathered}$	Isopropyl-B-D-Thiogalactopyranosi de (IPTG) (dioxan free), 99\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	$\begin{aligned} & 106.20 \\ & 390.06 \end{aligned}$
33401	D-Isoleucine extrapure, 98\%	250 Mg	118.44			1 Kg	3421.60
[319-78-8]		1 Gms 5 Gms	$\begin{aligned} & 289.52 \\ & 947.52 \end{aligned}$	$\begin{gathered} 67208 \\ {[367-93-1]} \end{gathered}$	Isopropyl-B-D-Thiogalactopyranosi de (IPTG) (dioxan-free) for MB, 99\%	5 Gms 25 Gms	25.66 113.97
$\begin{aligned} & 26731 \\ & {[73-32-5]} \end{aligned}$	L-Isoleucine extrapure CHR, 99\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	6.45 11.19			100 Gms $1 \mathrm{Kg}$	$\begin{array}{r} 421.25 \\ 3750.60 \end{array}$
		$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{aligned} & 52.64 \\ & 92.12 \end{aligned}$	82202 d	IPTG Solution ($20 \mathrm{mg} / \mathrm{ml}$)	$\begin{array}{r} 1 \mathrm{ml} \\ 5 \times 1 \mathrm{ml} \end{array}$	$\begin{aligned} & 14.48 \\ & 32.90 \end{aligned}$
$\begin{aligned} & 94082 \\ & {[499-40-1]} \end{aligned}$	Isomaltose extrapure, 98\%	$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$	$\begin{array}{r} 59.22 \\ 115.81 \end{array}$	$\begin{gathered} 86577 \\ {[590-86-3]} \end{gathered}$	Isovaleraldehyde pure, 98\%	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	5.92 19.74
$\begin{aligned} & 42021 \\ & {[3371-50-4]} \end{aligned}$	Isomaltotriose extrapure, 97\% (6-O-[6-O-(a-D-Glucopyranosyl)	25 Mg	111.86			1000 ml	36.85
				$\begin{aligned} & 51656 \\ & {[108-12-3]} \end{aligned}$	Isovaleryl Chloride pure, 98\% (Isopentanoyl Chloride, 3-Methylbutyryl Chloride)	100 Gms	14.48
$\begin{aligned} & 88109 \\ & \text { [35997-20-7] } \end{aligned}$	Isomaltotetraose extrapure, 95\%]	5 Mg	46.06			500 Gms	52.64
$\begin{aligned} & 45433 \\ & {[6082-32-2]} \end{aligned}$	Isomaltopentaose extrapure, 95\%	1 Mg	678.79	$\begin{aligned} & 35798 \\ & {[97-65-4]} \end{aligned}$	Itaconic Acid pure, 99\%	250 Gms	8.29
$\begin{aligned} & 94885 \\ & {[54-85-3]} \end{aligned}$	Isoniazid extrapure, 99\% (Isonicotinic Acid Hydrazide, 4-Pyridinecarboxylic Acid Hydrazide)	$\begin{array}{r} 5 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 3.95 \\ 10.53 \\ 47.38 \end{array}$	$\begin{aligned} & 18443 \\ & {[70288-86-7]} \end{aligned}$	Ivermectin (IVM), 95-102\%	1 Gms 5 Gms 25 Gms	$\begin{aligned} & 10.53 \\ & 26.32 \\ & 78.96 \end{aligned}$
$\begin{aligned} & 68866 \\ & {[2365-40-4]} \end{aligned}$	d N6-[2-Isopentenyl] Adenine extrapure, 98%	$250 \mathrm{Mg}$	35.53	$\begin{aligned} & 79238 \\ & {[77026-92-7]} \\ & 98314 \\ & {[61789-91-1]} \end{aligned}$	Jasmonic Acid for molecular biology, 95\%	25 Mg	212.14
		$\begin{array}{r} 500 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{array}$	$\begin{array}{r} 59.22 \\ 105.28 \end{array}$		Jojoba oil extrapure	250 ml 500 ml	$\begin{aligned} & 28.95 \\ & 46.06 \end{aligned}$
$\begin{aligned} & 18018 \\ & {[121-91-5]} \end{aligned}$	Isophthalic Acid pure, 99\%	500 Gms	3.95	70878 [64013-70-3]	Kanamycin Acid Sulphate (KS) extrapure, 670U/mg (Kanamycin Disulfate, Kanamycin A, Kanamycin Acid Sulfate)	1 Gms	6.58 26.32
$\begin{aligned} & 67742 \\ & {[99-63-8]} \end{aligned}$	\& Isophthaloyl Chloride pure, 98\%	100 Gms 500 Gms	$\begin{aligned} & 21.06 \\ & 65.80 \end{aligned}$			25 Gms	26.32 98.70

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
89346 [64013-70-3]	Kanamycin Acid Sulphate (KS) for tissue culture, 670U/mg (Kanamycin Disulfate, Kanamycin A, Kanamycin Acid Sulfate)	1 Gms 5 Gms	9.21 39.48	$\begin{aligned} & 15932 \\ & {[8006-54-0]} \end{aligned}$	Lanolin anhydrous extrapure (Wool Wax, Wool Grease)	500 Gms	27.37
		25 Gms	125.02	$\begin{aligned} & 56839 \\ & {[79-63-0]} \end{aligned}$	Lanosterol pure, ~60\%	1 Gms 10 Gms	$\begin{array}{r} 15.27 \\ 105.28 \end{array}$
99311 \& Kanamycin Monosulphate (KM) [25389-94-0] extrapure, $750 \mathrm{mcg} / \mathrm{mg}$		1 Gms	7.63				
		5 Gms	30.14	$\begin{aligned} & 20351 \\ & {[10025-84-0]} \end{aligned}$	Lanthanum Chloride Heptahydrate extrapure AR, ACS, 99\%	100 Gms 500 Gms	$\begin{aligned} & 22.37 \\ & 85.54 \end{aligned}$
		25 Gms	112.65				
76061 \& Kanamycin Monosulphate (KM) for [25389-94-0] tissue culture, $750 \mathrm{mcg} / \mathrm{mg}$		1 Gms	9.87	$\begin{aligned} & 34032 \\ & {[10277-43-7]} \end{aligned}$	Lanthanum Nitrate Hexahydrate extrapure AR, 99\%	100 Gms 500 Gms	$\begin{aligned} & 15.79 \\ & 50.01 \end{aligned}$
		5 Gms	40.80				
		25 Gms	142.26	$\begin{aligned} & 91288 \\ & {[10277-43-7]} \end{aligned}$	Lanthanum Nitrate 0.1M	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	$\begin{aligned} & 20.27 \\ & 39.09 \end{aligned}$
$\begin{array}{cc} 14259 & \text { \& } \\ {[600-18-0]} & (a \\ & A \end{array}$	2-Ketobutyric Acid pure, 97\% (a-Ketobutyric acid, Propionylformic Acid, 2-Oxobutyric Acid)	5 Gms 25 Gms	$\begin{array}{r} 98.70 \\ 394.80 \end{array}$				
				36917 [312696-10-9]	Lanthanum Oxalate Hydrate extrapure AR, 99.5\%	10 Gms 100 Gms	5.79
$\begin{aligned} & 93929 ~ \checkmark ~ a-~ \\ & {[328-50-7]} \end{aligned}$	a-Ketoglutaric Acid extrapure, 99\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 8.03 \\ 27.77 \\ 115.41 \end{array}$			500 Gms	165.82
				$\begin{aligned} & 59415 \\ & {[1312-81-8]} \end{aligned}$	Lanthanum Oxide extrapure, 99.9\%	100 Gms 500 Gms	$\begin{aligned} & 12.90 \\ & 57.90 \end{aligned}$
$\begin{gathered} 28386 \vee \\ {[328-50-7]} \end{gathered} \text { a- }$	a-Ketoglutaric Acid (High Purity) extrapure AR, 99.5\%	25 Gms 100 Gms 500 Gms	$\begin{array}{r} 10.13 \\ 38.56 \\ 176.87 \end{array}$	$\begin{aligned} & 47835 \\ & {[52093-26-2]} \end{aligned}$	Lanthanum (III) Trifluoromethanesulfonate extrapure, 98\% (Lanthanum Triflate, Trifluoromethanesulfonic Acid Lanthanum Salt)	1 Gms 5 Gms	$\begin{aligned} & 13.82 \\ & 42.77 \end{aligned}$
$\begin{gathered} 22826 \vee \\ {[305-72-6]} \end{gathered} \quad \text { A }$	a-Ketoglutaric Acid Disodium Salt Anhydrous extrapure, 95\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 39.61 \\ 132.52 \\ 605.36 \end{array}$				
				$\begin{gathered} 92044 \text { 』 } \\ {[111-82-0]} \end{gathered}$	Lauric Acid Methyl Ester Reference Standard, 99.5\%(GC) (Methyl Laurate)	5 Gms 25 Gms	23.69
$\begin{aligned} & 18223 \\ & {[305-72-6]} \end{aligned}$	a-Ketoglutaric Acid Disodium Dihydrate extrapure, 98\% (2-Oxoglutaric Acid Sodium Salt)	$\begin{aligned} & 25 \mathrm{Gms} \\ & 100 \mathrm{Gms} \\ & 500 \mathrm{Gms} \end{aligned}$	$\begin{array}{r} 33.95 \\ 110.81 \\ 526.40 \end{array}$				85.54
				$\begin{gathered} 87444 \\ {[142-18-7]} \end{gathered}$	L-Lauroyl-Rac-Glycerol extrapure (Imwitor 312), 99\%	1 Gms 5 Gms	$\begin{array}{r} 50.93 \\ 204.90 \end{array}$
	a-Ketoglutaric Acid Monosodium Salt extrapure, 98\% (2-Oxoglutaric acid monosodium salt, 2-Oxopentanedioic acid monosodium salt, Sodium 2-oxoglutarate m	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 65.80 \\ 250.04 \end{array}$	$\begin{gathered} 74090 \\ {[137-16-6]} \end{gathered}$	N-LauroyIsarcosine Sodium Salt (Sarkosyl Sodium) pure, 98\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \\ 2.5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 20.00 \\ 52.64 \\ 118.44 \\ 539.56 \end{array}$
$\begin{aligned} & 61341 \\ & {[525-79-1]} \end{aligned}$	Kinetin extrapure AR, 99\%	$\begin{aligned} & 1 \mathrm{Gms} \\ & 5 \mathrm{Gms} \end{aligned}$	$\begin{array}{r} 3.55 \\ 12.50 \\ 62.25 \end{array}$	$\underset{[137-16-6]}{15448}$			
					N-Lauroylsarcosine Sodium Salt (Sarkosyl Sodium) for molecular biology, 98\% (Sodium Lauroyl Sarcosine)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 250 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{array}{r} 31.58 \\ 63.17 \\ 92.12 \\ 289.52 \end{array}$
$\begin{aligned} & 34154 \\ & {[525-79-1]} \end{aligned}$	Kinetin for tissue culture, 99\%	1 Gms 5 Gms 25 Gms	7.63				
			30.40				
			124.36	$\begin{aligned} & 67983 \\ & {[137-16-6]} \end{aligned}$	N-Lauroylsarcosine Sodium Salt (Sarkosyl Sodium Solution) 30\% Aq. Solution	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{aligned} & 11.84 \\ & 52.64 \end{aligned}$
$\begin{gathered} 83296 』 ~ K i \\ {[4338-47-0]} \end{gathered}$	Kinetin Riboside extrapure, 98\%	100 Mg 1 Gms	$\begin{array}{r} 48.43 \\ 165.82 \end{array}$				
				63645 [8000-28-0]	Lavender oil extrapure, 30-60\% LA	10 ml	7.90
$\begin{aligned} & 19744 \\ & {[501-30-4]} \end{aligned}$	Kojic acid extrapure, 99\% (5-Hydroxy-2-Hydroxymethyl-4-Pyrano ne)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 2.76 \\ 7.24 \\ 26.98 \end{array}$			25 ml	14.48
						100 ml	39.48
				$\begin{aligned} & 71707 \\ & {[7758-97-6]} \end{aligned}$	Lead (II) Chromate pure, 98\% (Plumbous Chromate)	500 Gms	13.82
$\underset{[2140-29-6]}{98158} \square K$	Kojibiose extrapure, 99\%	10 Mg 50 Mg	$\begin{array}{r} 41.85 \\ 141.86 \end{array}$				
				$\begin{aligned} & 21854 \\ & \text { [7439-92-1] } \end{aligned}$	Lead Metal Lumps, 99\%	500 Gms	8.95
81662 \& K	Kovac`s Indole Reagent for microbiology & 100 ml & 4.34 & \[\begin{aligned} & 62603 \\ & \text { [7439-92-1] } \end{aligned} \] & Lead Metal Powder extrapure AR, 99.5\% & 500 Gms & 13.16 \\ \hline 69068 K & \multirow[t]{2}{*}{Kraut`s Reagent}	100 ml	8.95	$\begin{aligned} & 59557 \\ & {[8002-43-5]} \end{aligned}$	Lecithin ex. Egg, 60\% (L-a-Phosphatidylcholine)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 71.99 \\ 255.83 \end{array}$
$\underset{[9028-36-8]}{53110} \text { e, }$	D-Lactate Dehydrogenase (D-LDH) ex. Microorganism, 400U/mg solids	2500 Units 5000 Units	$\begin{array}{r} 65.80 \\ 125.02 \end{array}$	$\begin{aligned} & 59561 \\ & {[8002-43-5]} \end{aligned}$	Lecithin ex. Soya, 30\% (L-a-Phosphatidylcholine)	100 Gms 500 Gms	$\begin{aligned} & 23.29 \\ & 51.19 \end{aligned}$
$\begin{aligned} & 82334 \\ & {[9001-60-9]} \end{aligned}$	r-D-Lactate Dehydrogenase (r-D-LDH) ex. E. Coli (Thermostable), 200U/mg solids	$\begin{aligned} & 5000 \text { Units } \\ & 10000 \\ & \text { Units } \end{aligned}$	$\begin{array}{r} 92.25 \\ 166.08 \end{array}$	64613 [10466-61-2]	L-Leucinamide Hydrochloride extrapure, 99\%	5 Gms	21.71

Part B - Bioreagents, Biochemicals \& Speciality Fine Chemicals

Catalogue 2024-25

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$98183 \vee L$ [15985-39-4]	L-Methionine Sulfoximine (MSX) extrapure, 95% (L-S-(3-Amino-3-Carboxypropyl) -S-Methylsulfoximine, L-Methionine Sulphoximine)	250 Mg 500 Mg	123.70	$\begin{aligned} & 34428 \\ & {[116-54-1]} \end{aligned}$	Methyl Dichloroacetate extrapure, 99\%	500 ml	15.79
		1 Gms 5 Gms	$\begin{array}{r}342.16 \\ 1381.80 \\ \hline\end{array}$	$\begin{aligned} & 45880 \\ & {[41798-81-6]} \end{aligned}$	3-Methyl-1,5-Di-p-Tolyl-1,4-Pentaza diene pure, 97% (N,N-bis[(4-Methylphenyl)diazenyl]Met hanamine)	1 Gms 5 Gms	$\begin{array}{r} 54.75 \\ 257.54 \end{array}$
$\begin{gathered} 40043 \\ {[7314-32-1]} \end{gathered}$	L-Methionine Sulphone extrapure, 99\%	1 Gms	45.14				
				$\begin{aligned} & 31535 \\ & {[1934-16-3]} \end{aligned}$	New Methylene Blue N extrapure, 70\% (Basic Blue 24, Methylene Blue N)	1 Gms	18.42
$\begin{aligned} & 19485 \\ & {[3226-65-1]} \end{aligned}$	L-Methionine Sulphoxide extrapure, 99\%	1 Gms 5 Gms	49.61 98.70			5 Gms 25 Gms	48.69 157.92
$\begin{aligned} & 86596 \\ & {[133073-73-1]} \end{aligned}$	Methotrexate Hydrate (MTR), 98\%	100 Mg	39.48	$\begin{aligned} & 28710 \\ & {[6586-05-6]} \end{aligned}$	New Methylene Blue N Zinc Chloride Double Salt, 90\%	5 Gms	20.27
		500 Mg	118.44			25 Gms	78.96
		1 Gms	210.56	$\begin{aligned} & 73603 \\ & {[6586-05-6]} \end{aligned}$	New Methylene Blue N Zinc Chloride Double Salt for tissue culture, 90\%	5 Gms	46.19
$\begin{aligned} & 91842 \\ & {[100-06-1]} \end{aligned}$	p-Methoxyacetophenone pure, 99% (4-Acetylanisole)	100 Gms 500 Gms	$\begin{array}{r} 8.03 \\ 19.74 \end{array}$				
81142 [2396-60-3]				$\begin{aligned} & 84753 \\ & {[93-15-2]} \end{aligned}$	Methyl Eugenol extrapure, 99\%	100 ml	17.24
	4-Methoxyazobenzene (4-MAB) extrapure AR, 98\% (p-Methyoxyazobenzene, 4-Phenylazoanisole)	1 Gms 5 Gms	$\begin{aligned} & 17.37 \\ & 64.09 \end{aligned}$			500 ml	73.43
						2500 ml	338.21
				$\begin{aligned} & 28409 \\ & {[93-61-8]} \end{aligned}$	N -Methylformanilide extrapure, 99\%	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{array}{r} 9.87 \\ 39.87 \end{array}$
$\begin{aligned} & 75797 \\ & {[105-13-5]} \end{aligned}$	4-Methoxybenzyl Alcohol (p-Anisyl Alcohol) pure, 98\% (p-Methoxybenzyl Alcohol)	100 Gms 500 Gms	$\begin{aligned} & 12.37 \\ & 42.11 \end{aligned}$				
				$\begin{aligned} & 77007 \\ & {[107-31-3]} \end{aligned}$	Methyl Formate pure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	10.53
$\begin{aligned} & 13573 \\ & \text { [93102-05-7] } \end{aligned}$	N -Methoxymethyl-N-Trimethylsilylm ethyl-Benzylamine extrapure, 98\%	5 Gms 25 Gms	$\begin{aligned} & 133.44 \\ & 500.34 \end{aligned}$	[107-31-3]		$2500 \text { ml }$	50.01
				$\begin{aligned} & 49281 \\ & {[97-30-3]} \end{aligned}$	Methyl-a-D-Glucopyranoside extrapure, 99\% (a-Methyl-D-Glucoside)	100 Gms 500 Gms	$\begin{array}{r} 28.16 \\ 113.18 \end{array}$
$\begin{array}{ll} 51234 & 2 \\ {[5720-06-9]} & e \\ & (E \\ & 2 \end{array}$	2-Methoxyphenylboronic Acid extrapure, 95% (Boronic Acid, 2-Methoxyphenylboronic Acid)	1 Gms 5 Gms	$\begin{aligned} & 18.16 \\ & 81.20 \end{aligned}$				
				$\begin{aligned} & 37685 \\ & {[603-76-9]} \end{aligned}$	1-Methylindole pure, 97\%	5 ml	15.79
				[603-76-9]		25 ml	39.48
$\begin{aligned} & 40632 \\ & {[5720-07-0]} \end{aligned}$	4-Methoxyphenylboronic Acid extrapure, 98%	1 Gms 5 Gms 25 Gms	$\begin{array}{r} 11.32 \\ 21.98 \\ 106.20 \end{array}$			100 ml	118.44
				$\begin{aligned} & 96595 \\ & {[7114-03-6]} \end{aligned}$	Methyl Green Zinc Chloride Double Salt	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	$\begin{aligned} & 11.32 \\ & 52.64 \end{aligned}$
$\begin{array}{ll} 23438 & \mathbf{2} \\ {[163105-89-3]} & \mathbf{e} \\ & \end{array}$	2-Methoxypyridine-5-Boronic Acid extrapure, 98\% (6-Methoxy-3-Pyridinylboronic Acid)	1 Gms 5 Gms	$\begin{array}{r} 20.66 \\ 63.17 \end{array}$	$\begin{aligned} & 74916 \\ & \text { [7114-03-6] } \end{aligned}$	Methyl Green Zinc Chloride Double Salt ExiPlus, Multi-Compendial	5 Gms 25 Gms	$\begin{aligned} & 12.37 \\ & 54.48 \end{aligned}$
$\begin{aligned} & 24252 \\ & {[54344-92-2]} \end{aligned}$	4-Methoxy-2,3,6-Trimethyl Benzaldehyde extrapure, 98\% (2,3,6-Trimethyl-p-Anisaldehyde)	1 Gms 5 Gms	39.48		meets compendial specs of BP, Ph.Eur		
			118.44	$\begin{aligned} & 85544 \\ & {[134253-42-2]} \end{aligned}$	1-O-Methyl-beta-D-Glucuronic Acid Sodium Salt extrapure, 99\% (1-OMe-b-D-GlcA.Na)	50 Mg	50.01
$\begin{aligned} & 88381 \\ & {[105-45-3]} \end{aligned}$	Methyl Acetoacetate pure, 98\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \\ 25 \mathrm{Ltr} \end{array}$	12.90		(1-OMe-b-D-GlcA.Na)		
			58.04	$\begin{gathered} 86720 \\ {[693-98-1]} \end{gathered}$	2-Methylimidazole pure, 99\%	100 Gms	5.00
			552.72			$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	$\begin{aligned} & 19.74 \\ & 36.06 \end{aligned}$
$\begin{aligned} & 21392 \\ & {[105-45-3]} \end{aligned}$	Methyl Acetoacetate extrapure AR, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{aligned} & 15.27 \\ & 67.77 \end{aligned}$				
				$\begin{aligned} & 15913 \\ & {[93-16-3]} \end{aligned}$	Methylisoeugenol (mixture of cis and trans) (1,2-Dimethoxy-4-propenylbenzene) pure, 98\% (4-(1-Propenyl) -1,2-Dimethoxybenzene, Isoeugenyl Methyl Ether)	$\begin{gathered} 25 \mathrm{ml} \\ 100 \mathrm{ml} \\ 500 \mathrm{ml} \end{gathered}$	7.90
$\begin{aligned} & 64330 \\ & {[122-00-9]} \end{aligned}$	p-Methylacetophenone pure, 98\%	100 Gms 250 Gms	$\begin{array}{r} 6.71 \\ 15.40 \end{array}$				78.96
$\begin{aligned} & 93149 \\ & {[100-61-8]} \end{aligned}$	N -Methylaniline pure, 98\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 8.55 \\ 40.80 \end{array}$				
$\begin{aligned} & 29879 \\ & \text { [38894-11-0] } \end{aligned}$	3-Methyl-2-Benzothiazolinone Hydrazone HCl Monohydrate (MBTH) extrapure AR (High Purity), 99\%	1 Gms 5 Gms 25 Gms	$\begin{array}{r} 16.19 \\ 52.38 \\ 233.72 \end{array}$	$\begin{aligned} & 74384 \\ & {[66-27-3]} \end{aligned}$	Methyl Methanesulphonate (MMS) extrapure, 99\%	$\begin{gathered} 25 \mathrm{ml} \\ 100 \mathrm{ml} \end{gathered}$	12.90
							46.98
				$\begin{aligned} & 42067 \\ & {[66-27-3]} \end{aligned}$	Methyl Methanesulphonate (MMS) for tissue culture, 99%	10 ml	20.79
$\begin{aligned} & 23343 \\ & \text { [98139-72-1] } \end{aligned}$	3-Methylbutylboronic acid extrapure, 95\%	1 Gms 5 Gms	$\begin{array}{r} 47.51 \\ 230.96 \end{array}$				
				$\underset{[50-66-8]}{71512}$	6-MethyImercaptopurine extrapure, 98\% (6-Methyl(thio)purine)	100 Mg 1 Gms	$\begin{array}{r} 31.58 \\ 190.82 \end{array}$
$\begin{aligned} & 39876 \\ & {[96-34-4]} \end{aligned}$	Methyl Chloroacetate extrapure, 99\%	500 ml	8.95				
				$\begin{aligned} & 66960 \\ & {[93-04-9]} \end{aligned}$	Methyl 2-Naphthyl Ether pure, 99\% (Yara Yara)	$\begin{array}{r} 250 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	5.92
$\begin{aligned} & 64426 \\ & {[3100-04-7]} \end{aligned}$	1-Methylcyclopropene (1-MCP), 98\%	$\begin{aligned} & 100 \mathrm{Mg} \\ & 500 \mathrm{Mg} \end{aligned}$	$\begin{array}{r} 36.85 \\ 105.28 \end{array}$				16.45

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 67915 \\ & {[109-01-3]} \end{aligned}$	1-Methylpiperazine extrapure, 99\% (N-Methylpiperazine)	$\begin{array}{r} 100 \mathrm{ml} \\ 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	3.95 17.11 80.28	$\begin{aligned} & 51504 \text { \& } \\ & {[199329-67-4,} \\ & 881005-91-0] \end{aligned}$	4-Methylumbelliferyl-b-D-Glucuroni de Trihydrate (MUG) extrapure, 99\%	$100 \mathrm{Mg}$ 1 Gms 5 Gms	24.87 42.11 157.92
$\begin{aligned} & 40610 \\ & {[16419-60-6]} \end{aligned}$	2-Methylphenylboronic Acid extrapure, 97\%	1 Gms 5 Gms	20.79 32.90	$\begin{aligned} & 77337 \\ & {[1463-10-1]} \end{aligned}$	5-Methyluridine extrapure, 98\% (Ribothymidine)	5 Gms 25 Gms	27.77 87.65
		25 Gms	136.60	$\begin{aligned} & 25828 \text { \& } \\ & {[22832-87-7]} \end{aligned}$	Miconazole Nitrate (MCN)extrapure, 98\%	1 Gms	11.32
$\begin{aligned} & 20622 \\ & {[17933-03-8]} \end{aligned}$	3-Methylphenylboronic Acid extrapure (m-Tolylboronic Acid) extrapure, 97%	1 Gms 5 Gms	$\begin{aligned} & 11.05 \\ & 31.32 \end{aligned}$			5 Gms 25 Gms	32.90 65.80
		25 Gms	151.34	$\begin{aligned} & 67424 \\ & {[72432-03-2]} \end{aligned}$	Miglitol extrapure, 98\% (N-(b-Hydroxyethyl) -1-Deoxynojirimycin, Glyset)	1 Gms	72.38
$\begin{aligned} & 43322 \\ & {[107-87-9]} \end{aligned}$	Methyl-n-Propyl Ketone pure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 14.48 \\ 60.54 \end{array}$			5 Gms	157.92
				15761	Molisch Reagent	100 ml	5.40
$\begin{aligned} & 87964 \\ & \text { [1340-02-9] } \end{aligned}$	Methyl Purple Indicator 0.1\% Solution extrapure AR	250 ml	10.66				
$\begin{aligned} & 29783 \\ & {[119-36-8]} \end{aligned}$	Methyl Salicylate pure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 9.87 \\ 43.43 \end{array}$	$\begin{aligned} & 64563 \\ & {[500-44-7]} \end{aligned}$	Mimosine ex. Koa Hoale Seeds, 98\%	$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$	$\begin{array}{r} 60.01 \\ 171.08 \end{array}$
$\begin{aligned} & 41652 \\ & {[80-48-8]} \end{aligned}$	Methyl p-Toluenesulfonate pure, 98\% (Methyl p-Tosylate, p-Toluenesulfonic Acid Methyl Ester)	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{aligned} & 11.84 \\ & 34.48 \end{aligned}$	[22373-78-0]	Monensin Sodium Salt (MSN), 97\%	5 Gms	101.46
				[1317-33-5]	Molybdenum Disulfide pure, 98\%	100 Gms 250 Gms	$\begin{aligned} & 17.11 \\ & 72.38 \end{aligned}$
$\begin{aligned} & 44243 \\ & \text { [1779-49-3] } \end{aligned}$	Methyltriphenylphosphonium Bromide pure, 98\%	100 Gms 500 Gms	$\begin{aligned} & 14.08 \\ & 55.27 \end{aligned}$			250 Gms 500 Gms	$\begin{array}{r} 72.38 \\ 138.18 \end{array}$
$\underset{[90-33-5]}{18040}$	B-Methylumbelliferone extrapure AR, 99\%	10 Gms	6.84	$\begin{aligned} & 75556 \\ & {[7439-98-7]} \end{aligned}$	Molybdenum Metal Sheet 99.9\%	1 piece	338.21
		$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	11.05 29.61	68078 \&	10X MOPS Buffer for molecular biology	$100 \mathrm{ml}$ $500 \mathrm{ml}$	$\begin{array}{r} 7.90 \\ 25.79 \end{array}$
$\begin{aligned} & 13050 \\ & {[37067-30-4]} \end{aligned}$	4-Methylumbelliferyl-N-Acetyl-ß-D- Glucosaminide extrapure, 99\%	25 Mg 50 Mg	71.06 118.44	$\begin{aligned} & 69824 \\ & {[1132-61-2]} \end{aligned}$	MOPS Buffer extrapure, 99\% (3-Morpholinopropane Sulphonic Acid)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 13.16 \\ & 30.40 \end{aligned}$
		100 Mg	225.04			500 Gms	124.36
$\begin{aligned} & 15208 \\ & {[20671-66-3]} \end{aligned}$	4-Methylumbelliferyl Caprylate extrapure, 99%	25 Mg 50 Mg	26.32 46.06	$\begin{aligned} & 85123 \\ & {[117961-20-3]} \end{aligned}$	MOPS Hemisodium Salt Buffer extrapure, 99%	25 Gms 100 Gms	$\begin{array}{r} 68.30 \\ 219.11 \end{array}$
		100 Mg	78.96	$\begin{aligned} & 57851 \\ & {[71119-22-7]} \end{aligned}$	MOPS Sodium Salt Buffer extrapure, 99.5\%	$\begin{array}{r} 50 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 42.24 \\ 79.62 \\ 329.00 \end{array}$
$\begin{aligned} & 21896 \\ & {[72626-61-0]} \end{aligned}$	4-Methylumbelliferyl-ß-D-Cellobiosi de extrapure, 98%	25 Mg 50 Mg	48.82 85.41				
$\begin{aligned} & 34391 \\ & {[6160-78-7]} \end{aligned}$	4-Methylumbelliferyl- B-D-Galactopyranoside extrapure	100 Mg 250 Mg	14.08 21.06	$\begin{aligned} & 66043 \\ & {[1132-61-2]} \end{aligned}$	MOPS Buffer for molecular biology, 99\% (3-Morpholinopropane Sulphonic Acid)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 18.03 \\ 44.22 \\ 157.92 \end{array}$
$\begin{aligned} & 48838 \\ & {[18997-57-4]} \end{aligned}$	4-Methylumbelliferyl-B-DGlucopyranoside extrapure	100 Mg 500 Mg	$\begin{aligned} & 16.98 \\ & 76.06 \end{aligned}$				
				$\begin{aligned} & 38602 \\ & {[68399-77-9]} \end{aligned}$	MOPSO Buffer extrapure, 99\% (3-Morpholino-2-Hydroxy Propane Sulphonic Acid)	25 Gms 100 Gms	$\begin{array}{r} 27.77 \\ 106.07 \end{array}$
$\begin{aligned} & 92009 \\ & {[24589-78-4]} \end{aligned}$	N-Methyl-N-Trimethylsilyl Trifluoroacetamide (MSTFA) extrapure, 98\%	$\begin{array}{r} 5 \mathrm{ml} \\ 25 \mathrm{ml} \\ 100 \mathrm{ml} \end{array}$	$\begin{array}{r} 36.85 \\ 131.60 \\ 394.80 \end{array}$				
				82595 [79803-73-9]	MOPSO Sodium Salt Buffer extrapure, 99%	$\begin{array}{r} 50 \mathrm{Gms} \\ 250 \mathrm{Gms} \end{array}$	$\begin{array}{r} 52.64 \\ 223.72 \end{array}$
$\begin{aligned} & 83294 \\ & {[24589-78-4]} \end{aligned}$	MSTFA+TMCS (99:1) ($\mathrm{N}-\mathrm{Methyl} \mathrm{I}$ - - (trimethylsilyl)trifluoroacetamide, Trimethylchlorosilane)	$10 \times 1 \mathrm{ml}$	78.96	$\begin{aligned} & 24829 \\ & {[480-16-0,} \\ & 6472-38-4] \end{aligned}$	Morin Hydrate (Aluminium lonophore I, C.I. 75660) extrapure AR, 98\% (2',3,4',5,7-Pentahydroxyflavone)	1 Gms 5 Gms	$\begin{aligned} & 15.00 \\ & 55.27 \end{aligned}$
$\begin{aligned} & 86338 \\ & {[66966-09-4]} \end{aligned}$	4-Methylumbelliferyl-a-L-Iduronide Free Acid extrapure, 97\%	1 Mg	345.45	$\begin{aligned} & 14189 \\ & {[526-99-8]} \end{aligned}$	Mucic Acid extrapure, 99\%	25 Gms 100 Gms 500 Gms	$\begin{array}{r} 9.08 \\ 29.08 \\ 103.70 \end{array}$
49959 \&	4-Methylumbelliferyl Myo-Inositol-1-Phosphate, N-Methyl-Morpholine Salt, Biosynth patent(WO99/48899)	25 Mg	199.77				
				$\begin{aligned} & 93027 \\ & {[84082-64-4]} \end{aligned}$	Mucin ex. Porcine Stomach, Type III, 90\%	10 Gms	76.33
$\begin{aligned} & 21400 \\ & {[15220-11-8]} \end{aligned}$	4-Methylumbelliferyl Sulfate Potassium Salt extrapure, 99\%	100 Mg 500 Mg	60.80 165.55	57868 d	Myosin II (in 4\% SDS) ex. rabbit skeletal muscle, 95\%	1 Mg 2 Mg	140.55 218.46

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{gathered} 27434 \\ {[1476-53-5]} \end{gathered}$	Novobiocin Sodium Salt (NVB), 95\%	$\begin{gathered} 100 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{gathered}$	14.61 69.09	76207 \&	Oxidase Reagent (Gordon-Macleod Reagent)	100 ml	5.92
		5 Gms	193.45	$\begin{aligned} & 91088 \text { [14698-29-4] } \end{aligned}$	Oxolinic Acid (OXO), 99\%	5 Gms	65.80
56221 [6600-40-4]	L-Norvaline extrapure, 99\%	1 Gms 5 Gms	23.42 48.43	$\begin{aligned} & 29779 \\ & {[59587-05-8]} \end{aligned}$	Oxolinic Acid Sodium (OXO-Na), 98\%	1 Gms 5 Gms	$\begin{array}{r} 35.40 \\ 120.28 \end{array}$
$\begin{aligned} & 68547 \\ & {[6409-77-4]} \end{aligned}$	Nuclear Fast Red (C.I. No. 60760)	1 Gms 5 Gms	19.74 97.38	$\begin{aligned} & 55540 \\ & {[6153-64-6]} \end{aligned}$	Oxytetracycline Dihydrate (OTC.2H2O) extrapure, 98\%	1 Gms	5.40
89249	Nylander`s Reagent & 50 ml & 5.66 & \[\begin{aligned} & 12455 \\ & {[2058-46-0]} \end{aligned} \] & Oxytetracycline Hydrochloride (OTC), 95\% & \begin{tabular}{l} 1 Gms \\ 5 Gms \end{tabular} & \[\begin{aligned} & 10.92 \\ & 50.14 \end{aligned} \] \\ \hline 56083 & Obermayor`s Reagent	100 ml	2.50	$\begin{aligned} & 61799 \\ & {[9006-59-1]} \end{aligned}$	Ovalbumin ex. Chicken Egg White for molecular biology, 90\%	1 Gms 5 Gms 25 Gms	$\begin{array}{r} 36.85 \\ 164.50 \\ 789.60 \end{array}$
$\begin{aligned} & 62339 \\ & {[124-30-1]} \end{aligned}$	Octadecylamine technical, 70\% (Stearylamine)	500 Gms	3.95 36.85				
$\begin{aligned} & 51038 \\ & {[124-30-1]} \end{aligned}$	Octadecylamine pure, 98\%	$\begin{array}{r} 250 \mathrm{Gms} \\ 1 \mathrm{Kg} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 7.90 \\ 28.95 \\ 111.86 \end{array}$	$\begin{aligned} & 13788 \\ & {[9006-59-1]} \end{aligned}$	Ovalbumin ex. Chicken Egg White for molecular biology, 98\%	$\begin{array}{r} 250 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{array}$	$\begin{aligned} & 107.91 \\ & 210.56 \end{aligned}$
				57590 [76738-62-0]	Paclobutrazol pure, 95\% (a-tert-Butyl-ß-(4-Chlorobenzyl) -1H-1,2,4-Triazole-1-Ethanol, PACZEE)	5 Gms 25 Gms	$\begin{aligned} & 11.84 \\ & 46.06 \end{aligned}$
$\begin{aligned} & 27703 \\ & {[111-64-8]} \end{aligned}$	Octanoyl Chloride pure, 99\%	25 ml	6.19				
		100 ml	16.19	$\begin{aligned} & 42883 \\ & {[33069-62-4]} \end{aligned}$	Paclitaxel (Taxol, PCXL), 99\%	$\begin{array}{r} 10 \mathrm{Mg} \\ 50 \mathrm{Mg} \\ 250 \mathrm{Mg} \end{array}$	$\begin{aligned} & 16.58 \\ & 52.64 \end{aligned}$
		500 ml	49.88				
60507 Octyl a-D-Galactopyranoside[149342-80-3] extrapure, 98\%		50 Mg	36.85				98.70
$\begin{aligned} & 63777 \\ & {[40427-75-6]} \end{aligned}$	Octyl B-D-Galactopyranoside extrapure, 98\%	50 Mg	36.85	$\begin{aligned} & 15028 \\ & {[57-10-3]} \end{aligned}$	Palmitic Acid pure, C16-98\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 8.55 \\ 84.22 \end{array}$
25253 [29781-80-4]	Octyl a-D-Glucopyranoside extrapure, 98\%	100 Mg	184.24	$\begin{aligned} & 34262 \\ & {[57-10-3]} \end{aligned}$	Palmitic Acid Reference Standard, C16-99\% (GC)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 7.63 \\ 28.95 \\ 100.02 \end{array}$
33134 [29836-26-8]	Octyl ß-D-Glucopyranoside extrapure, 98\%	1 Gms 5 Gms	$\begin{array}{r} 72.38 \\ 329.00 \end{array}$				
				77065 \&	Palmitic Acid Methyl Ester	5 Gms	26.32
$\begin{aligned} & 33910 \text { V } \\ & {[9002-93-1]} \end{aligned}$	Octylphenyl Polyethylene Glycol (IGEPAL CA-630®) for molecular biology ((Octylphenoxy)polyethoxyethanol)	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{aligned} & 11.84 \\ & 52.64 \end{aligned}$	[112-39-0]	Reference Standard, 99\%(GC) (Methyl Palmitate)	25 Gms	77.38
				$\begin{aligned} & 62199 \\ & {[112-67-4]} \end{aligned}$	Palmitoyl Chloride pure, 98\% (Hexadecanoyl Chloride, Palmitic Acid Chloride)	$\begin{array}{r} 25 \mathrm{ml} \\ 100 \mathrm{ml} \\ 500 \mathrm{ml} \end{array}$	$\begin{array}{r} 23.69 \\ 52.64 \\ 105.28 \end{array}$
$\begin{aligned} & 62799 \\ & \text { [82419-36-1] } \end{aligned}$	Ofloxacin (OFX), 98\%	1 Gms 5 Gms	$\begin{aligned} & 39.48 \\ & 78.96 \end{aligned}$				
				$\begin{aligned} & 83162 \\ & {[130-85-8]} \end{aligned}$	Pamoic Acid pure, 98\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	$\begin{aligned} & 15.79 \\ & 52.64 \end{aligned}$
$\begin{aligned} & 23576 \\ & {[1320-06-5]} \end{aligned}$	Oil Red O for molecular biology, 75\% (Solvent Red 27, Sudan Red 5B) (C. I. No. 26125)	$25 \text { Gms }$$100 \mathrm{Gms}$	$\begin{array}{r} 9.34 \\ 29.22 \end{array}$				
				$\begin{aligned} & 74635 \\ & {[85-85-8]} \end{aligned}$	PAN Indicator (1(2-Pyridylazo)-2Naphthol) extrapure AR, 99\% (1 (2-Pyridylazo)-2- Naphthol)	1 Gms 5 Gms 25 Gms	$\begin{array}{r} 13.16 \\ 52.64 \\ 236.88 \end{array}$
$\begin{aligned} & 23534 \\ & {[7060-74-4]} \end{aligned}$	Oleandomycin Phosphate extrapure, $100 \mathrm{U} / \mathrm{mg}$ (Matromycin)	100 Mg 1 Gms	$\begin{array}{r} 52.64 \\ 131.60 \end{array}$				
				$\begin{aligned} & 37740 \\ & {[8049-47-6]} \end{aligned}$	Pancreatin 3x ex. Porcine Pancreas, 75U/mg	100 Gms 500 Gms	$\begin{aligned} & 13.29 \\ & 64.62 \end{aligned}$
$\begin{aligned} & 70855 \\ & {[8008-57-9]} \end{aligned}$	Orange Oil extrapure	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{aligned} & 11.05 \\ & 51.19 \end{aligned}$				
				$\begin{aligned} & 41421 \\ & {[8049-47-6]} \end{aligned}$	Pancreatin 4NF ex. Porcine Pancreas, 100U/mg	100 Gms 500 Gms	$\begin{array}{r} 38.16 \\ 157.26 \end{array}$
$\begin{aligned} & 30774 \\ & {[1400-62-0]} \end{aligned}$	Orcein	5 Gms 10 Gms 25 Gms	$\begin{aligned} & 18.03 \\ & 31.58 \\ & 65.80 \end{aligned}$				
				$\begin{aligned} & 95907 \\ & {[9001-73-4]} \end{aligned}$	Papain 1x USP ex. Papaya Latex, 6000USP U/mg	$\begin{aligned} & 100 \mathrm{Gms} \\ & 500 \mathrm{Gms} \end{aligned}$	$\begin{array}{r} 5.26 \\ 22.77 \end{array}$
86848 [3184-13-2]	L-Ornithine Monohydrochloride extrapure CHR, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	7.24 13.03 57.90	$\begin{aligned} & 80400 \\ & {[9001-73-4]} \end{aligned}$	Papain 5x USP ex. Papaya Latex, 30000USP U/mg (Papainase, Carica Papaya)	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$	$\begin{array}{r} 12.37 \\ 46.06 \\ 151.34 \end{array}$
$\begin{aligned} & 98499 \\ & {[7240-38-2]} \end{aligned}$	Oxacillin Sodium Salt Monohydrate (OXC.Na.H2O), 815ug/mg	5 Gms	56.98	59196 [16593-81-0]	PAR extrapure, 99\% (4-(2-Pyridylazo)-Resorcinol Monosodium Salt Hydrate)	1 Gms 5 Gms	$\begin{aligned} & 11.32 \\ & 48.43 \end{aligned}$
$\begin{gathered} 62704 \\ {[328-42-7]} \end{gathered}$	Oxalacetic Acid extrapure, 98\% (Oxaloacetic Acid, Ketosuccinic Acid, Oxobutanedioic Acid, 2-Oxosuccinic Acid)	1 Gms 5 Gms 25 Gms	$\begin{array}{r} 14.61 \\ 61.59 \\ 248.72 \end{array}$				
				$\begin{aligned} & 27436 \\ & {[1263-89-4]} \end{aligned}$	Paromomycin Sulfate (PRM)	1 Gms 5 Gms 25 Gms	$\begin{array}{r} 41.45 \\ 117.12 \\ 450.99 \end{array}$

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
13684 [9046-40-6]	Pectic Acid pure	100 Gms	48.69	$\underset{\text { [9003-99-0] }}{87913} \square$	Peroxidase ex. Horseradish RZ >2.0, w/o Stab., Salt free (HRP Type 3), 180U/mg solids	5 K.Units 25 K.Units	$\begin{array}{r} 56.72 \\ 123.31 \end{array}$
$\begin{aligned} & 90464 \text { Pectinase ex. Aspergillus Niger, } \\ & \text { [9032-75-1] } \begin{array}{l} \text { 3U/mg powder } \\ \text { (Macerozyme) } \end{array} \end{aligned}$		1000 Units	28.95				
		5000 Units	65.80	$\begin{aligned} & 30709 \\ & {[66-71-7]} \end{aligned}$	1,10-Phenanthroline Anhydrous extrapure, 99%, water 2%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 10.53 \\ 36.85 \\ 105.28 \end{array}$
		10000	105.28				
		Units					
$\begin{aligned} & 27295 \\ & {[9032-75-1]} \end{aligned}$	Pectinase ex. Aspergillus Niger, 3000 IU/g powder (Macerozyme)	100 Gms	36.85	$\begin{aligned} & 65898 \\ & {[5144-89-8]} \end{aligned}$	1,10-Phenanthroline Monohydrate extrapure AR, 99.5\%	5 Gms 25 Gms	$\begin{array}{r} 7.37 \\ 26.32 \end{array}$
		500 Gms	105.28				
$\begin{aligned} & 38215 \\ & {[1002-84-2]} \end{aligned}$	Pentadecanoic Acid (Pentadecylic Acid) extrapure, 98\% (Pentadecyclate, n-Pentadecylate)	5 Gms	32.90			100 Gms 500 Gms	$\begin{array}{r} 76.33 \\ 342.16 \end{array}$
		25 Gms	85.54				
		100 Gms	248.72	81067 [5144-89-8]	1,10-Phenanthroline Monohydrate extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.5\%	5 Gms	8.95
$\begin{aligned} & 41991 \\ & {[602-94-8]} \end{aligned}$	Pentafluorobenzoic Acid pure, 98\% (2,3,4,5,6-Pentafluorobenzoic Acid)	5 Gms	12.37			25 Gms	31.58
		25 Gms	43.16			100 Gms	86.86
		100 Gms	99.23			500 Gms	381.64
$\begin{gathered} 40309 \\ {[69-57-8]} \end{gathered}$	Penicillin G Sodium Salt (PNL), 98\%	1 Gms 5 Gms	$\begin{aligned} & 32.90 \\ & 85.54 \end{aligned}$	meets compendial specs of USP			
				31888 [18851-33-7]	1,10-Phenanthroline Hydrochloride Monohydrate extrapure AR, 99.5\%	5 Gms 25 Gms	$\begin{aligned} & 11.84 \\ & 52.64 \end{aligned}$
$\begin{aligned} & 13585 \\ & {[771-61-9]} \end{aligned}$	Pentafluorophenol (PFP) extrapure, 99\% (2,3,4,5,6-Pentafluorophenol)	5 Gms 25 Gms	$\begin{aligned} & 18.69 \\ & 77.38 \end{aligned}$	$\begin{gathered} 55782 ~ \bullet \\ {[299-11-6]} \end{gathered}$	Phenazonium Methosulphate (PMS) extrapure, 99\% (N-Methylphenazonium Methyl Sulphate, N-Methylphenazonium Methosulphate, Phenazine Methosulphate)	1 Gms 5 Gms	$\begin{aligned} & 10.66 \\ & 43.16 \end{aligned}$
$\begin{aligned} & 20895 \\ & {[42075-32-1]} \end{aligned}$	(2R,4R)-2,4-Pentanediol extrapure, 99\%	$\begin{array}{r} 1 \mathrm{Gms} \\ 2.5 \mathrm{Gms} \end{array}$	$\begin{array}{r} 437.44 \\ 1060.04 \end{array}$				
$\begin{aligned} & 10610 \\ & {[72345-23-4]} \end{aligned}$	(2S,4S)-2,4-Pentanediol extrapure, 99\%	1 Gms 2.5 Gms	$\begin{aligned} & 364.53 \\ & 883.83 \end{aligned}$				
				$\begin{aligned} & 13920 \\ & {[299-11-6]} \end{aligned}$	Phenazonium Methosulphate (PMS) for tissue culture, 99\% (N-Methylphenazonium Methyl Sulphate, N-Methylphenazonium Methosulphate, Phenazine Methosulphate)	1 Gms 5 Gms 25 Gms	$\begin{array}{r} 13.95 \\ 64.62 \\ 269.12 \end{array}$
$\underset{[54-95-5]}{16165}$	Pentylenetetrazole (Pentetrazole) extrapure, 99\% (1,5-Pentamethylenetetrazole) (Pentylenetetrazole,1,5-Pentamethylen etetrazole)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	$\begin{aligned} & 11.84 \\ & 39.48 \end{aligned}$				
				48914 [68807-90-9]	Phenolphthalein Diphosphate Tetrasodium Salt extrapure AR, 95\% (Phenolphthalein Bisphosphate Tetrasodium Salt)	1 Gms 5 Gms 25 Gms	$\begin{array}{r} 23.69 \\ 57.11 \\ 219.11 \end{array}$
$\begin{aligned} & 32212 \\ & {[8006-90-4]} \end{aligned}$	Peppermint oil extrapure, 50\%	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{array}{r} 7.90 \\ 28.95 \end{array}$				
12647 ■	Pepsin 1:3000 ex. Porcine Stomach	25 Gms	12.50				
[9001-75-6]	Mucosa, 0.8Anson U/mg	100 Gms	30.40	$\begin{aligned} & 95444 \\ & {[122-59-8]} \end{aligned}$	Phenoxyacetic Acid extrapure, 99\% (Glycolic Phenyl Ether)	100 Gms 500 Gms	$\begin{array}{r} 6.71 \\ 24.87 \end{array}$
		500 Gms	138.18				
48062 [9001-75-6]	Pepsin 1:10000 ex. Porcine Stomach Mucosa, 2.5Anson U/mg	25 Gms	24.87	$\begin{gathered} 19630 \\ {[108321-84-2]} \end{gathered}$	L-Phenylalanine-7-Amido-4-Methylc oumarin Trifluoroacetate Salt extrapure, 98\% (L-Phenylalanine-AMC.TFA Salt)	$\begin{aligned} & 25 \mathrm{Mg} \\ & 50 \mathrm{Mg} \end{aligned}$	$\begin{aligned} & 153.31 \\ & 222.93 \end{aligned}$
		100 Gms	88.44				
		500 Gms	400.72				
$\begin{aligned} & 11787 \\ & {[9001-75-6]} \end{aligned}$	Pepsin 1:10000 ex. Porcine Stomach Mucosa extrapure AR, 2.5Anson U/mg	25 Gms	27.64	$\begin{aligned} & 79455 \quad \bullet \\ & {[2462-32-0]} \end{aligned}$	L-Phenylalanine Benzyl Ester Hydrochloride extrapure, 99\%	25 Gms	154.10
		100 Gms	96.73				
		500 Gms	449.15	$\begin{aligned} & 34351 \\ & {[3182-93-2]} \end{aligned}$	L-Phenylalanine Ethyl Ester Hydrochloride extrapure, 99\%	1 Gms	13.16
$\begin{aligned} & 63364 \text { ■ } \\ & {[9001-75-6]} \end{aligned}$	Pepsin 2x cryst. ex. Porcine Stomach Mucosa, 2500U/mg solids	1 Gms	39.48	[3182-93-2]	Hydrochloride extrapure, 99\%	5 Gms	54.09
		5 Gms	$\begin{aligned} & 125.02 \\ & 460.60 \\ & 987.00 \end{aligned}$			25 Gms	160.68
		25 Gms		$\begin{aligned} & 78586 \\ & {[7524-50-7]} \end{aligned}$	L-Phenylalanine Methyl Ester Hydrochloride extrapure, 99\%	1 Gms	11.58
		100 Gms				5 Gms	32.90
$\begin{gathered} 28498 \text { ■ } \\ {[9003-99-0]} \end{gathered}$	Peroxidase ex. Horseradish RZ >3.0, w/o Stab., Salt free (HRP Type 1), 250U/mg solids	1.25	41.45			25 Gms	101.33
		K.Units 5 K.Units	76.06	$\begin{aligned} & 89311 \\ & {[65147-22-0]} \end{aligned}$	Z-Phenylalanylarginine 7-Amido-4-Methylcoumarin Hydrochloride Salt extrapure, 99\% (Z-Phe-Arg-AMC.HCl Salt)	25 Mg	461.26
		25 K.Units	310.97				
73292 [9003-99-0]	Peroxidase ex. Horseradish RZ >2.0, w/ 30\% Stab., Salt free (HRP Type 2), 110U/mg solids	5 K.Units 25 K.Units 50 K.Units	42.24				
			106.20 179.50	$\begin{aligned} & 14059 \\ & {[91-40-7]} \end{aligned}$	N -Phenylanthranilic Acid (2-Anilinobenzoic Acid) extrapure AR, 99\%	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$	$\begin{aligned} & 18.82 \\ & 70.27 \end{aligned}$

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 53993 \\ & {[1689-82-3]} \end{aligned}$	4-Phenylazophenol (Solvent Yellow 7, 4-HAB) extrapure, 98\% (p-Hydroxyazobenzene)(C.I. No. 11800)	25 Gms 100 Gms	11.05 38.69	$\begin{aligned} & 90365 \\ & {[66778-08-3]} \end{aligned}$	Phenylphosphate Disodium Salt Dihydrate (High Purity) extrapure AR, 98\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 250 \mathrm{Gms} \end{array}$	$\begin{array}{r} 28.16 \\ 84.36 \\ 210.69 \end{array}$
$\begin{aligned} & 92890 \\ & {[98-80-6]} \end{aligned}$	Phenylboronic Acid extrapure, 95\%	25 Gms 100 Gms	25.00 92.12	$\begin{aligned} & 50478 \\ & {[118-55-8]} \end{aligned}$	Phenyl Salicylate (Salol) extrapure, 99\%	100 Gms 500 Gms	13.55 51.32
$\begin{aligned} & 70291 \\ & {[1821-12-1]} \end{aligned}$	4-Phenyl Butyric Acid pure, 99\%	25 Gms 100 Gms	46.06 144.76	$\begin{aligned} & 21726 \\ & {[2936-70-1]} \end{aligned}$	Phenyl β-D-Thioglucopyranoside extrapure, 98\%	25 Mg 50 Mg	59.35 103.57
$\underset{[95-54-5]}{27644}$	o-Phenylenediamine free base (OPD) extrapure AR, 99\%	5 Gms 25 Gms	31.58 105.28	$\begin{aligned} & 16795 \\ & {[103-85-5]} \end{aligned}$	N-Phenylthiourea extrapure, 97\%	10 Gms 25 Gms	28.16 50.01
		100 Gms	236.88 50.01	30746 ■	Phleomycin (PLM) Solution ($20 \mathrm{mg} / \mathrm{mL}$ in 20 mM HEPES)	1 ml	98.70
$\begin{gathered} 73229 \\ {[615-28-1]} \end{gathered}$	o-Phenylenediamine Dihydrochloride (OPD.2HCI) extrapure AR, 99\%		$\begin{array}{r} 50.01 \\ 142.00 \end{array}$	$\begin{aligned} & 69353 \\ & {[108-73-6]} \end{aligned}$	Phloroglucinol Anhydrous extrapure AR, 99\%	25 Gms 100 Gms	17.11 59.22
$\begin{aligned} & 59576 \\ & {[64-04-0]} \end{aligned}$	2-Phenyl Ethylamine pure, 99\%	$\begin{aligned} & 250 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{aligned} & 14.87 \\ & 28.16 \end{aligned}$	$\begin{aligned} & 99529 \\ & {[18472-87-2]} \end{aligned}$	Phloxin B	$\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{gathered}$	$\begin{array}{r} 5.26 \\ 18.42 \end{array}$
$\begin{aligned} & 27861 \\ & {[2871-15-0]} \end{aligned}$	Phenyl-a-D-Galactopyranoside extrapure, 98\%	250 Mg	144.10				78.96
 [2818-58-8]	Phenyl-ß-D-Galactopyranoside extrapure, 97%	1 Gms	89.88	95131	1X Phosphate Buffered Saline (PBS) for molecular biology	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	6.97 16.98
$\begin{gathered} 45754 \\ {[122-60-1]} \end{gathered}$	Phenyl Glycidyl Ether (PGE) extrapure, 98\% (2,3-Epoxypropyl Phenyl Ether, 1,2-Epoxy-3-phenoxypropane)	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{array}{r} 8.55 \\ 26.32 \end{array}$	78529	10X Phosphate Buffered Saline (PBS) for molecular biology	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	8.69 20.00
				13435 \&	10X Phosphate Buffered Saline	200 ml	7.90
$\begin{aligned} & 23116 \\ & {[2935-35-5]} \end{aligned}$	L-Phenyl Glycine extrapure, 99\%	10 Gms 25 Gms	$\begin{aligned} & 3.95 \\ & 9.48 \end{aligned}$	Tween-20 (PBST) for molecular biology		1000 ml	32.90
		100 Gms 500 Gms	9.48 21.98 96.86	$\begin{aligned} & 40083 \\ & {[10526-80-4]} \end{aligned}$	Phosphoenolpyruvate Monocyclohexylammonium Salt (PEP MCHA Salt) extrapure, 98\%	$\begin{array}{r} 100 \mathrm{Mg} \\ 250 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{array}$	9.34 18.69 44.88
$\begin{aligned} & 17083 \\ & {[103-72-0]} \end{aligned}$	Phenyl Isothiocyanate (PITC) pure, 98\%	$\begin{gathered} 25 \mathrm{ml} \\ 100 \mathrm{ml} \\ 500 \mathrm{ml} \end{gathered}$	$\begin{array}{r} 19.74 \\ 52.64 \\ 230.30 \end{array}$			5 Gms	218.59
				$\begin{array}{ll} 31569 & \text { P } \\ {[35556-70-8]} & \mathbf{T} \\ \hline \end{array}$	Phosphoenolpyruvate Tricyclohexylammonium Salt (PEP TCHA Salt) extrapure, 98\%	$\begin{aligned} & 100 \mathrm{Mg} \\ & 250 \mathrm{Mg} \end{aligned}$	15.53 23.29
$\begin{aligned} & 18962 \\ & {[103-72-0]} \end{aligned}$	Phenyl Isothiocyanate (PITC) extrapure AR, 99\%	$\begin{gathered} 25 \mathrm{ml} \\ 100 \mathrm{ml} \end{gathered}$	$\begin{aligned} & 36.85 \\ & 79.22 \end{aligned}$			1 Gms	69.62
$\underset{[103-72-0]}{15127}$	Phenyl Isothiocyanate (PITC) for HPLC \& Sequencing, 99\%	$\begin{array}{r} 5 \times 1 \mathrm{ml} \\ 5 \mathrm{ml} \\ 5 \times 5 \mathrm{ml} \end{array}$	$\begin{array}{r} 26.32 \\ 23.69 \\ 107.91 \end{array}$	$\begin{aligned} & 69400 \\ & {[9001-87-0]} \end{aligned}$	Phospholipase D (Lecithinase D) ex. Streptomyces chromofuscus, 40U/mg	200 Units 400 Units	236.35 378.09
				84122 [26016-99-9]	Phosphomycin Disodium Salt (Fosfomycin Disodium Salt) extrapure, 99\% ((-)-(1R,2S)-(1,2-Epoxypropyl)Phosphonic Acid, Phosphonomycin)	1 Gms 5 Gms	93.96
$\begin{gathered} 98152 \\ {[941-69-5]} \end{gathered}$	N-Phenylmaleimide extrapure, 98\%	5 Gms 25 Gms 100 Gms	10.53 28.95 46.06				
$\begin{aligned} & 89793 \\ & {[62-38-4]} \end{aligned}$	PhenyImercuric Acetate (PMA) pure, 98\% (Mercury Phenyl Acetate)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	$\begin{aligned} & 10.53 \\ & 40.80 \end{aligned}$	65312 [9012-69-5]	Phosphorylase B ex. Rabbit Muscle, 50U/mg	10 Mg	78.96
		100 Gms	144.76	27329 \&	o-Phthalaldehyde (OPA) extrapure	5 Gms	12.37
$\begin{aligned} & 23358 \\ & {[8003-05-2]} \end{aligned}$	PhenyImercuric Nitrate (Basic) (PMN) pure, 98\% (Mercury Phenyl Nitrate)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 21.06 \\ 85.54 \\ 296.10 \end{array}$	[643-79-8]	AR, 99\% (Phthaldialdehyde)	25 Gms	53.03
				89886 [88-96-0]	Phthalamide (Phthalic Acid Diamide) pure, 98\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	16.58 30.40
$\begin{aligned} & 87606 \\ & {[329-98-6]} \end{aligned}$	PhenyImethane Sulphonyl Fluoride (PMSF) extrapure, 99\%	$\begin{array}{r} 1 \mathrm{Gms} \\ 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 9.87 \\ 31.58 \\ 111.86 \\ 368.48 \end{array}$	$\begin{aligned} & 62747 \\ & {[85-41-6]} \end{aligned}$	Phthalimide extrapure, 99\% (Phthalic Dicarboximide, 1,3-Dihydro-1,3-Dioxoisoindole, 1,3-Dioxoisoindoline)	$\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$	$\begin{array}{r} 7.63 \\ 73.30 \end{array}$
$\begin{aligned} & 84375 \\ & {[329-98-6]} \end{aligned}$	Phenylmethane Sulphonyl Fluoride (PMSF) for molecular biology, 99\%	$\begin{array}{r} 1 \mathrm{Gms} \\ 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	$\begin{array}{r} 12.50 \\ 39.48 \\ 157.92 \end{array}$	$\begin{aligned} & 45501 \\ & {[87-41-2]} \end{aligned}$	Phthalide pure, 98\% (1-Iso-Benzofuranone)	100 Gms 500 Gms	$\begin{array}{r} 6.97 \\ 29.08 \end{array}$
				$\begin{aligned} & 26603 \\ & {[4192-28-3]} \end{aligned}$	N-Phthaloyl-L-Alanine extrapure, 98\%	1 Gms 5 Gms	$\begin{aligned} & 14.21 \\ & 64.35 \end{aligned}$

Catalogue 2024-25

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 20883 \\ & {[299-27-4]} \end{aligned}$	Potassium Gluconate extrapure, 99\% (D-Gluconic Acid Potassium Salt, Potassium-D-Gluconate)	100 Gms 500 Gms	3.95 16.58	$\begin{aligned} & 35981 \\ & \text { [7531-52-4] } \end{aligned}$	L-Prolinamide extrapure, 98\% ((2S)-2-Pyrrolidinecarboxamide, (-) -Prolinamide, (2S) -2-Carbamoylpyrrolidine)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 11.84 \\ 32.90 \\ 118.44 \end{array}$
$\begin{aligned} & 48320 \\ & {[865-47-4]} \end{aligned}$	Potassium tert-Butoxide pure, 98\%	100 Gms	9.87			500 Gms	552.72
		500 Gms	42.11	57732 [68832-13-3]	D-Prolinol extrapure, 98\% ((R)-(-)-2-(Hydroxymethyl)pyrrolidine, (R)-(-)-2-Pyrrolidinemethanol)	1 ml	26.98
$\begin{aligned} & 95056 \\ & {[24634-61-5]} \end{aligned}$	Potassium Sorbate pure, 99\%	$\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$	14.48 26.32			$\begin{array}{r} 5 \mathrm{ml} \\ 25 \mathrm{ml} \end{array}$	105.41 181.48
$\begin{aligned} & 28008 \\ & {[19423-77-9]} \end{aligned}$	Praseodymium (III) Chloride Hydrate extrapure, 99.9\%	25 Gms 100 Gms	60.80 124.36	$\begin{aligned} & 46457 \text { \& } \\ & {[23356-96-9]} \end{aligned}$	L-Prolinol extrapure, 98\% ((S)-(+)-2-(Hydroxymethyl) pyrrolidine, (S)-(+)-2-Pyrrolidinemethanol)	$\begin{array}{r} 5 \mathrm{ml} \\ 25 \mathrm{ml} \end{array}$	26.32 72.38
83218 [15878-77-0]	Praseodymium (III) Nitrate Hexahydrate extrapure, 99.9\% (Praseodymium Trinitrate Hexahydrate)	25 Gms 100 Gms	46.32 159.24	$\begin{aligned} & 41622 \\ & {[93-55-0]} \end{aligned}$	Propiophenone pure, 99\%	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	12.90 46.06
$\begin{aligned} & 99350 \\ & \text { [52093-27-3] } \end{aligned}$	Praseodymium (III) Trifluoromethanesulfonate extrapure, 98\% (Praseodymium Triflate, Trifluoromethanesulfonic Acid Praseodymium Salt)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	$\begin{array}{r} 53.96 \\ 201.74 \end{array}$	$\begin{aligned} & 84215 \\ & {[106-94-5]} \end{aligned}$	n-Propyl Bromide pure, 98\%	$\begin{array}{r} 100 \mathrm{ml} \\ 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 6.32 \\ 21.06 \\ 81.59 \end{array}$
				$\begin{aligned} & 45799 \\ & {[108-32-7]} \end{aligned}$	Propylene Carbonate pure, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	$\begin{array}{r} 7.90 \\ 35.01 \end{array}$
$\begin{aligned} & 63639 \\ & {[12037-29-5]} \end{aligned}$	Praseodymium (III, IV) Oxide extrapure, 99.9\%	10 Gms 50 Gms	$\begin{array}{r} 9.74 \\ 38.69 \end{array}$	56082[107-08-4]	n-Propyl lodide extrapure, 99\%	$\begin{array}{r} 25 \mathrm{ml} \\ 100 \mathrm{ml} \end{array}$	$\begin{aligned} & 26.32 \\ & 98.70 \end{aligned}$
$\begin{aligned} & 10693 \\ & {[57-83-0]} \end{aligned}$	Progesterone extrapure, 97-103\% (4-Pregnene-3,20-Dione)	5 Gms 25 Gms	17.24			250 ml	236.88
		25 Gms	52.64	25034	Propyl Propionate extrapure, 99\%	250 ml	14.87
54236 [21087-77-4]	Progoitrin Potassium Salt Reference Standard Grade, 75\% (R)-2-Hydroxy-3-Butenylglucosinolate Potassium Salt)	10 Mg	394.80	[106-36-5]		1000 ml	55.80
				$\begin{aligned} & 11195 \\ & {[25535-16-4]} \end{aligned}$	Propidium lodide (PI) for molecular biology, 95\% (3,8-Diamino-5-[3- (diethylmethylammonio)propyl] -6-Phenylphenanthridinium Diiodide)	$\begin{aligned} & 10 \mathrm{Mg} \\ & 25 \mathrm{Mg} \end{aligned}$	30.93 56.32
$\begin{aligned} & 92825 \\ & {[127277-53-6]} \end{aligned}$	Prohexadione Calcium technical grade, 95%	$\begin{gathered} 100 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{gathered}$	26.32 118.44			100 Mg	164.50
$\begin{aligned} & 31651 \\ & {[72556-74-2]} \end{aligned}$	Phosphocholine Chloride Calcium Salt Tetrahydrate pure, 97\% (Calcium phosphorylcholine chloride, Choline chloride phosphate calcium salt, Choline phosphate chlo	5 Gms 25 Gms 100 Gms	33.29 71.33 205.95	$\begin{aligned} & 78349 \\ & {[9009-65-8]} \end{aligned}$	Protamine Sulfate for molecular biology, 90-110\% (Protamine Sulphate)	$\begin{array}{r} 1 \mathrm{Gms} \\ 5 \mathrm{Gms} \\ 10 \mathrm{Gms} \end{array}$	$\begin{array}{r} 39.48 \\ 144.76 \\ 263.20 \end{array}$
				79546	Protein A soluble	2 Mg	160.42
$\begin{gathered} 741528 \\ {[115388-93-7]} \end{gathered}$	L-Proline-7-Amido-4-Methylcoumari n Hydrobromide Salt extrapure, 98\% (L-Proline-AMC.HBr Salt)	10 Mg 25 Mg	$\begin{aligned} & 59.75 \\ & 99.49 \end{aligned}$	$\begin{aligned} & 14887 \\ & {[25535-16-4]} \end{aligned}$	Propidium Iodide Solution ($1 \mathrm{mg} / \mathrm{ml}$ in H2O)	10 ml	34.22
				$\begin{aligned} & 84589 \\ & {[9036-06-0]} \end{aligned}$	Protease ex. Aspergillus Oryzae (Fungal) (Type 1 - Acidic, powder), 500kHUT/g (Subtilisin A)	25 Gms	63.96
$\begin{aligned} & 79380 \\ & {[70375-23-4]} \end{aligned}$	Z-Proline-Arginine-7-Amido-4-Meth ylcoumarin Hydrochloride extrapure, 99\% (Z-Pro-Arg-AMC-HCl)	10 Mg 25 Mg	$\begin{array}{r} 938.04 \\ 2009.80 \end{array}$				
				$\begin{aligned} & 38207 \\ & {[9036-06-0]} \end{aligned}$	Protease ex. Bacillus Licheniformis (Type 4 - Neutral, powder), 10U/mg (Subtilisin A)	$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$	$\begin{array}{r} 51.19 \\ 134.36 \end{array}$
$\begin{aligned} & 16110 \\ & {[16652-71-4]} \end{aligned}$	L-Proline Benzyl Ester Hydrochloride extrapure, 99\%		28.95 105.28				
$\begin{aligned} & 73978 \text { \& } \\ & {[97216-17-6]} \end{aligned}$	L-Proline- β - Naphthylamide Hydrobromide extrapure, 99\%	100 Mg	58.43	$\begin{aligned} & 81525 \\ & {[9036-06-0]} \end{aligned}$	Protease ex. Bacillus Sp. (Type 5 Neutral, granules), 8kNPU/g (Subtilisin A)	100 Gms 500 Gms	9.61 41.59
$\begin{aligned} & 16680 \\ & \text { [72162-84-6] } \end{aligned}$	Proline Specific Endopeptidase ex. Flavobacterium Sp., 5U/mg	50 Units	128.97	66789 [9036-06-0]	Protease ex. Bacillus Subtilis (Type 2 - Alkaline, granules), 100kAPU/g	250 Gms	51.19
$\begin{aligned} & 31798 \\ & {[107-19-7]} \end{aligned}$	Propargyl Alcohol pure, 99\%	250 ml	14.81		2 - Alkaline, granules), 100kAPU/g (Subtilisin A)		
		$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	27.64 134.23	$\begin{aligned} & 23434 \\ & {[9036-06-0]} \end{aligned}$	Protease ex. Bacillus Subtilis (Type 3 - Alkaline, granules), 1000kAPU/g (Subtilisin A)	500 Gms	28.82
90557 [62937-45-5]	D-Prolinamide extrapure, 98\% ((R)-Pyrrolidine-2-Carboxamide)	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	62.51 234.12	$\begin{aligned} & 84244 \\ & {[9036-06-0]} \end{aligned}$	Protease ex. Bacillus Subtilis (Type 6 - Neutral, powder), 100kNPU/g (Subtilisin A)	100 Gms	46.45

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 49936 \\ & {[39450-01-6]} \end{aligned}$	Proteinase K ex. Tritirachium Album (Type A) for molecular biology, 30U/mg (Endopeptidase K)	$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$	14.48 47.38	$\begin{aligned} & 31129 \\ & {[7291-22-7]} \end{aligned}$	Pyridine-d5 For NMR Spectroscopy, 99.5 Atom\%D	10 ml	315.84
		500 Mg 1 Gms	210.56 368.48	$\begin{aligned} & 73512 \\ & {[1692-25-7]} \end{aligned}$	3-Pyridineboronic Acid extrapure, 98\%	1 Gms	$\begin{array}{r} 26.85 \\ 111.60 \end{array}$
		5 Gms	1289.68			25 Gms	490.87
36331	Proteinase K Solution ($20 \mathrm{mg} / \mathrm{ml}$)	$1 \mathrm{ml}$	31.58	$\begin{aligned} & 16539 \\ & {[499-83-2]} \end{aligned}$	Pyridine-2,6-Dicarboxylic Acid extrapure, 99%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{aligned} & 11.19 \\ & 32.90 \end{aligned}$
		$5 \times 5 \mathrm{ml}$	223.72			500 Gms	144.76
$\begin{aligned} & 32753 \\ & {[39450-01-6]} \end{aligned}$	Proteinase K ex. Pichia Pastoris (Type D - Recombinant) for molecular biology \& PCR, 30U/mg (Endopeptidase K)	$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$	17.11 55.27	$\begin{aligned} & 12644 \\ & {[636-73-7]} \end{aligned}$	Pyridine-3-Sulphonic Acid (P3SA) extrapure, 98\% (3-Pyridinesulfonic Acid)	25 Gms	26.32
		500 Mg	250.04	$\begin{aligned} & 52928 \\ & {[41468-25-1]} \end{aligned}$	Pyridoxal-5-Phosphate Monohydrate extrapure, 98\%	1 Gms	13.42
		1 Gms	447.44			5 Gms	60.93
		5 Gms	1513.40			25 Gms	195.03
$\begin{aligned} & 45073 \\ & {[39450-01-6]} \end{aligned}$	Proteinase K ex. Pichia Pastoris (Type E-Recombinant) for molecular biology \& PCR, 40U/mg (Endopeptidase K)	$\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$	27.77 96.20	$\begin{gathered} 88205 \\ {[58-56-0]} \end{gathered}$	Pyridoxine Hydrochloride (Vitamin B6) pure, 98\%	25 Gms 100 Gms 500 Gms	6.71 18.42 71.06
$\begin{aligned} & 66893 \\ & {[9057-02-7]} \end{aligned}$	Pullulan (Polymaltotriose, PULL) extrapure	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	39.48 78.96 236.88	$\begin{aligned} & 47330 \\ & {[1046-56-6]} \end{aligned}$	3(2-Pyridyl) -5,6-Diphenyl-1,2,4-Triazine (PDT) extrapure AR, 99\%	1 Gms 5 Gms	$\begin{array}{r} 37.51 \\ 163.84 \end{array}$
$\begin{aligned} & 93909 \\ & {[58-58-2]} \end{aligned}$	Puromycin Dihydrochloride (PRM), 98\%	$\begin{gathered} 10 \mathrm{Mg} \\ 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{gathered}$	43.16 84.22 236.88	16315 [68181-17-9]	3-(2-Pyridyldithio)propionic Acid N-Hydroxysuccinimide Ester (SPDP Crosslinker) extrapure, 95\% (N-Succinimidyl 3- (2-Pyridyldithio)Propionate, 3- (2-Pyridyldithio)-Propionic Acid-OSu)	$\begin{array}{r} 100 \mathrm{Mg} \\ 250 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{array}$	$\begin{array}{r} 50.01 \\ 68.43 \\ 118.44 \end{array}$
$\begin{aligned} & 85492 \\ & {[110-60-1]} \end{aligned}$	Putrescine free base extrapure, 99\% (1,4-Diaminobutane, 1,4-Butanediamine, Tetramethylenediamine)	25 Gms	22.37				
		$\begin{aligned} & 100 \mathrm{Gms} \\ & 500 \mathrm{Gms} \end{aligned}$	$\begin{array}{r} 69.75 \\ 329.00 \end{array}$	$\begin{aligned} & 77504 \\ & \text { [79551-14-7] } \end{aligned}$	Ferene Disodium Salt extrapure, 98\% (3-(2-Pyridyl)-5,6-di(2-Furyl) -1,2,4-Triazine-5,5-Disulfonic Acid Disodium Salt)	$\begin{array}{r} 1 \mathrm{Gms} \\ 10 \mathrm{Gms} \end{array}$	436.91
$\begin{gathered} 81343 \\ {[333-93-7]} \end{gathered}$	Putrescine Dihydrochloride extrapure, 99\%	1 Gms	6.19				
		5 Gms	18.82	$\underset{[98-79-3]}{77577} \text { \& }$	L-Pyroglutamic Acid extrapure, 99\%	100 Gms	10.53
		25 Gms	78.17			500 Gms	26.32
		100 Gms	280.97	$\begin{aligned} & 36306 \\ & {[66642-36-2]} \end{aligned}$	L-Pyroglutamic Acid-7-Amido-4-Methylcoumarin extrapure, 98\% (L-Pyroglutamic Acid-AMC)	10 Mg 25 Mg	131.73
$\begin{aligned} & 49270 \\ & {[333-93-7]} \end{aligned}$	Putrescine Dihydrochloride for tissue culture, 99\%	$\begin{array}{r} 1 \text { Gms } \\ 5 \text { Gms } \\ 25 \text { Gms } \end{array}$	$\begin{array}{r} 12.37 \\ 43.16 \\ 113.83 \end{array}$				255.96
				$\begin{aligned} & 97079 \\ & {[89-32-7]} \end{aligned}$	Pyromellitic Dianhydride (PMDA) extrapure, 98\% (Benzene-1,2,4,5-Tetracarboxylic Dianhydride)	25 Gms	18.03
$\begin{aligned} & 57322 \\ & {[98-96-4]} \end{aligned}$	Pyrazinamide extrapure, 98\% (Pyrazinecarboxamide, Pyrazinamide, Pyrazinoic Acid Amide)		19.74 42.11			100 Gms 500 Gms	29.08 92.65
$\begin{aligned} & 31412 \\ & {[288-13-1]} \end{aligned}$	Pyrazole extrapure, 98\% (1,2-Diazole)	5 Gms	10.53	$\begin{gathered} 75612 \\ {[92-32-0]} \end{gathered}$	Pyronin G (Pyronin Y), 50\% (C.I. No. 45005)	1 Gms	12.37
		25 Gms	21.06			5 Gms	44.09
		100 Gms	65.80			25 Gms	210.56
32357	Pyrene Actin (10\%) ex. Rabbit Skeletal Muscle extrapure, 99\% 1-Pyrenebutanol extrapure, 99\%	1 Mg	1170.19	$\begin{aligned} & 71692 \\ & {[109-97-7]} \end{aligned}$	Pyrrole extrapure, 99\%	$\begin{array}{r} 25 \mathrm{ml} \\ 100 \mathrm{ml} \\ 500 \mathrm{ml} \end{array}$	9.21 28.95
$\begin{aligned} & 39433 \\ & {[67000-89-9]} \end{aligned}$		$500 \mathrm{Mg}$	58.56				118.44
				$\begin{aligned} & 91402 \\ & {[123-75-1]} \end{aligned}$	Pyrrolidine pure, 99\%	25 ml	3.29
$\begin{aligned} & 81284 \\ & {[19694-02-1]} \end{aligned}$	1-Pyrenecarboxylic Acid pure, 97\%	500 Mg	57.77			100 ml	7.24
		1 Gms	103.04			500 ml	32.90
		5 Gms	452.57	88543	Pyrrolidine extrapure AR, 99.5\%	25 ml	4.21
$\begin{aligned} & 59503 \\ & {[93324-65-3]} \end{aligned}$	1-Pyrenemethylamine Hydrochloride (PyNH2) pure, 95\%	500 Mg 1 Gms	53.82 98.44	[123-75-1]		100 ml 250 ml	10.53 21.06
$\begin{gathered} 67172 \\ {[289-80-5]} \end{gathered}$	Pyridazine pure, 98\%	5 Gms 25 Gms	$\begin{array}{r} 35.93 \\ 165.82 \end{array}$				

Part B - Bioreagents, Biochemicals \& Speciality Fine Chemicals

Catalogue 2024-25

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Code \& Name \& Packing \& \$ Price \& Code \& Name \& Packing \& \$ Price \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
23311 \\
{[145069-56-3]}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Rink Amide Linker Resin (Knorr \\
Linker) extrapure, 99\% \\
(4-[(2,4-Dimethoxyphenyl) \\
(Fmoc-amino)Methyl]phenoxyacetic \\
Acid)
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
1 Gms \\
5 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 23.69 \\
\& 92.12
\end{aligned}
\]} \& \[
\begin{aligned}
\& 92082 \\
\& {[13759-83-6]}
\end{aligned}
\] \& \begin{tabular}{l}
Samarium (III) Nitrate Hexahydrate ultrapure, 99.95\% \\
(Trinitric Acid Samarium (III) Hexahydrate)
\end{tabular} \& \& \[
\begin{aligned}
\& 19.74 \\
\& 52.64
\end{aligned}
\] \\
\hline \& \& \& \& 31372 \& amarium (III) Oxide ultrapu \& 5 Gms \& 19.74 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 34140 \\
\& {[431041-83-7]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Rink Amide MBHA Resin (100-200 mesh), Loading \(0.3-0.8 \mathrm{mmol} / \mathrm{g}\) (4- \\
(2,4-Dimethoxyphenyl-FMOC-Aminom ethyl) \\
Phenoxyacetamido-Norleucyl-MBHA Resin)
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
1 Gms \\
5 Gms \\
25 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
26.32 \\
92.12 \\
394.80
\end{array}
\]} \& [12060-58-1] \& \begin{tabular}{l}
99.95\% \\
(Samaria)
\end{tabular} \& 25 Gms \& 52.64 \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 54043 \\
\& {[52093-28-4]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Samarium (III) \\
Trifluoromethanesulfonate \\
extrapure, 98\% \\
(Samarium (III) Triflate, \\
Trifluoromethanesulfonic Acid \\
Samarium (III) Salt)
\end{tabular}} \& \multirow[t]{2}{*}{1 Gms 5 Gms} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 21.06 \\
\& 55.27
\end{aligned}
\]} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 90780 \\
\& {[569-61-9]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{p-Rosaniline Hydrochloride (Pararosaniline Hydrochloride, Pararosaniline Chloride, Basic Parafuchsin) (C.I. No. 42500)} \& \multirow[t]{2}{*}{\[
\begin{gathered}
25 \mathrm{Gms} \\
100 \mathrm{Gms} \\
500 \mathrm{Gms}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
11.84 \\
39.48 \\
171.08
\end{array}
\]} \& \& \& \& \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 68580 \\
\& {[144026-79-9]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Scandium (III) \\
Trifluoromethanesulfonate \\
extrapure, 98\% \\
(Scandium Triflate, \\
Trifluoromethanesulfonic Acid \\
Scandium Salt)
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
1 Gms \\
5 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 19.74 \\
\& 68.43
\end{aligned}
\]} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 60549 \\
\& {[632-69-9]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Rose Bengal \\
(Acid Red 94) (C.I. No. 45440)
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
10 \mathrm{Gms} \\
25 \mathrm{Gms} \\
100 \mathrm{Gms}
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
8.16 \\
19.35 \\
65.80
\end{array}
\]} \& \& \& \& \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 80967 \\
\& {[8047-15-2]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Saponin ex. Quillaja for molecular biology, 9\% Sapogenin} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
25 \mathrm{Gms} \\
100 \mathrm{Gms}
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
78.96 \\
144.76
\end{array}
\]} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 10641 \\
\& {[8007-01-0]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Rose Oil extrapure} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
10 \mathrm{ml} \\
25 \mathrm{ml} \\
100 \mathrm{ml}
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
18.42 \\
34.22 \\
105.28
\end{array}
\]} \& \& \& \& \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 99474 \\
\& {[8047-15-2]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Saponin ex. Gypsophila Roots for molecular biology, 25\% Sapogenin} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
5 \mathrm{Gms} \\
25 \mathrm{Gms} \\
100 \mathrm{Gms}
\end{array}
\]} \& \[
\begin{aligned}
\& 23.69 \\
\& 59.22
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 66412 \\
\& {[603-45-2]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{p-Rosolic Acid (Aurin)} \& \multirow[t]{2}{*}{\[
\begin{gathered}
25 \mathrm{Gms} \\
100 \mathrm{Gms} \\
500 \mathrm{Gms}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
11.84 \\
39.48 \\
171.08
\end{array}
\]} \& \& \& \& 157.92 \\
\hline \& \& \& \& \[
\begin{aligned}
\& 10147 \\
\& {[9029-22-5]}
\end{aligned}
\] \& Sarcosine Oxidase (SOX) ex. Recombinant E.coli, 20U/mg \& \begin{tabular}{l}
500 Units \\
1 K.Units
\end{tabular} \& \[
\begin{array}{r}
78.17 \\
148.31
\end{array}
\] \\
\hline \[
\begin{aligned}
\& 18325 \\
\& {[250249-75-3]}
\end{aligned}
\] \& Rutin Trihydrate pure, 95\% (Vitamin P Trihydrate, Rutoside, Quercetin-3-Rutinoside) \& \[
\begin{gathered}
25 \mathrm{Gms} \\
100 \mathrm{Gms} \\
500 \mathrm{Gms}
\end{gathered}
\] \& \[
\begin{array}{r}
18.42 \\
34.22 \\
105.28
\end{array}
\] \& \[
\begin{aligned}
\& 21032 \\
\& \text { [12060-08-1] }
\end{aligned}
\] \& Scandium Oxide, 99.99\% \& \begin{tabular}{l}
1 Gms \\
5 Gms
\end{tabular} \& \[
\begin{aligned}
\& 34.61 \\
\& 92.12
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{16281} \& \multirow[t]{2}{*}{Safranine 0.5 w/v Aq. Solution} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 125 \mathrm{ml} \\
\& 500 \mathrm{ml}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 2.90 \\
\& 9.21
\end{aligned}
\]} \& 17386 \& Schiff's Reagent \& 500 ml \& 6.97 \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 32380 \\
\& {[92-61-5]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Scopoletin extrapure, 98\%} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
25 \mathrm{Mg} \\
100 \mathrm{Mg}
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
92.12 \\
421.12
\end{array}
\]} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 16593 \\
\& {[477-73-6]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Safranine 0 \\
(Basic red 2) (C.I. No. 50240)
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
25 \mathrm{Gms} \\
100 \mathrm{Gms} \\
500 \mathrm{Gms}
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
6.97 \\
24.61 \\
118.44
\end{array}
\]} \& \& \& \& \\
\hline \& \& \& \& \[
\begin{aligned}
\& 62330 \\
\& {[111-20-6]}
\end{aligned}
\] \& Sebacic Acid pure, 98\% \& 500 Gms \& 14.21 \\
\hline \[
\begin{aligned}
\& 10673 \\
\& {[138-52-3]}
\end{aligned}
\] \& D-(-)-Salicin extrapure \& \[
\begin{array}{r}
5 \mathrm{Gms} \\
25 \mathrm{Gms}
\end{array}
\] \& \[
\begin{aligned}
\& 23.69 \\
\& 63.17
\end{aligned}
\] \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 19182 \\
\& {[563-41-7]} \\
\& \hline 44779 \\
\& {[7446-08-4]}
\end{aligned}
\]} \& Semicarbazide Hydrochloride extrapure, 98\% \& 100 Gms \& 8.82 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
57467 \\
{[959-36-4]}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Salicylaldehyde Azine extrapure, 97\% \\
(2-Hydroxybenzaldehyde azine)
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
1 Gms \\
5 Gms \\
25 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 12.50 \\
\& 26.32 \\
\& 98.70
\end{aligned}
\]} \& \& Selenium Dioxide pure, 98\% \& \begin{tabular}{l}
100 Gms \\
500 Gms
\end{tabular} \& \[
\begin{array}{r}
26.32 \\
105.28
\end{array}
\] \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 90945 \\
\& \text { [7782-49-2] }
\end{aligned}
\]} \& \multirow[t]{2}{*}{Selenium Metal Powder extrapure, 99.9\%, 100 mesh} \& \multirow[t]{2}{*}{\[
\begin{gathered}
25 \mathrm{Gms} \\
100 \mathrm{Gms} \\
500 \mathrm{Gms}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
9.21 \\
32.90 \\
98.70
\end{array}
\]} \\
\hline \[
\begin{aligned}
\& 77386 \\
\& {[65-45-2]}
\end{aligned}
\] \& Salicylamide pure, 98\% \& 500 Gms 5 Kg \& \[
\begin{array}{r}
20.40 \\
184.24
\end{array}
\] \& \& \& \& \\
\hline 45549 \& \multirow[t]{2}{*}{\begin{tabular}{l}
Salt Mixture Bernhart Tommarelli \\
(Dietary Mineral Mix acc to \\
Bernhart-Tommarelli)
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
500 Gms \\
1 Kg \\
5 Kg
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
16.45 \\
31.58 \\
151.34
\end{array}
\]} \& \[
\begin{aligned}
\& 51200 \\
\& {[7782-49-2]}
\end{aligned}
\] \& Selenium Metal Powder ultrapure, 99.999\%, 100 mesh \& \[
\begin{array}{r}
25 \mathrm{Gms} \\
100 \mathrm{Gms}
\end{array}
\] \& \[
\begin{array}{r}
46.98 \\
172.79
\end{array}
\] \\
\hline \& \& \& \& \[
\begin{aligned}
\& 77855 \\
\& \text { [7782-49-2] }
\end{aligned}
\] \& Selenium Metal Granular ultrapure, 99.999\%, 1-6mm \& 25 Gms 100 Gms \& \[
\begin{array}{r}
49.74 \\
186.61
\end{array}
\] \\
\hline \multirow[t]{2}{*}{13464} \& \multirow[t]{2}{*}{Salt Mixture H.M.W. (acc. to Hubble Mendal and Wakeman) (Dietary Mineral Mix acc to HMW)} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
500 \mathrm{Gms} \\
1 \mathrm{Kg} \\
5 \mathrm{Kg}
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
16.45 \\
31.58 \\
151.34
\end{array}
\]} \& 29815 \& Seliwanoff`s Reagent \& 100 ml \& 3.82 \\
\hline \& \& \& \& \multirow[t]{2}{*}{64088} \& \multirow[t]{2}{*}{Seralose \({ }^{\circledR}\) 2B (2\% Beaded Agarose Susp., 60-200micron)} \& \multirow[t]{2}{*}{100 ml 500 ml} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
59.22 \\
236.88
\end{array}
\]} \\
\hline 71637 \& \multirow[t]{2}{*}{\begin{tabular}{l}
Salt Mixture as per USP XIV \\
(Dietary Mineral Mix acc to USP XIV)
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
500 \mathrm{Gms} \\
1 \mathrm{Kg} \\
5 \mathrm{Kg}
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
19.74 \\
37.51 \\
177.66
\end{array}
\]} \& \& \& \& \\
\hline \& \& \& \& 54540 \& Seralose \({ }^{\circledR}\) 4B (4\% Beaded Agarose Susp., 45-165micron) \& \begin{tabular}{l}
100 ml \\
500 ml
\end{tabular} \& \[
\begin{array}{r}
59.22 \\
236.88
\end{array}
\] \\
\hline \begin{tabular}{l}
93538 \\
[13465-55-9]
\end{tabular} \& \begin{tabular}{l}
Samarium (III) Chloride \\
Hexahydrate pure, 99.9\% \\
(Samarium trichloride hydrate)
\end{tabular} \& \begin{tabular}{l}
10 Gms \\
50 Gms
\end{tabular} \& \[
\begin{array}{r}
32.90 \\
128.97
\end{array}
\] \& 12585 \& \& Seralose \({ }^{\circledR}\) 6B (6\% Beaded Agarose Susp., 45-165micron) \& 100 ml 500 ml \& \[
\begin{array}{r}
59.22 \\
236.88
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Code \& Name \& Packing \& \$ Price \& Code \& Name \& Packing \& \$ Price \\
\hline 81862 \& d Seralose \({ }^{\circledR}\) CL-2B (2\% Beaded Agarose Cross-Linked Susp., 60-200micron) \& \[
\begin{aligned}
\& 100 \mathrm{ml} \\
\& 500 \mathrm{ml}
\end{aligned}
\] \& 78.96
315.84 \& \[
\begin{aligned}
\& 73081 \\
\& {[7440-21-3]}
\end{aligned}
\] \& Silicon Metal powder, 98.5\%, -200 mesh \& \begin{tabular}{l}
100 Gms \\
500 Gms
\end{tabular} \& 4.21
12.90 \\
\hline 11974 \& d Seralose \({ }^{\circledR}\) CL-4B (4\% Beaded Agarose Cross-Linked Susp., 45-165micron) \& \[
\begin{aligned}
\& 100 \mathrm{ml} \\
\& 500 \mathrm{ml}
\end{aligned}
\] \& \[
\begin{array}{r}
78.96 \\
315.84
\end{array}
\] \& \[
\begin{aligned}
\& 43800 \\
\& {[26042-64-8]}
\end{aligned}
\] \& Silver Hexafluoroantimonate(V) extrapure, 98\% \& \begin{tabular}{l}
1 Gms \\
5 Gms
\end{tabular} \& \[
\begin{array}{r}
44.74 \\
197.40
\end{array}
\] \\
\hline 22264 \& \& Seralose \({ }^{\circledR}\) CL-6B (6\% Beaded Agarose Cross-Linked Susp., 45-165micron) \& \[
\begin{aligned}
\& 100 \mathrm{ml} \\
\& 500 \mathrm{ml}
\end{aligned}
\] \& \[
\begin{array}{r}
78.96 \\
315.84
\end{array}
\] \& \[
\begin{aligned}
\& 32422 \\
\& {[7440-22-4]}
\end{aligned}
\] \& Silver Metal powder, 99.9\%, -400 mesh \& \[
\begin{array}{r}
10 \mathrm{Gms} \\
25 \mathrm{Gms} \\
100 \mathrm{Gms}
\end{array}
\] \& \[
\begin{array}{r}
43.43 \\
103.96
\end{array}
\] \\
\hline \[
\begin{aligned}
\& 85165 \\
\& {[55819-71-1]}
\end{aligned}
\] \& \begin{tabular}{l}
DL-Serine Hydrazide Hydrochloride pure, 98\% \\
(DL-Serinohydrazide Hydrochloride)
\end{tabular} \& 5 Gms \& 206.48 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 43491 \\
\& {[2386-52-9]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Silver Methanesulfonate (Silver \\
MSA) extrapure, 47.8\%-58.4\% Ag \\
(Methanesulfonic Acid Silver Salt, Silver \\
Methylsulfonate, Silver \\
Methylsulphonate, Methanesulphonic
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
1 Gms \\
5 Gms \\
25 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
19.74 \\
65.80 \\
210.56
\end{array}
\]} \\
\hline \[
\begin{aligned}
\& 17017 \\
\& {[5680-80-8]}
\end{aligned}
\] \& \& L-Serine Methyl Ester Hydrochloride extrapure, 99\% \& \[
\begin{array}{r}
5 \mathrm{Gms} \\
25 \mathrm{Gms} \\
100 \mathrm{Gms}
\end{array}
\] \& \[
\begin{array}{r}
12.63 \\
54.75 \\
148.31
\end{array}
\] \& \& \& \& \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 18472 \\
\& {[3722-51-8]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Sieber Linker (3-Hydroxyxanthone) extrapure, \(99 \%\)} \& \multirow[t]{2}{*}{\[
\begin{gathered}
100 \mathrm{Mg} \\
1 \mathrm{Gms} \\
5 \mathrm{Gms}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
34.48 \\
78.17 \\
124.89
\end{array}
\]} \& \[
\begin{aligned}
\& 46241 \\
\& {[9008-42-8]}
\end{aligned}
\] \& Silver Proteinate extrapure, 8\% Ag \& \begin{tabular}{l}
5 Gms \\
25 Gms
\end{tabular} \& \[
\begin{aligned}
\& 26.32 \\
\& 92.12
\end{aligned}
\] \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 27821 \\
\& {[2923-28-6]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Silver Trifluoromethanesulfonate extrapure, 98\% \\
(Silver Triflate, Trifluoromethanesulfonic Acid Silver Salt)
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
1 Gms \\
5 Gms \\
25 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
13.82 \\
56.72 \\
138.18
\end{array}
\]} \\
\hline \multirow[t]{2}{*}{77996} \& \multirow[t]{2}{*}{Silica Cysteine-Functionalized extrapure (Particle Size - 40-63 \(\mu \mathrm{m}\), Pore Size 60A)} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
5 \mathrm{Gms} \\
10 \mathrm{Gms}
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 262.81 \\
\& 437.83
\end{aligned}
\]} \& \& \& \& \\
\hline \& \& \& \& \[
\begin{aligned}
\& 69717 \\
\& \text { [13497-94-4] }
\end{aligned}
\] \& Silver Vanadate pure \& 5 Gms \& 47.38 \\
\hline 46400 \& Silica DMT-Functionalized extrapure \& \& \[
\begin{aligned}
\& 147.79 \\
\& 615.10
\end{aligned}
\] \& \multirow[t]{2}{*}{\begin{tabular}{l}
90677 \\
[16411-05-5]
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Sinalbin Potassium Salt Reference \\
Standard Grade, 98\% \\
(p-Hydroxybenzylglucosinolate \\
Potassium Salt, Glucosinalbin \\
Potassium Salt)
\end{tabular}} \& \multirow[t]{2}{*}{10 Mg} \& \multirow[t]{2}{*}{442.18} \\
\hline 31156 \& Silica Imidazole-Functionalized extrapure \& \begin{tabular}{l}
5 Gms \\
25 Gms
\end{tabular} \& \[
\begin{array}{r}
87.65 \\
364.80
\end{array}
\] \& \& \& \& \\
\hline 68360 \& \& Silica TAAcOH-Functionalized extrapure \& \begin{tabular}{l}
5 Gms \\
25 Gms
\end{tabular} \& \[
\begin{aligned}
\& 126.34 \\
\& 526.27
\end{aligned}
\] \& \[
\begin{aligned}
\& 28945 \\
\& {[3952-98-5]}
\end{aligned}
\] \& \multirow[t]{2}{*}{\begin{tabular}{l}
Sinigrin Potassium Salt Reference Standard Grade, 97\% \\
(2-Propenyl Glucosinolate Potassium Salt, Sinigroside Potassium Salt)
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
25 \mathrm{Mg} \\
100 \mathrm{Mg}
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
82.91 \\
135.42
\end{array}
\]} \\
\hline \multirow[t]{2}{*}{28466} \& \multirow[t]{2}{*}{Silica TAAcONa-Functionalized extrapure} \& \multirow[t]{2}{*}{\begin{tabular}{l}
5 Gms \\
25 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 126.34 \\
\& 526.27
\end{aligned}
\]} \& \& \& \& \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 94846 \\
\& {[122-34-9]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Simazine extrapure,98\% \\
(2,4-Bis(ethylamino) \\
-6-chloro-1,3,5-triazine)
\end{tabular}} \& 5 Gms \& 32.90 \\
\hline \multirow[t]{2}{*}{39343} \& \multirow[t]{2}{*}{Silica Thiol-Functionalized (STF) extrapure} \& \multirow[t]{2}{*}{\begin{tabular}{l}
5 Gms \\
25 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 105.67 \\
\& 439.68
\end{aligned}
\]} \& \& \& 25 Gms \& 52.64 \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{gathered}
56226 \\
{[83-46-5]}
\end{gathered}
\]} \& \multirow[t]{2}{*}{b-Sitosterol ex. Rice Bran, 98\% (Beta Sitosterol)} \& 5 Gms \& 26.32 \\
\hline 20356 \& \multirow[t]{2}{*}{Silica DPP-Pd Catalyst extrapure} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 497.32 \\
\& 828.69
\end{aligned}
\]} \& \& \& 25 Gms \& 123.70 \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 13728 \\
\& {[83-46-5]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
b-Sitosterol ex. Glycine Max \\
(Soyabean), 95\% \\
(Beta Sitosterol)
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{gathered}
25 \mathrm{Gms} \\
100 \mathrm{Gms}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
58.43 \\
229.12
\end{array}
\]} \\
\hline 45570 \& \& Silica TEMPO Catalyst extrapure \& \& \[
\begin{aligned}
\& 243.59 \\
\& 405.99
\end{aligned}
\] \& \& \& \& \\
\hline 78339 \& \multirow[t]{2}{*}{\& Silica C18 (17\%) Bonded monomeric extrapure} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
5 \mathrm{Gms} \\
25 \mathrm{Gms}
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
69.22 \\
199.90
\end{array}
\]} \& \[
\begin{aligned}
\& 89658 \\
\& {[1333-83-1]}
\end{aligned}
\] \& Sodium Bifluoride pure, 98\% \& 500 Gms \& 18.82 \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 53713 \\
\& {[7782-82-3]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Sodium Biselenite pure, 98\%} \& \multirow[t]{2}{*}{100 Gms} \& \multirow[t]{2}{*}{56.98} \\
\hline 43139 \& \multirow[t]{2}{*}{\& Silica Carbonate Bonded extrapure} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
5 \mathrm{Gms} \\
25 \mathrm{Gms}
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 121.86 \\
\& 507.58
\end{aligned}
\]} \& \& \& \& \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 22308 \\
\& {[156-54-7]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Sodium Butyrate Reagent Grade, 98.5\%} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
25 \mathrm{Gms} \\
100 \mathrm{Gms} \\
500 \mathrm{Gms}
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 14.48 \\
\& 23.69 \\
\& 89.49
\end{aligned}
\]} \\
\hline 35228 \& \& Silica Cyano Bonded extrapure \& \[
\begin{gathered}
5 \mathrm{Gms} \\
10 \mathrm{Gms}
\end{gathered}
\] \& \[
\begin{array}{r}
77.25 \\
150.68
\end{array}
\] \& \& \& \& \\
\hline 30753 \& \& Silica Diol Bonded extrapure \& \begin{tabular}{l}
5 Gms \\
25 Gms
\end{tabular} \& \[
\begin{array}{r}
76.06 \\
316.37
\end{array}
\] \& \[
\begin{aligned}
\& 41059 \\
\& {[9005-46-3]}
\end{aligned}
\] \& Sodium Caseinate extrapure (Casein Sodium Salt) \& \begin{tabular}{l}
100 Gms \\
500 Gms
\end{tabular} \& 19.35
72.64 \\
\hline 92868 \& \multirow[t]{2}{*}{\& Silica TMA Acetate Bonded non-endcapped extrapure} \& \multirow[t]{2}{*}{\begin{tabular}{l}
\[
5 \text { Gms }
\] \\
25 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 108.44 \\
\& 451.39
\end{aligned}
\]} \& \[
\begin{aligned}
\& 43624 \\
\& {[7775-11-3]}
\end{aligned}
\] \& Sodium Chromate pure, 98\% \& 500 Gms \& 8.42 \\
\hline \& \& \& \& \multirow[t]{2}{*}{\begin{tabular}{l}
\[
60947
\] \\
[22722-98-1]
\end{tabular}} \& \multirow[t]{2}{*}{Sodium Dihydro-bisMethoxyethoxy Aluminate (VITRIDE) pure, 68-71\%} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 100 \mathrm{Gms} \\
\& 500 \mathrm{Gms}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 19.74 \\
\& 92.12
\end{aligned}
\]} \\
\hline 50648 \& \& Silica Tosic Acid Bonded extrapure \& \begin{tabular}{l}
5 Gms \\
25 Gms
\end{tabular} \& \[
\begin{aligned}
\& 131.99 \\
\& 549.69
\end{aligned}
\] \& \& \& \& \\
\hline \[
\begin{aligned}
\& 79427 \\
\& {[7440-21-3]}
\end{aligned}
\] \& Silicon Metal powder, 98.5\%, -4 mesh \& 500 Gms \& 17.11 \& \[
\begin{aligned}
\& 46288 \\
\& {[6152-67-6]}
\end{aligned}
\] \& Sodium Diphenylamine-4-Sulfonate extrapure AR, ACS \& \begin{tabular}{l}
10 Gms \\
25 Gms
\end{tabular} \& 5.53
11.19
39.48 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Code \& Name \& Packing \& \$ Price \& Code \& Name \& Packing \& \$ Price \\
\hline \[
\begin{aligned}
\& 25818 \\
\& {[5137-46-2]}
\end{aligned}
\] \& Sodium Diphenyl Reagent AR (Sodium Biphenyl Complex) \& \[
\begin{array}{r}
15 \mathrm{ml} \\
10 \times 15 \mathrm{ml}
\end{array}
\] \& 12.63
117.12 \& \[
\begin{gathered}
19099 \\
{[523-21-7]}
\end{gathered}
\] \& Sodium Rhodizonate Dibasic extrapure AR, 99\% \& \begin{tabular}{l}
1 Gms \\
5 Gms
\end{tabular} \& 7.63
18.16 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 67516 \\
\& {[5137-46-2]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Sodium Diphenyl Reagent ExiPlus, Multi-Compendial (Sodium Biphenyl Complex)} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
15 \mathrm{ml} \\
10 \times 15 \mathrm{ml}
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
18.82 \\
137.39
\end{array}
\]} \& \& 3,4,5,6-Tetraoxocyclohexene-1,2-diol disodium salt, Rhodizonic acid dis \& 25 Gms \& 83.43 \\
\hline \& \& \& \& 95335 \& Sodium Selenite Anhydrous \& 25 Gms \& 10.26 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
\& 55083 \\
\& {[25155-30-0]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Sodium Dodecylbenzenesulfonate (SDBS) pure, 80\% \\
(Dodecylbenzenesulfonic Acid Sodium Salt)
\end{tabular}} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
100 \mathrm{Gms} \\
500 \mathrm{Gms} \\
5 \mathrm{Kg}
\end{array}
\]} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
5.92 \\
10.86 \\
94.75
\end{array}
\]} \& \multirow[t]{2}{*}{[10102-18-8]} \& \multirow[t]{2}{*}{extrapure, 98\%} \& 100 Gms \& 34.35 \\
\hline \& \& \& \& \& \& 500 Gms \& 134.36 \\
\hline \& \& \& \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 80451 \\
\& {[10102-18-8]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{Sodium Selenite Anhydrous extrapure AR, 99\%} \& 25 Gms \& 10.79 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 36511 \\
\& {[751-94-0]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Sodium Fucidate (Na-FC), 97.5\% (Fucidic Acid Sodium Salt)} \& 1 Gms \& 39.48 \& \& \& 100 Gms \& 38.82 \\
\hline \& \& 5 Gms \& 105.28 \& \& \& 500 Gms \& 146.34 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 55655 \\
\& {[17013-01-3]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Sodium Fumarate extrapure AR, 99.5\%} \& 100 Gms \& 5.26 \& \[
17169
\] \& Sodium Selenite Anhydrous for \& 25 Gms \& 12.63 \\
\hline \& \& 500 Gms \& 23.69 \& [10102-18-8] \& tissue culture, 99\% \& 100 Gms \& 37.37 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
\& 15331 \\
\& {[55073-41-1,} \\
\& 154804-51-0]
\end{aligned}
\]} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Sodium-B-Glycerophosphate Hydrate extrapure AR, 99\% \\
(Sodium-B-Glycerol Phosphate Hydrate, B-GP, B-Glycerolphosphate, Disodium B-glycerol phosphate)
\end{tabular}} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
5 \mathrm{Gms} \\
25 \mathrm{Gms} \\
100 \mathrm{Gms}
\end{array}
\]} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
26.32 \\
59.22 \\
197.40
\end{array}
\]} \& \& \& 500 Gms \& 185.16 \\
\hline \& \& \& \& 58529 \& \& Sodium Taurochenodeoxycholate \& 250 Mg \& 65.80 \\
\hline \& \& \& \& [6009-98-9] \& \begin{tabular}{l}
(STCDC) extrapure, 95\% \\
(Taurochenodeoxycholic Acid Sodium
\end{tabular} \& 1 Gms \& 157.92 \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
\& 97971 \\
\& {[16564-43-5]}
\end{aligned}
\]} \& \multirow[t]{5}{*}{\begin{tabular}{l}
Sodium Glycochenodeoxycholate (SGCDC) extrapure, 97\% \\
(Glycochenodeoxycholic Acid Sodium Salt)
\end{tabular}} \& \multirow[t]{5}{*}{\[
\begin{array}{r}
1 \mathrm{Gms} \\
5 \mathrm{Gms} \\
25 \mathrm{Gms} \\
100 \mathrm{Gms}
\end{array}
\]} \& \multirow[t]{5}{*}{\[
\begin{array}{r}
105.28 \\
329.00 \\
1381.80 \\
3684.80
\end{array}
\]} \& \multirow[t]{5}{*}{\[
\begin{aligned}
\& 63703 \\
\& {[345909-26-4]}
\end{aligned}
\]} \& \multirow[t]{5}{*}{\begin{tabular}{l}
Sodium Taurocholate Hydrate (STC \\
Hydrate) extrapure, 98\% \\
(Taurocholic Acid Sodium Salt Hydrate)
\end{tabular}} \& \& \\
\hline \& \& \& \& \& \& 1 Gms \& 31.19 \\
\hline \& \& \& \& \& \& 5 Gms \& 81.59 \\
\hline \& \& \& \& \& \& 25 Gms \& 355.32 \\
\hline \& \& \& \& \& \& 100 Gms \& 1118.60 \\
\hline \multirow[t]{4}{*}{\[
\begin{gathered}
31287 \\
{[863-57-0]}
\end{gathered}
\]} \& \multirow[t]{4}{*}{Sodium Glycocholate Dried (SGC Dried) extrapure, 98\%} \& \multirow[t]{4}{*}{\begin{tabular}{l}
500 Mg \\
1 Gms \\
5 Gms \\
25 Gms
\end{tabular}} \& \multirow[t]{4}{*}{\[
\begin{array}{r}
48.56 \\
72.38 \\
223.72 \\
1052.80
\end{array}
\]} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 57861 \\
\& {[1180-95-6]}
\end{aligned}
\]} \& \multirow[t]{4}{*}{Sodium Taurodeoxycholate Dried (STDC Dried) extrapure, 97\%} \& 1 Gms \& 46.06 \\
\hline \& \& \& \& \& \& 5 Gms \& 131.60 \\
\hline \& \& \& \& \& \& 25 Gms \& \\
\hline \& \& \& \& \& \& \& \\
\hline \multirow[t]{4}{*}{\[
\begin{gathered}
15556 \\
{[338950-81-5]}
\end{gathered}
\]} \& \multirow[t]{5}{*}{Sodium Glycocholate Hydrate (SGC Hydrate) extrapure, 98\%} \& \multirow[t]{4}{*}{\[
\begin{array}{r}
1 \mathrm{Gms} \\
5 \mathrm{Gms} \\
25 \mathrm{Gms} \\
100 \mathrm{Gms}
\end{array}
\]} \& 52.64 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 40391 \\
\& {[207737-97-1]}
\end{aligned}
\]} \& \multirow[t]{4}{*}{Sodium Taurodeoxycholate Hydrate (STDC Hydrate) extrapure, 97\%} \& 1 Gms \& 32.90 \\
\hline \& \& \& 197.40 \& \& \& 5 Gms \& 105.28 \\
\hline \& \& \& 894.88 \& \& \& 25 Gms \& 447.44 \\
\hline \& \& \& \& \& \& 100 Gms \& 1579.20 \\
\hline \multirow[b]{2}{*}{\[
\begin{gathered}
43453 \text { \& } \\
{[527-07-1]}
\end{gathered}
\]} \& \& \& 2368.80 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 31102 \\
\& {[35807-85-3]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{Sodium Tauroursodeoxycholate (TUDCA Sodium) extrapure, 98\% (Tauroursodeoxycholic Acid Sodium Salt)} \& 1 Gms \& 39.48 \\
\hline \& Sodium Gluconate pure, 99\% \& 500 Gms 5 Kg \& \[
\begin{array}{r}
4.61 \\
43.43
\end{array}
\] \& \& \& 5 Gms \& 157.92 \\
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
\& 54565 \\
\& {[141-95-7]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Sodium Malonate extrapure, 99\%} \& \multirow[t]{2}{*}{\begin{tabular}{l}
100 Gms \\
500 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 11.84 \\
\& 43.30
\end{aligned}
\]} \& \& \& \& \\
\hline \& \& \& \& \multirow[t]{3}{*}{\[
\begin{gathered}
78786 \\
{[367-51-1]}
\end{gathered}
\]} \& \multirow[t]{3}{*}{Sodium Thioglycolate extrapure, 99\%} \& 100 Gms \& 12.77 \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
81020 \\
{[114-21-6]}
\end{gathered}
\]} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Sodium DL-Mandelate extrapure, 99\% \\
(DL-Mandelic Acid Sodium Salt)
\end{tabular}} \& \multirow[t]{3}{*}{\[
5 \text { Gms }
\]
\[
25 \text { Gms }
\]} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 11.84 \\
\& 55.27
\end{aligned}
\]} \& \& \& 250 Gms \& 23.69 \\
\hline \& \& \& \& \& \& 500 Gms \& 42.11 \\
\hline \& \& \& \& 48950 \& Sodium Triacetoxyborohydride \& 25 Gms \& 7.90 \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
\& 18444 \\
\& \text { [13718-26-8] }
\end{aligned}
\]} \& \multirow[t]{4}{*}{\begin{tabular}{l}
Sodium Metavanadate extrapure, 99\% \\
(Sodium Trioxovanadate, Sodium Vanadium Oxide, Sodium Vanadium Trioxide)
\end{tabular}} \& \multirow[t]{4}{*}{\[
\begin{array}{r}
25 \mathrm{Gms} \\
100 \mathrm{Gms} \\
500 \mathrm{Gms}
\end{array}
\]} \& 11.05 \& [56553-60-7] \& (STAB) pure, 98\% \& 100 Gms \& 23.69 \\
\hline \& \& \& 36.85 \& \& \& 500 Gms \& 105.28 \\
\hline \& \& \& \multirow[t]{2}{*}{157.92} \& \multirow[t]{4}{*}{\[
\begin{aligned}
\& 69128 \\
\& {[2926-29-6]}
\end{aligned}
\]} \& \multirow[t]{4}{*}{Sodium Trifluoromethanesulfinate (Langlois reagent) extrapure, 95\% (Sodium Trifluoromethylsulfinate, Trifluoromethanesulfinic Acid Sodium Salt, Sodium Triflinate)} \& 5 Gms \& 50.01 \\
\hline \& \& \& \& \& \& 25 Gms \& 157.92 \\
\hline 85247 \& \& Sodium-2-Naphthyl Phosphate \& 1 Gms \& 12.90 \& \& \& \& \\
\hline [31681-98-8] \& Disodium Salt extrapure AR, 99\% \& 5 Gms \& 62.38 \& \& \& \& \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
\& 86766 \\
\& {[13721-39-6]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{Sodium Orthovanadate pure, 45\% (Sodium Vanadium Oxide)} \& 10 Gms \& 26.32 \& 99957 \& a-Solamargine extrapure, 98\% \& 10 Mg \& 59.22 \\
\hline \& \& 50 Gms \& 105.28 \& [20311-51-7] \& (Solasodine-L-Rhamnosido-D-Glucosi de) \& 25 Mg \& 118.44 \\
\hline \& \& 250 Gms \& 236.88 \& \& olasodine extrapure, \& \& \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
\[
14215
\] \\
[55963-78-5]
\end{tabular}} \& \multirow[t]{4}{*}{\begin{tabular}{l}
Polyanetholesulphonic Acid \\
Sodium Salt (Sodium \\
Polyanetholesulphonate, SPS) extrapure \\
(Sodium PolyanetholSulphonate)
\end{tabular}} \& \multirow[t]{4}{*}{\begin{tabular}{l}
1 Gms \\
5 Gms \\
25 Gms
\end{tabular}} \& \multirow[t]{4}{*}{\[
\begin{array}{r}
6.58 \\
29.87 \\
105.28
\end{array}
\]} \& \multirow[t]{2}{*}{[126-17-0]} \& \multirow[t]{2}{*}{(Purapuridine, Solancarpidine)} \& 25 Mg \& 118.44 \\
\hline \& \& \& \& \& \& 25 Mg \& \\
\hline \& \& \& \& \[
\begin{aligned}
\& 89725 \\
\& {[19121-58-5]}
\end{aligned}
\] \& Solasonine extrapure, 98\% (Solasodamine) \& 25 Mg \& 118.44 \\
\hline \& \& \& \& \multirow[t]{3}{*}{\begin{tabular}{l}
\[
54281
\] \\
[38916-34-6]
\end{tabular}} \& \multirow[t]{2}{*}{Somatostatin extrapure, 97\%} \& 5 Mg \& 26.32 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
\& 23569 \\
\& {[113-24-6]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{Sodium Pyruvate (Pyruvic Acid Sodium Salt) extrapure AR, 99\%} \& 25 Gms \& 4.47 \& \& \& 25 Mg \& 105.28 \\
\hline \& \& 100 Gms \& 13.55 \& \& \& \& \\
\hline \& \& 500 Gms \& 40.14 \& \& \& \& \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Code \& Name \& Packing \& \$ Price \& Code \& Name \& Packing \& \$ Price \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
\& 62468 \\
\& {[87-79-6]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{L-(-)-Sorbose extrapure, 99\%} \& 5 Gms \& 26.32 \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 39895 \\
\& {[83-48-7]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{Stigmasterol extrapure, 95\%} \& 1 Gms \& 15.40 \\
\hline \& \& 25 Gms \& 68.43 \& \& \& 5 Gms \& 46.06 \\
\hline \& \& 100 Gms \& 263.20 \& \& \& 25 Gms \& 157.92 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
\& 51719 \\
\& {[22189-32-8]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Spectinomycin Dihydrochloride \\
Pentahydrate extrapure, 98\%
\end{tabular}} \& 1 Gms \& 15.79 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 87610 \text { \& } \\
\& {[9013-20-1]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Streptavidin (SA) ex. Streptomyces Avidinii for molecular biology, 15U/mg Protein} \& 5 Mg \& 106.86 \\
\hline \& \& 5 Gms \& 52.64 \& \& \& 10 Mg \& 196.48 \\
\hline \& \& 25 Gms \& 171.08 \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 54224 \\
\& \text { [9013-20-1] }
\end{aligned}
\]} \& \multirow[t]{3}{*}{r-Streptavidin (r-SA) ex. Streptomyces Acidinii in E.Coli Type 1, 17U/mg protein} \& \multirow[t]{3}{*}{5 Mg} \& \multirow[t]{3}{*}{584.17} \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
\& 17030 \\
\& {[124-20-9]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{Spermidine extrapure, 99\%} \& 250 Mg \& 14.48 \& \& \& \& \\
\hline \& \& 1 Gms \& 46.06 \& \& \& \& \\
\hline \& \& 5 Gms \& 197.40 \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 91014 \\
\& {[3810-74-0]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{Streptomycin Sulphate (STM)} \& 5 Gms \& 5.40 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 91710 \\
\& {[71-44-3]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Spermine Free Base extrapure, 99\%} \& 250 Mg \& 26.32 \& \& \& 25 Gms \& 17.77 \\
\hline \& \& 1 Gms \& 59.22 \& \& \& 100 Gms \& 36.98 \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
\& 22310 \\
\& {[306-67-2]}
\end{aligned}
\]} \& \multirow[t]{4}{*}{Spermine Tetrahydrochloride extrapure, 99\%} \& 1 Gms \& 45.53 \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 62463 \\
\& {[3810-74-0]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{Streptomycin Sulphate for tissue culture} \& 5 Gms \& 12.24 \\
\hline \& \& 5 Gms \& 118.18 \& \& \& 25 Gms \& 24.48 \\
\hline \& \& 10 Gms \& 227.27 \& \& \& 100 Gms \& 44.48 \\
\hline \& \& 25 Gms \& 409.01 \& \multirow[t]{4}{*}{\[
\begin{aligned}
\& 14653 \\
\& {[18883-66-4]}
\end{aligned}
\]} \& \multirow[t]{4}{*}{Streptozotocin (STZ) extrapure
\(98 \%\)} \& 100 Mg \& 24.35 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
\[
26413
\] \\
[85187-10-6]
\end{tabular}} \& \multirow[t]{2}{*}{Sphingomyelin (Type I) ex. Bovine Brain Sphingolipids extrapure, 99\%} \& 10 Mg \& 101.46 \& \& \& 500 Mg \& 111.86 \\
\hline \& \& 100 Mg \& 530.48 \& \& \& 1 Gms \& 210.56 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
\& 95852 \\
\& {[85187-10-6]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{Sphingomyelin (Type II) ex. Bovine Heart Sphingolipids extrapure, 99\%} \& 10 Mg \& \& \& \& 5 Gms \& 855.40 \\
\hline \& \& 25 Mg \& 226.35 \& \multirow[t]{2}{*}{\[
\begin{gathered}
28065 \\
{[100-42-5]}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Styrene Monomer (Stab w/ tBC) extapure, 99.5\% \\
(Phenylethylene, Vinylbenzene)
\end{tabular}} \& 500 ml \& 12.50 \\
\hline \& \& 100 Mg \& 592.99 \& \& \& 2500 ml \& 57.90 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
\& 77061 \\
\& {[657408-07-6]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{\begin{tabular}{l}
S-Phos \\
(2-Dicyclohexylphosphino-2,6-Dime thoxybiphenyl) extrapure, 98\%
\end{tabular}} \& 1 Gms \& 23.69 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 48142 \\
\& {[108-30-5]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Succinic Anhydride extrapure,
99.5\%} \& 100 Gms \& 5.00 \\
\hline \& \& 5 Gms \& 85.54 \& \& \& 500 Gms \& 19.74 \\
\hline \& \& 25 Gms \& 329.00 \& 72368 d \& N -Succinimidyl \& 1 Gms \& 52.64 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 63056 \\
\& {[122341-56-4]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
3-(2`-Spiroadamantane) \\
-4-Methoxy-4-(3``-Phosphoryloxy) \\
Phenyl-1,2-Dioxetane (AMPPD) \\
extrapure, 98\%
\end{tabular}} \& \multirow[t]{2}{*}{5 Mg} \& \multirow[t]{2}{*}{275.31} \& [115223-09-1] \& \begin{tabular}{l}
Ferrocenecarboxylate pure, 97\% \\
(Ferrocenecarboxylic Acid \\
N -Succinimidyl Ester)
\end{tabular} \& 5 Gms \& 236.88 \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 24088 \\
\& {[64987-85-5]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Succinimidyl-4-(N- \\
(N -maleimidomethyl) \\
cyclohexane-1-carboxylate \\
(SMCC), 98\%
\end{tabular}} \& 50 Mg \& 34.48 \\
\hline \[
\underset{[52-01-7]}{67715}
\] \& Spironolactone extrapure, 97\% \& \begin{tabular}{l}
500 Mg \\
1 Gms
\end{tabular} \& \[
\begin{array}{r}
68.56 \\
122.52
\end{array}
\] \& \& \& 250 Mg \& 140.55 \\
\hline 12590 \& 20X SSC Buffer pH 6.9-7.1 for molecular biology \& \[
\begin{aligned}
\& 200 \mathrm{ml} \\
\& 500 \mathrm{ml}
\end{aligned}
\] \& 4.34
9.74 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 20721 \\
\& {[386229-69-2]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Sucrose Heptasulphate Potassium Salt pure, 80\% \\
(1,3,4,6-Tetra-O-Sulfo-b-D-Fructofuran osyl-a-DGlucopyranoside-2,3,4-Tris(Hy drogen Sulfate)Potassium)
\end{tabular}} \& \multirow[t]{2}{*}{25 Mg} \& \multirow[t]{2}{*}{236.88} \\
\hline 78305 \& 20X SSPE Buffer pH-7.4 suitable for molecular biology \& \[
\begin{array}{r}
200 \mathrm{ml} \\
1000 \mathrm{ml}
\end{array}
\] \& 11.84
32.90 \& \& \& \& \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
\& 80268 \\
\& {[10094-58-3]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{StachyoseTetrahydrate extrapure, 98\%} \& 25 Mg \& 41.45 \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 47973 \\
\& {[54182-58-0]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Sucrose Octasulphate Aluminium Salt (Sucralfate) extrapure, 30-36\% \\
(Sucrose Octasulfate-Aluminum Complex)
\end{tabular}} \& 5 Gms \& 39.48 \\
\hline \& \& 100 Mg \& 163.84 \& \& \& 25 Gms \& 105.28 \\
\hline \& \& 250 Mg \& 377.56 \& \& \& \& \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 31384 \\
\& {[57-11-4]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Stearic Acid pure, C18-98\%} \& 500 Gms \& 8.55 \& 69538 \& Sucrose Palmitate extrapure, 90\% \& 25 Gms \& 28.95 \\
\hline \& \& 5 Kg \& 84.22 \& [26446-38-8] \& (b-D-Fructofuranosyl-a-D-Glucopyrano side Monohexadecanoate) \& 100 Gms \& 88.17 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
\& 73878 \\
\& {[57-11-4]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{Stearic Acid extrapure, C18-99\%} \& 5 Gms \& 3.95 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 67787 \\
\& {[85-86-9]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Sudan III} \& 25 Gms \& 2.76 \\
\hline \& \& 25 Gms \& 15.13 \& \& \& 100 Gms \& 8.03 \\
\hline \& \& 100 Gms \& 57.90 \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 81329 \\
\& {[6209-17-2]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Sulfacetamide Sodium \\
Monohydrate extrapure, 99\%-101\% \\
(N-Acetylsulfanilamide Sodium Salt Monohydrate)
\end{tabular}} \& \multirow[t]{3}{*}{\begin{tabular}{l}
5 Gms \\
50 Gms
\end{tabular}} \& 36.19 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
\& 73439 \\
\& {[57-11-4]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{Stearic Acid ExiPlus, Multi-Compendial, C18-99\%} \& 5 Gms \& 6.71 \& \& \& \& \multirow[t]{2}{*}{105.28} \\
\hline \& \& 25 Gms \& 28.95 \& \& \& \& \\
\hline \& \& 100 Gms \& 92.12 \& \[
\begin{aligned}
\& 16775 \\
\& {[68-35-9]}
\end{aligned}
\] \& Sulfadiazine (SFD) extrapure, 99-101\% \& 50 Gms
100 Gms \& 34.61
65.67 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 61609 \\
\& {[112-61-8]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Stearic Acid Methyl Ester Reference Standard, 99\% (GC) (Methyl Stearate)} \& \multirow[t]{2}{*}{\begin{tabular}{l}
5 Gms \\
25 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
46.06 \\
128.97
\end{array}
\]} \& \& \begin{tabular}{l}
(4-Amino-N- \\
(2-Pyrimidinyl)Benzenesulfonamide)
\end{tabular} \& \& \\
\hline \& \& \& \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 28277 \\
\& {[547-32-0]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Sulfadiazine Sodium Salt (SFD \\
Sodium) extrapure, 99\% \\
(4-Amino-N- \\
(2-Pyrimidinyl)Benzenesulfonamide \\
Sodium Salt)
\end{tabular}} \& 25 Gms \& 38.16 \\
\hline \multirow[t]{2}{*}{61600 d} \& \multirow[t]{2}{*}{\& STET Lysis Buffer} \& \multirow[t]{2}{*}{500 ml} \& 39.48 \& \& \& 100 Gms \& 119.76 \\
\hline \& \& \& \& \& \& \& \\
\hline
\end{tabular}

Catalogue 2024-25

Code	Name	Packing	\$ Price	Code	Name	Packing	\$ Price
$\begin{aligned} & 69181 \\ & \text { [7704-34-9] } \end{aligned}$	Sulfur Precipitated pure, 98\%	500 Gms	3.03	$\begin{gathered} 47064 \text { 』 } \\ {[125700-67-6]} \end{gathered}$	TBTU extrapure, 98\%	10 Gms 25 Gms	8.55 19.48
$\begin{gathered} 86684 \\ {[723-46-6]} \end{gathered}$	Sulphamethoxazole (SMX), 99\%	$5 \mathrm{Gms}$ $25 \text { Gms }$	30.93 84.36			100 Gms 500 Gms	65.80 236.88
$\begin{aligned} & 72701 \\ & {[126-33-0]} \end{aligned}$	Sulpholane Anhydrous pure, 99\% (Sulfolane Anhydrous)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	10.53 48.69	$\begin{aligned} & 92481 \\ & {[7446-07-3]} \end{aligned}$	Tellurium Dioxide ultrapure, 99.999\%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	38.69 92.12
$\begin{aligned} & 13674 \\ & {[126-33-0]} \end{aligned}$	Sulpholane Anhydrous extrapure AR, 99\% (Sulfolane Anhydrous)	$\begin{array}{r} 500 \mathrm{ml} \\ 2500 \mathrm{ml} \end{array}$	13.49 66.46	59479 [13494-80-9]	Tellurium Metal powder, 99.9\%, -200 mesh	$\begin{array}{r} 10 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 20.79 \\ 107.78 \end{array}$
$\begin{aligned} & 31249 \\ & {[9054-89-1]} \end{aligned}$	Superoxide Dismutase (SOD) ex. Bovine Erythrocytes, 3000U/mg	$\begin{array}{r} 20 \text { K.Units } \\ 100 \\ \text { K.Units } \end{array}$	163.84 530.48	$\begin{aligned} & 67813 \\ & {[13798-24-8]} \end{aligned}$	Terbium (III) Chloride Hexahydrate extrapure, 99.9\%	5 Gms 25 Gms	$\begin{array}{r} 55.27 \\ 241.88 \end{array}$
$\begin{aligned} & 47406 \\ & {[14414-32-5]} \end{aligned}$	Syringaldazine pure, 95\%	1 Gms	59.22	52633 [13451-19-9]	Terbium (III) Nitrate Hexahydrate ultrapure, 99.99\%	2 Gms 10 Gms	$\begin{array}{r} 55.01 \\ 202.66 \end{array}$
$\begin{aligned} & 41719 \\ & {[134-96-3]} \end{aligned}$	Syringaldehyde extrapure, 99\%	$\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$	8.29 24.21	52313 [57584-27-7]	Terbium (III) Nitrate Pentahydrate extrapure, 99.9\%	$5 \mathrm{Gms}$ $25 \text { Gms }$	$\begin{array}{r} 57.90 \\ 253.33 \end{array}$
		100 Gms	85.93	$\begin{aligned} & 99186 \\ & {[148980-31-8]} \end{aligned}$	Terbium (III) Trifluoromethanesulfonate extrapure, 98% (Terbium(III) Triflate, Trifluoromethanesulfonic Acid Terbium(III) Salt)	1 Gms	41.45
64614 [530-57-4]	Syringic Acid pure, 96\% (3,5-Dimethoxy-4-Hydroxybenzoic Acid, Gallic Acid 3,5-Dimethyl Ether)	5 Gms 25 Gms 25 Gms	$\begin{array}{r} 21.06 \\ 52.64 \\ 184.24 \end{array}$			5 Gms	152.00
71989	10X TAE Buffer pH-8.3 for molecular biology	$\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	$\begin{array}{r} 7.76 \\ 13.69 \end{array}$	62369 [12037-01-3]	Terbium (III,IV) Oxide ultrapure, 99.99\%	1 Gms 5 Gms	$\begin{array}{r} 48.43 \\ 135.42 \end{array}$
83170 \&	10X TBE Buffer pH-8.3 for molecular biology	$\begin{aligned} & 200 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$	8.69 14.87	$\begin{aligned} & 96104 \\ & {[100-20-9]} \end{aligned}$	Terephthaloyl Chloride pure, 99\%	100 Gms 500 Gms	17.11 71.06
51782 d	10X TE Buffer pH-8.0 for molecular biology	100 ml 500 ml	16.58 55.27	14676 [7365-44-8]	TES Buffer extrapure, 99\% (N-Tris(Hydroxymethyl) Methyl-2-Aminoethane Sulphonic Acid)	5 Gms 25 Gms	$\begin{aligned} & 10.53 \\ & 36.85 \end{aligned}$
$\begin{aligned} & 89528 \\ & {[7440-25-7]} \end{aligned}$	Tantalum Metal Sheet (Type 1), 99.9\%	1 piece	142.26			100 Gms	138.18
$\begin{aligned} & 27101 \\ & {[7440-25-7]} \end{aligned}$	$\begin{aligned} & \text { Tantalum Metal Sheet (Type 2), } \\ & 99.9 \% \end{aligned}$	1 piece	212.40	51318 [70331-82-7]	TES Buffer Sodium Salt extrapure, 99\%	$\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$	$\begin{array}{r} 77.64 \\ 235.96 \end{array}$
$\begin{aligned} & 70040 \\ & {[7440-25-7]} \end{aligned}$	Tantalum Metal Sheet (Type 3), 99.9\%	1 piece	124.23	19914 Testosterone (free base) extrapure, $[58-22-0]$ 99% $(17 B-$ Hydroxy-4-Androsten-3-one)		1 Gms 5 Gms	23.69 46.06
$\begin{aligned} & 10964 \\ & {[29915-38-6]} \end{aligned}$	TAPS Buffer extrapure, 99% (N-Tris (hydroxymethyl)	$25 \text { Gms }$	15.66 41.32			25 Gms	157.92
	Methyl-3-Aminopropane Sulphonic Acid)			$\begin{aligned} & 83651 \\ & {[315-37-7]} \end{aligned}$	Testosterone Enanthate extrapure, 99\% (17ß-Hydroxy-4-Androsten-3-one 17-Enanthate)	$\begin{aligned} & 1 \mathrm{Gms} \\ & 5 \mathrm{Gms} \end{aligned}$	$\begin{aligned} & 26.32 \\ & 65.80 \end{aligned}$
$\begin{aligned} & 44194 \\ & \text { [68399-81-5] } \end{aligned}$	TAPSO Buffer extrapure, 99\% (3-[Tris-(hydroxymethyl) Methylamino]	25 Gms	32.11			25 Gms	171.08
	-2- Hydroxypropane Sulphonic Acid)			$\begin{aligned} & 71344 \\ & {[57-85-2]} \end{aligned}$	Testosterone Propionate extrapure, 98\% (17ß-Hydroxy-4-Androsten-3-one 17-Propionate)	5 Gms	21.98
$\begin{aligned} & 28682 \\ & {[147-71-7]} \end{aligned}$	D-(-)-Tartaric Acid extrapure, 99\%	100 Gms 250 Gms	$\begin{array}{r} 7.11 \\ 17.24 \end{array}$			25 Gms	97.65
$\begin{aligned} & 60301 \\ & {[87-69-4]} \end{aligned}$	L-(+)-Tartaric Acid extrapure AR, ACS, ExiPlus, Multi-Compendial, 99.7\% (L-Threaric Acid)	500 Gms 5 Kg	7.90 71.06	$\begin{aligned} & 93831 \vee 1 \\ & {[13035-61-5]} \end{aligned}$	1,2,3,5-Tetra-O-Acetyl-b-D-Ribofura nose extrapure, 98\% (beta-D-Ribofuranose-1,2,3,5-Tetraacet ate)	5 Gms 25 Gms	34.48 124.89
	meets compendial specs of USP, BP, Ph.Eur			$\begin{aligned} & 76333 \\ & {[79-34-5]} \end{aligned}$	1,1,2,2-Tetrachloroethane extrapure AR, 99\%	$\begin{array}{r} 500 \mathrm{ml} \\ 1000 \mathrm{ml} \end{array}$	23.03 45.14
$\begin{aligned} & 63904 \\ & {[133-37-9]} \end{aligned}$	DL-Tartaric Acid extrapure, 99\%	500 Gms 5 Kg	$\begin{array}{r} 6.97 \\ 65.80 \end{array}$	$\underset{[64-75-5]}{82175} \text { ti }$	Tetracycline Hydrochloride (TC) for tissue culture, 95\%	5 Gms 25 Gms	13.82 52.64
$\begin{aligned} & 15711 \\ & {[107-35-7]} \end{aligned}$	Taurine extrapure CHR, 99\% (2-Aminoethanesulfonic Acid)	100 Gms	$\begin{array}{r} 15.79 \\ 105.28 \end{array}$			100 Gms	146.08
		5 Kg	427.70	$\begin{aligned} & \underset{[64-75-5]}{38614} \text { Tetracycline Hydrochloride (TC), } \\ & 95 \% \end{aligned}$		5 Gms 25 Gms	5.79 28.56
						100 Gms	104.62

∞ Part B - Bioreagents, Biochemicals \& Speciality Fine Chemicals

Catalogue 2024-25

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Code \& Name \& Packing \& \$ Price \& Code \& Name \& Packing \& \$ Price \\
\hline \begin{tabular}{l}
59844 \\
[7695-91-2]
\end{tabular} \& \& DL-a-Tocopherol Acetate (Vitamin E Acetate) for tissue culture, 98\% \& 5 Gms
25 Gms
100 Gms \& 4.74
16.45
62.77 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 68084 \\
\& {[3588-17-8]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
trans,trans-Muconic acid (tIMA) \\
extrapure, 98\% \\
(trans,trans-2,4-Hexadienedioic Acid, trans,trans-1,3-Butadiene-1,4-Dicarbox ylic Acid)
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
1 Gms \\
5 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
31.32 \\
146.73
\end{array}
\]} \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
\& 52885 \\
\& {[887144-97-0]}
\end{aligned}
\]} \& \multirow[t]{4}{*}{\begin{tabular}{l}
Togni`s Reagent (3,3-Dimethyl-1-(trifluoromethyl)-1,2-benziodoxole) extrapure, \(97 \%\) \\
(1-Trifluoromethyl-3,3-Dimethyl-1,2-Ben ziodoxole)
\end{tabular}} \& \multirow[t]{4}{*}{\begin{tabular}{l}
250 Mg \\
1 Gms \\
5 Gms
\end{tabular}} \& \multirow[t]{4}{*}{\[
\begin{array}{r}
71.06 \\
184.24 \\
315.84
\end{array}
\]} \& \& \& \& \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 42618 \\
\& {[288-88-0]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{1,2,4-Triazole pure, 98\%} \& \multirow[t]{2}{*}{\begin{tabular}{l}
100 Gms \\
500 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
3.82 \\
17.11
\end{array}
\]} \\
\hline \& \& \& \& \& \& \& \\
\hline \& \& \& \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 93572 \\
\& {[41253-21-8]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{\begin{tabular}{l}
1,2,4-Triazole Sodium extrapure, 98\% \\
(Sodium-1,2,4-Triazolide)
\end{tabular}} \& 25 Gms \& 10.00 \\
\hline \multirow[t]{3}{*}{\[
\underset{[119-93-7]}{67593}
\]} \& \multirow[t]{3}{*}{o-Tolidine extrapure AR, 98\% (3,3-Dimethyl Benzidine)} \& 25 Gms \& 9.08 \& \& \& 100 Gms \& 36.85 \\
\hline \& \& 100 Gms \& 27.64 \& \& \& 500 Gms \& 65.80 \\
\hline \& \& 500 Gms \& 49.74 \& 78411 \& 1,3,5-Tribromobenzene pure, 98\% \& 25 Gms \& 48.69 \\
\hline \multirow[t]{5}{*}{\[
\begin{gathered}
65954 \\
{[119-93-7]}
\end{gathered}
\]} \& \multirow[t]{3}{*}{\begin{tabular}{l}
o-Tolidine extrapure AR, ExiPlus, Multi-Compendial, 98\% \\
(3,3- Dimethyl Benzidine)
\end{tabular}} \& \multirow[t]{5}{*}{\[
\begin{array}{r}
25 \mathrm{Gms} \\
100 \mathrm{Gms} \\
500 \mathrm{Gms}
\end{array}
\]} \& \multirow[t]{5}{*}{\[
\begin{aligned}
\& 10.40 \\
\& 33.16 \\
\& 55.27
\end{aligned}
\]} \& \multicolumn{2}{|l|}{[626-39-1]} \& \multicolumn{2}{|l|}{} \\
\hline \& \& \& \& 76074 \& \& Tribulus Terrestris Extract, 45\% FS \& 5 Gms \& 34.22 \\
\hline \& \& \& \& [90131-68-3] \& \& 25 Gms \& 65.80 \\
\hline \& \multirow[t]{2}{*}{meets compendial specs of USP, BP,} \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 99486 \\
\& {[108-70-3]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{1,3,5-Trichlorobenzene (1,3,5-TCB) pure, \(99 \%\)} \& \multirow[t]{2}{*}{100 Gms 500 Gms} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
36.85 \\
125.02
\end{array}
\]} \\
\hline \& \& \& \& \& \& \& \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
82897 \\
{[118-90-1]}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\(\checkmark\) o-Toluic Acid pure, 99.5\%} \& 250 Gms \& 6.58 \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 94076 \\
\& {[115-20-8]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{\begin{tabular}{l}
2,2,2-Trichloroethanol pure, 98\% \\
(Trichloroethyl alcohol, \\
B, \(\beta, \beta\)-Trichloroethyl alcohol, \\
2,2,2-Trichloroethan-1-ol)
\end{tabular}} \& \multirow[t]{3}{*}{\[
\begin{gathered}
25 \mathrm{ml} \\
100 \mathrm{ml} \\
250 \mathrm{ml}
\end{gathered}
\]} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
28.95 \\
98.70 \\
157.92
\end{array}
\]} \\
\hline \& \& 500 Gms \& 11.71 \& \& \& \& \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
70097 \\
{[90-04-7]}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\(\checkmark\) m-Toluic Acid pure, 98\%} \& \multirow[t]{2}{*}{250 Gms 500 Gms} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
7.24 \\
11.84
\end{array}
\]} \& \& \& \& \\
\hline \& \& \& \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 27740 \\
\& {[5704-04-1]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{\begin{tabular}{l}
TRICINE Buffer Reagent Grade, 99\% \\
(N-Tris-(hydroxymethyl) Methylglycine)
\end{tabular}} \& \multirow[t]{3}{*}{\[
\begin{gathered}
25 \mathrm{Gms} \\
100 \mathrm{Gms} \\
500 \mathrm{Gms}
\end{gathered}
\]} \& 14.48 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 61421 \\
\& {[90-94-5]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\(\checkmark\) p-Toluic Acid pure, 98\%} \& \multirow[t]{2}{*}{\begin{tabular}{l}
250 Gms \\
500 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
6.32 \\
11.19
\end{array}
\]} \& \& \& \& 57.90 \\
\hline \& \& \& \& \& \& \& 263.20 \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
\& 12358 \vee \vee \mathrm{p} \text {-Toluidine pure, } 98 \% \\
\& {[106-49-0]}
\end{aligned}
\]} \& 500 Gms \& 9.87 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 67490 \\
\& {[2622-14-2]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{```
Tricyclohexylphosphine (Cy3P)
extrapure, 94%
(P(Cy)3, PCy3)
```} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
5 \mathrm{Gms} \\
25 \mathrm{Gms} \\
100 \mathrm{Gms}
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
19.74 \\
85.54 \\
329.00
\end{array}
\]} \\
\hline \[
\begin{gathered}
86003 \\
{[106-49-0]}
\end{gathered}
\] \& p -Toluidine specially purified extrapure, \(99 \%\) \& 500 Gms \& 16.45 \& \& \& \& \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
\& 22134 \\
\& {[92-31-9]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{\begin{tabular}{l}
\& Toluidine Blue O, 90\% \\
(Basic Blue 17, Blutene Chloride, Methylene Blue T50, Tolonium Chloride)
\end{tabular}} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
10 \mathrm{Gms} \\
25 \mathrm{Gms} \\
100 \mathrm{Gms}
\end{array}
\]} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
4.47 \\
10.13 \\
35.01
\end{array}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
63437 \\
[58656-04-5]
\end{tabular}} \& \multirow[t]{2}{*}{Tricyclohexylphosphine Tetrafluoroborate extrapure, 98\%} \& \multirow[t]{2}{*}{\begin{tabular}{l}
1 Gms \\
5 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 28.56 \\
\& 85.41
\end{aligned}
\]} \\
\hline \& \& \& \& \& \& \& \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 80184 \\
\& {[637-39-8]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Triethanolamine Hydrochloride extrapure AR, 99\%} \& \multirow[t]{2}{*}{100 Gms 500 Gms} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
5.66 \\
19.74
\end{array}
\]} \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
\& 37699 \\
\& {[92-31-9]}
\end{aligned}
\]} \& \multirow[t]{4}{*}{\begin{tabular}{l}
\& Toluidine Blue O for tissue culture, 90\% \\
(Basic Blue 17, Blutene Chloride, Methylene Blue T50, Tolonium Chloride)
\end{tabular}} \& \multirow[t]{4}{*}{\begin{tabular}{l}
10 Gms \\
25 Gms
\end{tabular}} \& \multirow[t]{4}{*}{\[
\begin{aligned}
\& 11.98 \\
\& 26.98
\end{aligned}
\]} \& \& \& \& \\
\hline \& \& \& \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 80058 \\
\& {[75-89-8]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{2,2,2-Trifluoroethanol pure, 99\%} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
25 \mathrm{ml} \\
100 \mathrm{ml} \\
500 \mathrm{ml}
\end{array}
\]} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
5.53 \\
13.82 \\
57.90
\end{array}
\]} \\
\hline \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
\& 20611 \\
\& {[1576-35-8]}
\end{aligned}
\]} \& \multirow[t]{4}{*}{\begin{tabular}{l}
p-Toluenesulfonyl Hydrazide pure, 98\% \\
(p-Toluenesulfonic Acid Hydrazide, \\
p-Toluenesulphonyl Hydrazide, \\
Tosylhydrazide)
\end{tabular}} \& \multirow[t]{4}{*}{\[
\begin{array}{r}
25 \mathrm{Gms} \\
100 \mathrm{Gms} \\
500 \mathrm{Gms}
\end{array}
\]} \& \multirow[t]{4}{*}{\[
\begin{array}{r}
9.74 \\
27.64 \\
102.25
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 14428 \\
\& {[10009-20-8]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{N -6-Trifluoroacetyl-L-Lysine extrapure, 98\%
(H-Lys(Tfa)-OH)} \& \multirow[t]{2}{*}{\[
5 \mathrm{Gms}
\]
\[
25 \text { Gms }
\]} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 21.58 \\
\& 43.43
\end{aligned}
\]} \\
\hline \& \& \& \& \& \& \& \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 12631 \\
\& {[1423-26-3]}
\end{aligned}
\]} \& \& \multirow[b]{2}{*}{1 Gms} \& \\
\hline \& \& \& \& \& \multirow[t]{2}{*}{Acid extrapure, 97\%} \& \& 17.63 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 68913 \\
\& {[75737-38-1]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
\& meta-Topolin ( mT ) for molecular \\
] biology, 98\% \\
(6-(3-Hydroxybenzylamino)purine)
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
25 \mathrm{Mg} \\
100 \mathrm{Mg}
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 26.32 \\
\& 63.17
\end{aligned}
\]} \& \& \& \[
\begin{array}{r}
5 \mathrm{Gms} \\
25 \mathrm{Gms}
\end{array}
\] \& \[
\begin{array}{r}
32.90 \\
163.84
\end{array}
\] \\
\hline \& \& \& \& 79009 \& \multirow[t]{2}{*}{5-Trifluorothymidine extrapure, 99\%} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
100 \mathrm{Mg} \\
1 \mathrm{Gms}
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
55.27 \\
421.12
\end{array}
\]} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 56521 \\
\& \text { [82692-93-1] }
\end{aligned}
\]} \& \multirow[t]{2}{*}{TOOS extrapure, 98\%} \& \multirow[t]{2}{*}{\begin{tabular}{l}
1 Gms \\
5 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
59.22 \\
236.88
\end{array}
\]} \& [70-00-8] \& \& \& \\
\hline \& \& \& \& \multirow[t]{3}{*}{\[
\begin{gathered}
37758 \\
{[88-82-4]}
\end{gathered}
\]} \& \multirow[t]{3}{*}{2,3,5-Triiodobenzoic Acid (TIBA) extrapure AR, 98\%} \& 5 Gms \& 7.90 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
\& 95595 \\
\& {[136849-72-4]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{d TOTU extrapure, 99\%} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
5 \mathrm{Gms} \\
25 \mathrm{Gms} \\
100 \mathrm{Gms}
\end{array}
\]} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
27.64 \\
78.96 \\
289.52
\end{array}
\]} \& \& \& 10 Gms \& 15.79 \\
\hline \& \& \& \& \& \& 25 Gms \& 32.90 \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 35241 \\
\& {[6893-02-3]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{3,3,5-Triiodo-L-Thyronine extrapure, \(95 \%\) (3,3,5-Triiodothyronin)} \& \multirow[t]{2}{*}{\begin{tabular}{l}
100 Mg \\
1 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
59.22 \\
342.16
\end{array}
\]} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 25793 \\
\& {[3682-35-7]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{TPTZ extrapure AR (2,4,6-Tri-(2-pyridyl)-5-triazine), 99\%} \& \multirow[t]{2}{*}{\begin{tabular}{l}
1 Gms \\
5 Gms \\
25 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
15.79 \\
59.22 \\
210.56
\end{array}
\]} \& \& \& \& \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{gathered}
14219 \\
{[538-24-9]}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Trilaurin pure, 98\%(GC) \\
(Glycerol Trilaurate, Glyceryl Trilaurate, \\
Glyceryl Tridodecanoate)
\end{tabular}} \& \begin{tabular}{l}
5 Gms \\
25 Gms
\end{tabular} \& \[
\begin{aligned}
\& 19.74 \\
\& 48.69
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& 49011 \\
\& {[593-50-0]}
\end{aligned}
\] \& Triacontanol (TRIA) extrapure, 90\% \& \[
\begin{array}{r}
500 \mathrm{Mg} \\
1 \mathrm{Gms}
\end{array}
\] \& \[
\begin{aligned}
\& 105.28 \\
\& 184.24
\end{aligned}
\] \& \& \& 100 Gms \& 113.18 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Code \& Name \& Packing \& \$ Price \& Code \& Name \& Packing \& \$ Price \\
\hline \[
\begin{gathered}
84217 \\
{[538-24-9]}
\end{gathered}
\] \& \begin{tabular}{l}
Trilaurin Reference Standard, 99\% (GC) \\
(Glycerol Trilaurate, Glyceryl Trilaurate, Glyceryl Tridodecanoate)
\end{tabular} \& \[
\begin{gathered}
100 \mathrm{Mg} \\
1 \mathrm{Gms} \\
5 \mathrm{Gms}
\end{gathered}
\] \& \[
\begin{array}{r}
28.95 \\
78.96 \\
171.08
\end{array}
\] \& \[
\begin{gathered}
83676 \\
{[555-45-3]}
\end{gathered}
\] \& \begin{tabular}{l}
Trimyristin Reference Standard, 99\%(GC) \\
(Glyceryl Trimyristate, Glycerol Trimyristate)
\end{tabular} \& \begin{tabular}{l}
1 Gms \\
5 Gms \\
25 Gms
\end{tabular} \& \[
\begin{array}{r}
52.64 \\
157.92 \\
276.36
\end{array}
\] \\
\hline \[
\begin{aligned}
\& 57355 \\
\& {[554-95-0]}
\end{aligned}
\] \& \begin{tabular}{l}
Trimesic Acid extrapure, 98\% \\
(Benzene-1,3,5-Tricarboxylic acid, 1,3,5-Benzenetricarboxylic Acid)
\end{tabular} \& \[
\begin{array}{r}
5 \mathrm{Gms} \\
25 \mathrm{Gms} \\
100 \mathrm{Gms}
\end{array}
\] \& \[
\begin{array}{r}
9.74 \\
34.61 \\
55.27
\end{array}
\] \& \[
\begin{aligned}
\& 84050 \\
\& {[1116-76-3]}
\end{aligned}
\] \& Trioctylamine (Tri-n-Octylamine) pure, 95\% \& \[
\begin{aligned}
\& 100 \mathrm{ml} \\
\& 500 \mathrm{ml}
\end{aligned}
\] \& 13.82
48.43
64.09 \\
\hline \[
\begin{aligned}
\& 20139 \\
\& {[75-77-4]}
\end{aligned}
\] \& Trimethyl Chlorosilane (TMCS) extrapure, 98\% \& \[
\begin{array}{r}
250 \mathrm{ml} \\
1000 \mathrm{ml} \\
2500 \mathrm{ml}
\end{array}
\] \& \[
\begin{array}{r}
9.21 \\
28.95 \\
57.90
\end{array}
\] \& \[
\underset{[555-44-2]}{59708}
\] \& Tripalmitin pure, 85\%(GC) \& 1 Gms
25 Gms
100 Gms \& 110.81
65.80
157.92 \\
\hline \[
\begin{gathered}
66889 \\
{[142-25-6]}
\end{gathered}
\] \& \(\mathrm{N}, \mathrm{N}, \mathrm{N}\)-Trimethylethylenediamine pure, 97\% \& \begin{tabular}{l}
5 Gms \\
25 Gms
\end{tabular} \& \[
\begin{array}{r}
42.11 \\
144.76
\end{array}
\] \& \multirow[t]{2}{*}{\[
\begin{gathered}
75700 \\
{[555-44-2]}
\end{gathered}
\]} \& \multirow[t]{2}{*}{Tripalmitin Reference Standard, 99\%(GC)} \& \[
\begin{aligned}
\& 100 \mathrm{Mg} \\
\& 500 \mathrm{Mg}
\end{aligned}
\] \& 15.79
46.06 \\
\hline 18879 \& Trimethoprim (TMP), 98.5\% \& 5 Gms \& 9.87 \& \& \& 1 Gms \& 78.96 \\
\hline [738-70-5] \& \& 25 Gms \& 39.22 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 38015 \\
\& \text { [5893-05-0] }
\end{aligned}
\]} \& \multirow[t]{2}{*}{N-Triphenyl Methyl Glycine extrapure, \(98 \%\)} \& \multirow[t]{2}{*}{25 Gms} \& \multirow[t]{2}{*}{262.15} \\
\hline 66069 \& 3,4,5-Trimethoxy Benzaldehyde \& 25 Gms \& 11.84 \& \& \& \& \\
\hline [86-81-7] \& pure, 98\% \& 100 Gms \& 39.48 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 24651 \\
\& {[603-35-0]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Triphenylphosphine pure, 98\%} \& 100 Gms \& 10.53 \\
\hline \[
\begin{aligned}
\& 41569 \\
\& {[621-23-8]}
\end{aligned}
\] \& 1,3,5-Trimethoxybenzene pure, \(99 \%\) \& 25 Gms \& 39.74 \& \& \& 500 Gms
1 Kg \& 50.01
94.75 \\
\hline \[
\begin{aligned}
\& 40017 \\
\& {[118-41-2]}
\end{aligned}
\] \& \begin{tabular}{l}
3,4,5-Trimethoxybenzoic Acid extrapure, 99\% \\
(Gallic Acid Trimethyl Ether,
\end{tabular} \& \[
\begin{gathered}
25 \mathrm{Gms} \\
100 \mathrm{Gms}
\end{gathered}
\] \& 12.50
41.45 \& \[
\begin{aligned}
\& 43068 \\
\& {[14243-64-2]}
\end{aligned}
\] \& \begin{tabular}{l}
Triphenylphosphinegold(I) Chloride ((Ph3P)AuCl), 98\% \\
(Chloro(triphenylphosphine)Gold(I))
\end{tabular} \& \begin{tabular}{l}
500 Mg \\
1 Gms
\end{tabular} \& \[
\begin{array}{r}
63.17 \\
125.02
\end{array}
\] \\
\hline \& Trimethylgallic Acid) \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 95474 \\
\& {[6399-81-1]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Triphenylphosphine Hydrobromide pure, 98\%} \& 5 Gms \& 16.32 \\
\hline \[
49601
\] \& \begin{tabular}{l}
N -(3-Trimethoxysilylpropyl) \\
Diethylenetriamine (TMSPD) pure,
\end{tabular} \& \[
100 \mathrm{ml}
\] \& 65.80 \& \& \& 25 Gms \& 40.93 \\
\hline \& ```
95%
(2-[2-
(3-Trimethoxysilylpropylamino)ethylami
no]ethylamine, 3-[2-
``` \& \& 263.2 \& \[
\begin{aligned}
\& 32098 \\
\& {[791-28-6]}
\end{aligned}
\] \& \begin{tabular}{l}
Triphenylphosphine Oxide (TPPO) pure, 98.5\% \\
(Triphenyl Phosphorus Oxide)
\end{tabular} \& \[
\begin{gathered}
25 \mathrm{Gms} \\
100 \mathrm{Gms} \\
500 \mathrm{Gms}
\end{gathered}
\] \& \[
\begin{array}{r}
4.61 \\
15.79 \\
39.48
\end{array}
\] \\
\hline \& (2-Aminoethylamino)ethylamino]propyl \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 70874 \\
\& {[1034-39-5]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Triphenylphosphonium Dibromide pure, 98\%} \& 5 Gms \& 31.58 \\
\hline \[
\begin{aligned}
\& 90265 \\
\& {[75-77-4]}
\end{aligned}
\] \& Trimethyl Chlorosilane (TMCS) extrapure, 99\% \& \[
\begin{gathered}
250 \mathrm{ml} \\
1000 \mathrm{ml}
\end{gathered}
\] \& 10.53
31.58 \& \& \& \[
\begin{gathered}
25 \mathrm{Gms} \\
100 \mathrm{Gms}
\end{gathered}
\] \& \[
\begin{array}{r}
67.12 \\
184.24
\end{array}
\] \\
\hline \& \& 2500 ml \& 63.17 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 53730 \\
\& {[531-52-2]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\& 1,3,5-Triphenyltetrazolium Formazan (TTC Formazan) extrapure, 95\%} \& 1 Gms \& 21.06 \\
\hline \[
\begin{aligned}
\& 67883 \\
\& {[75-77-4]}
\end{aligned}
\] \& Trimethyl Chlorosilane (TMCS) 1M Solution in THF \& 100 ml \& 46.06 \& \& \& \[
\begin{array}{r}
5 \mathrm{Gms} \\
25 \mathrm{Gms}
\end{array}
\] \& 61.85
111.86 \\
\hline \begin{tabular}{l}
\[
41020
\] \\
[10108-86-8]
\end{tabular} \& \begin{tabular}{l}
Trimethyloctylammonium Chloride (TMOACI) extrapure, 98\% \\
(Octyltrimethylammonium Chloride)
\end{tabular} \& \[
\begin{array}{r}
25 \mathrm{Gms} \\
100 \mathrm{Gms}
\end{array}
\] \& 26.32
85.54 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 65599 \\
\& {[298-96-4]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{2,3,5-Triphenyltetrazolium Chloride (TTC) extrapure, 99\%} \& \begin{tabular}{l}
10 Gms \\
25 Gms
\end{tabular} \& 26.32
52.64 \\
\hline \[
\begin{aligned}
\& 68989 \\
\& {[149-73-5]}
\end{aligned}
\] \& Trimethyl Orthoformate (TMOF) pure, 98\% \& \[
\begin{array}{r}
500 \mathrm{ml} \\
2500 \mathrm{ml}
\end{array}
\] \& 6.97
28.95 \& \& \& 50 Gms
100 Gms \& \[
\begin{array}{r}
92.12 \\
171.08
\end{array}
\] \\
\hline \& \& 25 Ltr \& 276.36 \& \multirow[t]{2}{*}{98635 \&} \& \multirow[t]{2}{*}{10X Tris Acetate-SDS Buffer pH-8.3 for molecular biology (TA-SDS Running Buffer)} \& 500 ml \& 10.53 \\
\hline \[
\begin{aligned}
\& 49901 \\
\& {[996-50-9]}
\end{aligned}
\] \& \begin{tabular}{l}
N -(Trimethylsilyl)diethylamine \\
(TMSDEA) extrapure, 97\%
\end{tabular} \& \[
25 \mathrm{ml}
\] \& 67.25
191.87 \& \& \& 1000 ml \& 19.74 \\
\hline \& \begin{tabular}{l}
((Diethylamino)trimethylsilane, \\
N,N-Diethyltrimethylsilylamine)
\end{tabular} \& \& 191.87 \& 47804 \& \& \begin{tabular}{l}
20X Tris Acetate-SDS Buffer pH-8.3 \\
for molecular biology \\
(TA-SDS Running Buffer)
\end{tabular} \& \[
\begin{array}{r}
500 \mathrm{ml} \\
1000 \mathrm{ml}
\end{array}
\] \& \[
\begin{aligned}
\& 19.74 \\
\& 37.51
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& 45238 \\
\& {[18156-74-6]}
\end{aligned}
\] \& \begin{tabular}{l}
N -Trimethylsilylimidazole (TMSIM) extrapure, 98\% \\
((1- \\
(Trimethylsilyl)imidazole) N -Trimethylsily limidazole, TSIM)
\end{tabular} \& \[
\begin{array}{r}
5 \mathrm{ml} \\
25 \mathrm{ml} \\
100 \mathrm{ml}
\end{array}
\] \& 9.21
27.64
89.49 \& \begin{tabular}{l}
\[
65421
\] \\
[60804-74-2]
\end{tabular} \& \begin{tabular}{l}
Tris(2,2-bipyridine)ruthenium(II) \\
Hexafluorophosphate \\
((Ru(BPY)3(PF6)2), 97\% \\
(Ruthenium-tris(2,2'-bipyridyl) dihexafluorophosphate)
\end{tabular} \& \begin{tabular}{l}
250 Mg \\
1 Gms
\end{tabular} \& \[
\begin{array}{r}
55.27 \\
197.40
\end{array}
\] \\
\hline \begin{tabular}{l}
97039 \\
[5683-30-7]
\end{tabular} \& 3-Trimethylsilylpropionic Acid (TMSPA) extrapure, 95\% \& \[
\begin{aligned}
\& 1 \mathrm{ml} \\
\& 5 \mathrm{ml}
\end{aligned}
\] \& \[
\begin{array}{r}
71.99 \\
231.88
\end{array}
\] \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 26055 \\
\& {[50525-27-4]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Tris(2,2-bipyridyl)dichlororutheniu m (II) Hexahydrate (Ru(BPY)3), 98\% \\
(Ruthenium-tris(2,2'-bipyridyl) dichloride, \\
Tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate)
\end{tabular}} \& \[
250 \mathrm{Mg}
\] \& \[
\begin{aligned}
\& 50.01 \\
\& 92.12
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& 39671 \text { \& } \\
\& {[1774-47-6]}
\end{aligned}
\] \& Trimethylsulfoxonium lodide (TMSI) extrapure, 99\% \& \[
\begin{array}{r}
25 \mathrm{Gms} \\
100 \mathrm{Gms} \\
500 \mathrm{Gms}
\end{array}
\] \& \[
\begin{array}{r}
11.58 \\
26.32 \\
115.81
\end{array}
\] \& \& \& \& \\
\hline \[
\underset{[555-45-3]}{18779}
\] \& Trimyristin pure, 95\%(GC) (Glyceryl Trimyristate, Glycerol Trimyristate) \& \begin{tabular}{l}
5 Gms \\
25 Gms
\end{tabular} \& 26.32
60.54 \& \& \& \& \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Code \& Name \& Packing \& \$ Price \& Code \& Name \& Packing \& \$ Price \\
\hline \begin{tabular}{l}
55664 \& \\
[51805-45-9]
\end{tabular} \& Tris(2-carboxyethyl) Phosphine Hydrochloride (TCEP) extrapure AR, 98\% \& \[
\begin{array}{r}
1 \text { Gms } \\
5 \mathrm{Gms} \\
25 \mathrm{Gms}
\end{array}
\] \& 15.79
36.85
105.28 \& \[
\begin{aligned}
\& 43235 \\
\& \text { [6992-39-8] }
\end{aligned}
\] \& \begin{tabular}{l}
Tris(Hydroxymethyl)- \\
Aminomethane Phosphate \\
Monobasic extrapure (Tris \\
Phosphate Monobasic), 98\%
\end{tabular} \& 100 Gms \& 21.58 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
\[
79175
\] \\
[51364-51-3]
\end{tabular}} \& \multirow[t]{2}{*}{Tris(dibenzylideneacetone)dipallad ium(0) (Pd2(dba)3) extrapure, 22-25\% Pd} \& \begin{tabular}{l}
\[
500 \mathrm{Mg}
\] \\
1 Gms \\
5 Gms
\end{tabular} \& 61.59
102.65
473.76 \& \begin{tabular}{l}
63291 \\
[85169-32-0]
\end{tabular} \& \begin{tabular}{l}
Tris(Hydroxymethyl)- \\
Aminomethane Succinate extrapure (Tris Succinate), 99\%
\end{tabular} \& 100 Gms \& 21.58 \\
\hline \& \& 25 Gms \& 1579.20 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 47952 \\
\& \text { [6992-38-7] }
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Tris(Hydroxymethyl)- \\
Aminomethane Sulphate extrapure \\
(Tris Sulphate), 98\%
\end{tabular}} \& \multirow[t]{2}{*}{100 Gms} \& \multirow[t]{2}{*}{14.34} \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
\& 96455 \\
\& {[52522-40-4]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Tris(Dibenzylideneacetone)Dipalla dium-Chloroform Adduct extrapure, 20\% Pd \\
(Dipalladium-tris(Dibenzylideneacetone)Chloroform Complex, \\
Pd2(dba)3.CHCl3)
\end{tabular}} \& \multirow[t]{3}{*}{\begin{tabular}{l}
250 Mg \\
1 Gms \\
5 Gms
\end{tabular}} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
23.69 \\
81.59 \\
329.00
\end{array}
\]} \& \& \& \& \\
\hline \& \& \& \& \[
\begin{gathered}
50615 \\
{[555-43-1]}
\end{gathered}
\] \& Tristearin pure, \(90 \%\) (GC) (Glycerol Tristearate, Glyceryl Tristearate) \& \[
25 \text { Gms }
\]
\[
100 \mathrm{Gms}
\] \& \[
\begin{array}{r}
31.32 \\
113.97
\end{array}
\] \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{gathered}
11085 \\
{[555-43-1]}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Tristearin Reference Standard, 99\% \\
(GC) \\
(Glycerol Tristearate, Glyceryl \\
Tristearate)
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
500 Mg \\
1 Gms \\
5 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
32.90 \\
52.64 \\
210.56
\end{array}
\]} \\
\hline 87326 \& \& 10X Tris-Glycine pH-8.3 Tank Buffer for molecular biology \& \[
\begin{array}{r}
200 \mathrm{ml} \\
1000 \mathrm{ml}
\end{array}
\] \& 11.05
41.45 \& \& \& \& \\
\hline \multirow[t]{2}{*}{57806} \& \multirow[t]{2}{*}{\begin{tabular}{l}
10X Tris-Glycine-SDS Buffer for molecular biology \\
(TG-SDS Running Buffer)
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{gathered}
200 \mathrm{ml} \\
1000 \mathrm{ml}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
6.32 \\
14.08
\end{array}
\]} \& \[
\begin{aligned}
\& 48445 \\
\& {[2799-07-7]}
\end{aligned}
\] \& S-Trityl-L-Cysteine extrapure, 98\% \& 1 Gms \& 59.35 \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 58026 \\
\& {[72-57-1]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Trypan Blue \\
(Direct blue 14) (C.I. No. 23850)
\end{tabular}} \& 25 Gms \& 13.95 \\
\hline \multirow[t]{2}{*}{83471 \&} \& \multirow[t]{2}{*}{10X Tris Buffered Saline (TBS) for molecular biology (10X TBS Buffer)} \& \multirow[t]{2}{*}{500 ml} \& \multirow[t]{2}{*}{25.79} \& \& \& 100 Gms \& 53.96 \\
\hline \& \& \& \& \[
\begin{aligned}
\& 31591 \\
\& {[72-57-1]}
\end{aligned}
\] \& Trypan Blue for tissue culture (Direct blue 14) (C.I. No. 23850) \& 25 Gms \& 21.98 \\
\hline 63825 \& \& 10X Tris Buffered Saline Tween-20 (TBST) for molecular biology \& 500 ml \& 6.84 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 12788 \\
\& {[72-57-1]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Trypan Blue 0.4\% Solution} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
50 \mathrm{ml} \\
125 \mathrm{ml}
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
5.26 \\
12.50
\end{array}
\]} \\
\hline \multirow[t]{2}{*}{79091} \& \multirow[t]{2}{*}{\begin{tabular}{l}
1M Tris Hydrochloride Buffer (1M Tris HCl) pH-7.2 for molecular biology \\
(Tris(hydroxymethyl)aminomethane, Hydrochloric Acid)
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 100 \mathrm{ml} \\
\& 500 \mathrm{ml}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 14.61 \\
\& 61.59
\end{aligned}
\]} \& \& \& \& \\
\hline \& \& \& \& \[
\begin{aligned}
\& 60484 \\
\& {[9002-07-7]}
\end{aligned}
\] \& Trypsin (3x cryst.) ex Bovine Pancreas, 7500BAEE U/mg (2500NF U/mg) \& \begin{tabular}{l}
250 Mg \\
1 Gms \\
5 Gms
\end{tabular} \& \[
\begin{array}{r}
15.53 \\
31.32 \\
139.50
\end{array}
\] \\
\hline 55904 \& \begin{tabular}{l}
1M Tris Hydrochloride Buffer (1M Tris HCl) pH-8.0 for molecular biology \\
(Tris(hydroxymethyl)aminomethane, Hydrochloric Acid)
\end{tabular} \& \[
\begin{aligned}
\& 100 \mathrm{ml} \\
\& 500 \mathrm{ml}
\end{aligned}
\] \& \[
\begin{aligned}
\& 21.58 \\
\& 64.62
\end{aligned}
\] \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 42657 \\
\& {[9035-81-8]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Trypsin Inhibitor ex. Soyabean, 10000 BAEE U/mg} \& \multirow[t]{2}{*}{\begin{tabular}{l}
25 Mg \\
100 Mg \\
250 Mg \\
500 Mg \\
1 Gms
\end{tabular}} \& \[
\begin{array}{r}
46.06 \\
118.44 \\
236.88 \\
368.48
\end{array}
\] \\
\hline \multirow[t]{2}{*}{37852 \&} \& \multirow[t]{2}{*}{10X Tris-Tricine-SDS Buffer for molecular biology (TT-SDS Running Buffer)} \& \multirow[t]{2}{*}{500 ml} \& \multirow[t]{2}{*}{15.92} \& \& \& \& 671.16 \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 12094 \\
\& {[343-94-2]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Tryptamine Hydrochloride extrapure, 98\%} \& \multirow[t]{2}{*}{\begin{tabular}{l}
1 Gms \\
5 Gms
\end{tabular}} \& \[
\begin{array}{r}
8.03 \\
26.32
\end{array}
\] \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
62850 \\
[6850-28-8]
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Tris(Hydroxymethyl) \\
Aminomethane Acetate extrapure \\
AR (Tris Acetate Buffer), 99\%
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
100 Gms \\
500 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 18.42 \\
\& 85.93
\end{aligned}
\]} \& \& \& \& 118.44 \\
\hline \& \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 67654 \\
\& {[7524-52-9]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{L-Tryptophan Methyl Ester Hydrochloride extrapure, 99\%} \& \multirow[t]{2}{*}{\begin{tabular}{l}
5 Gms \\
25 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
28.16 \\
121.73
\end{array}
\]} \\
\hline \begin{tabular}{l}
34969 \\
[6850-28-8]
\end{tabular} \& \multirow[t]{2}{*}{Aminomethane Acetate for molecular biology (Tris Acetate Buffer), 99\%} \& 100 Gms
500 Gms \& 25.00
117.12 \& \& \& \& \\
\hline \& \& 500 Gms \& 117.12 \& \[
\begin{aligned}
\& 51335 \\
\& {[7440-33-7]}
\end{aligned}
\] \& Tungsten Metal Powder, 99.9\%, -325 mesh \& 100 Gms 500 Gms \& \[
\begin{array}{r}
33.95 \\
128.97
\end{array}
\] \\
\hline \[
\begin{aligned}
\& 23017 \\
\& {[68123-29-5]}
\end{aligned}
\] \& \begin{tabular}{l}
Tris(Hydroxymethyl)- \\
Aminomethane Carbonate extrapure (Tris Carbonate), 99\%
\end{tabular} \& 100 Gms \& 27.24 \& \[
\begin{aligned}
\& 17472 \\
\& \text { [7783-03-1] }
\end{aligned}
\] \& Tungstic Acid pure, 98\% \& \begin{tabular}{l}
100 Gms \\
250 Gms
\end{tabular} \& \[
\begin{aligned}
\& 15.79 \\
\& 36.85
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& 32119 \\
\& {[72200-76-1]}
\end{aligned}
\] \& \begin{tabular}{l}
Tris(Hydroxymethyl)- \\
Aminomethane Maleate extrapure (Tris Maleate), 99.5\%
\end{tabular} \& 100 Gms \& 20.40 \& \[
\begin{aligned}
\& 55401 \\
\& {[7783-03-1]}
\end{aligned}
\] \& Tungstic Acid extrapure AR, 99\% \& \begin{tabular}{l}
100 Gms \\
500 Gms
\end{tabular} \& \[
\begin{aligned}
\& 17.77 \\
\& 84.22
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& 25913 \\
\& {[41521-38-4]}
\end{aligned}
\] \& \begin{tabular}{l}
Tris(Hydroxymethyl)- \\
Aminomethane Nitrate extrapure (Tris Nitrate), 99\%
\end{tabular} \& 100 Gms \& 27.24 \& \[
\begin{aligned}
\& 98328 \\
\& {[8002-64-2]}
\end{aligned}
\] \& Turpentine oil extrapure \& \[
\begin{array}{r}
500 \mathrm{ml} \\
2500 \mathrm{ml} \\
25 \mathrm{Ltr}
\end{array}
\] \& \[
\begin{array}{r}
5.26 \\
25.00 \\
223.72
\end{array}
\] \\
\hline \[
\begin{aligned}
\& 55088 \\
\& {[108321-13-7]}
\end{aligned}
\] \& \begin{tabular}{l}
Tris(Hydroxymethyl)- \\
] Aminomethane Oxalate extrapure(Tris Oxatlate), \(99 \%\)
\end{tabular} \& 100 Gms \& 19.08 \& \[
\begin{aligned}
\& 33541 \\
\& {[60-19-5]}
\end{aligned}
\] \& Tyramine Hydrochloride extrapure, 98\% \& \[
\begin{array}{r}
25 \mathrm{Gms} \\
100 \mathrm{Gms} \\
500 \mathrm{Gms}
\end{array}
\] \& \[
\begin{array}{r}
46.06 \\
98.70 \\
157.92
\end{array}
\] \\
\hline \[
\begin{aligned}
\& 68353 \\
\& {[108321-11-5]}
\end{aligned}
\] \& \begin{tabular}{l}
Tris(Hydroxymethyl)- \\
Aminomethane Phosphate Dibasic extrapure (Tris Phosphate Dibasic), 98\%
\end{tabular} \& 100 Gms \& 21.58 \& \& \& \& 157.92 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Code N \& Name \& Packing \& \$ Price \& Code \& Name \& Packing \& \$ Price \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\begin{array}{ll}\text { 94870 } \quad \text { Tyrosinase (Polyphenol Oxidase) } \\ \text { [9002-10-2] } \& \text { ex. Mushroom, 800U/mg } \\ \& \text { (Catechol Oxidase, Monophenol } \\ \& \text { Monooxygenase, } \\ \& \text { Dihydroxyphenylalanine:Oxygen } \\ \& \text { Oxidoreductase) }\end{array}\)}} \& \multirow[t]{2}{*}{\[
\begin{gathered}
25 \text { K.Units } \\
100 \\
\text { K.Units }
\end{gathered}
\]} \& \multirow[t]{2}{*}{375.06} \& \[
\begin{aligned}
\& 44762 \\
\& {[110-62-3]}
\end{aligned}
\] \& \begin{tabular}{l}
Valeraldehyde pure (Pentanal), 98\% \\
(Pentanal)
\end{tabular} \& \[
\begin{aligned}
\& 100 \mathrm{ml} \\
\& 500 \mathrm{ml}
\end{aligned}
\] \& 6.19
15.79 \\
\hline \& \& \& \& \[
\begin{aligned}
\& 31477 \\
\& {[109-52-4]}
\end{aligned}
\] \& n-Valeric Acid pure, C5-99\% (GC) \& \[
\begin{array}{r}
500 \mathrm{ml} \\
1000 \mathrm{ml}
\end{array}
\] \& 13.95
26.19 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{cl}
46121 \& Umbelliferone \\
{\([93-35-6]\)} \& \begin{tabular}{l}
(7-Hydroxycoumarin) extrapure, \\
\\
\\
\(98 \%\)
\end{tabular}
\end{tabular}} \& \begin{tabular}{l}
10 Gms \\
25 Gms
\end{tabular} \& 27.64
59.22 \& \[
\begin{aligned}
\& 22128 \\
\& {[110-59-8]}
\end{aligned}
\] \& \begin{tabular}{l}
Valeronitrile (Butyl Cyanide) pure , 99\% \\
(Butyl Cyanide)
\end{tabular} \& \[
\begin{aligned}
\& 100 \mathrm{ml} \\
\& 500 \mathrm{ml}
\end{aligned}
\] \& 5.26
17.77 \\
\hline \[
\begin{gathered}
46487 \\
{[112-38-9]}
\end{gathered}
\] \& Undecylenic Acid extrapure,C11-99\% (GC) \& 100 Gms 500 Gms \& 8.55
36.98 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 80634 \\
\& {[1009-14-9]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Valerophenone pure, 98\%} \& \[
\begin{aligned}
\& 100 \mathrm{ml} \\
\& 500 \mathrm{ml}
\end{aligned}
\] \& 6.58
23.69 \\
\hline \multirow[t]{3}{*}{\[
\underset{[66-22-8]}{23622} \text { \& UI }
\]} \& \multirow[t]{3}{*}{Uracil extrapure, 99\%} \& 25 Gms \& 5.66 \& \& \& 2500 ml \& 105.28 \\
\hline \& \& 100 Gms 1 Kg \& 20.40
157.92 \& \[
\begin{aligned}
\& 95091 \\
\& {[638-29-9]}
\end{aligned}
\] \& Valeroyl Chloride pure, 98\% \& 100 ml 500 ml \& 9.21
36.85 \\
\hline \& \& 5 Kg \& 658.00 \& \multirow[t]{2}{*}{\begin{tabular}{l}
\[
21562
\] \\
[640-68-6]
\end{tabular}} \& \multirow[t]{2}{*}{D-Valine extrapure CHR, 99\%} \& 5 Gms \& 7.90 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 81405 \vee \mathrm{~V} \\
\& {[6159-44-0]}
\end{aligned}
\]} \& \multirow[t]{2}{*}{Uranyl Acetate Dihydrate ACS, 98\%} \& \begin{tabular}{l}
1 Gms \\
5 Gms
\end{tabular} \& 43.43
164.50 \& \& \& 25 Gms
100 Gms \& 25.00
85.54 \\
\hline \& \& 25 Gms \& 789.60 \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 14159 \\
\& {[516-06-3]}
\end{aligned}
\]} \& \multirow[t]{3}{*}{DL-Valine extrapure CHR, 99\%} \& 25 Gms \& 10.53 \\
\hline \[
\begin{aligned}
\& 70780 \\
\& {[20596-93-4]}
\end{aligned}
\] \& Uranyl Magnesium Acetate extrapure, 98\% \& 1 Gms
5 Gms \& 52.64
223.72 \& \& \& 100 Gms \& 38.16
177.66 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\(74495 \checkmark\) Uranyl Nitrate Hexahydrate \\
[13520-83-7] extrapure, 98\%
\end{tabular}}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
1 Gms \\
5 Gms \\
25 Gms
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
52.64 \\
223.72 \\
987.00
\end{array}
\]} \& \& \& 1 Kg \& 329.00 \\
\hline \& \& \& \& \[
\begin{aligned}
\& 83185 \\
\& {[2462-34-2]}
\end{aligned}
\] \& L-Valine Benzyl Ester Hydrochloride extrapure, 98\% \& 25 Gms \& 138.44 \\
\hline \multirow[t]{2}{*}{\[
\underset{\text { [9002-13-5] }}{64807} \text { U }
\]} \& \multirow[t]{2}{*}{Urease ex. Jack Beans, 200U/mg solids} \& \begin{tabular}{l}
3000 Units \\
10000 \\
Units \\
25 K.Units
\end{tabular} \& 16.45
36.85

85.93 \& $$
\begin{aligned}
& 38052 \\
& {[6306-52-1]}
\end{aligned}
$$ \& L-Valine Methyl Ester Hydrochloride extrapure, 99\% \& \[

$$
\begin{array}{r}
1 \mathrm{Gms} \\
5 \mathrm{Gms} \\
25 \mathrm{Gms} \\
100 \mathrm{Gms}
\end{array}
$$
\] \& 4.74

12.63
37.51
109.36

\hline \& \& $$
\begin{gathered}
100 \\
\text { K.Units }
\end{gathered}
$$ \& 148.31 \& \[

$$
\begin{aligned}
& 40652 \\
& {[2001-95-8]}
\end{aligned}
$$
\] \& Valinomycin, 95\% \& 10 Mg \& 59.22

\hline $$
64632 \text { r- }
$$ \& r-Urease (Thermostable) ex. E. Coli, 150U/mg \& \[

$$
\begin{gathered}
10000 \\
\text { Units }
\end{gathered}
$$

\] \& 172.92 \& \[

$$
\begin{aligned}
& 45344 \\
& {[7440-62-2]}
\end{aligned}
$$

\] \& Vanadium Metal Powder, 99.7\% \& | 5 Gms |
| :--- |
| 25 Gms | \& \[

$$
\begin{aligned}
& 22.37 \\
& 92.12
\end{aligned}
$$
\]

\hline $$
\underset{[69-93-2]}{90739}
$$ \& Uric Acid extrapure AR, 99\% \& \[

$$
\begin{gathered}
25 \mathrm{Gms} \\
100 \mathrm{Gms} \\
500 \mathrm{Gms}
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
49.35 \\
184.24 \\
789.60
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 61078 \\
& {[1404-93-9]}
\end{aligned}
$$
\] \& Vancomycin Hydrochloride (VNC), 90\% \& 1 Gms

5 Gms \& 39.48
92.12

\hline \multicolumn{2}{|l|}{$$
\begin{aligned}
& 95410 \text { r-Uricase (Thermostable) ex. Yeast, } \\
& {[9002-12-4] \quad 3 \mathrm{U} / \mathrm{mg}}
\end{aligned}
$$} \& 500 Units \& 85.41 \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 72241 \\
& {[2394-20-9]}
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{| Vanillylmandelic Acid extrapure, 99\% |
| :--- |
| (VMA, DL-4-Hydroxy-3-Methoxy Mandelic Acid) |} \& | 250 Mg |
| :--- |
| 1 Gms | \& 17.11

57.38

\hline \multirow[t]{2}{*}{$$
\underset{[58-96-8]}{62205} \text { \& U }
$$} \& \multirow[t]{2}{*}{Uridine extrapure, 99\%} \& 5 Gms \& 11.45 \& \& \& 5 Gms \& 205.82

\hline \& \& 25 Gms
100 Gms \& 46.45

105.28 \& \[
$$
\begin{gathered}
11547 \\
{[120-14-9]}
\end{gathered}
$$

\] \& n-Veratraldehyde pure, 98\% \& | 100 Gms |
| :--- |
| 250 Gms | \& \[

$$
\begin{aligned}
& 13.82 \\
& 28.95
\end{aligned}
$$
\]

\hline \[
$$
\begin{aligned}
& 20964 \bullet U \\
& {[28053-08-9,} \\
& 117756-22-6]
\end{aligned}
$$

\] \& Uridine 5 `-Diphosphoglucose Disodium Salt Hydrate extrapure (UDPG.2Na Hydrate), 98\% \& | 25 Mg |
| :--- |
| 100 Mg | \& 18.42

42.11

157.92 \& \[
$$
\begin{aligned}
& 96011 \\
& {[91-16-7]}
\end{aligned}
$$

\] \& | Veratrole pure, 98\% |
| :--- |
| (1,2-Dimethoxy Benzene) | \& | 100 ml |
| :--- |
| 500 ml | \& 4.61

19.74

\hline \multicolumn{2}{|l|}{48301 - Uridine 5-Monophosphate [3387-36-8] Disodium Salt Hydrate (5-UMP-Na2) extrapure, 98.5\%} \& 1 Gms
5
5 Gms

25 Gms \& | 157.92 |
| ---: |
| 17.11 |
| 72.38 | \& \[

$$
\begin{aligned}
& 77472 \\
& {[68-19-9]}
\end{aligned}
$$

\] \& | Vitamin B12 for molecular biology, 97\% |
| :--- |
| (Cyanocobalamin) | \& | 250 Mg |
| :--- |
| 1 Gms |
| 5 Gms | \& \[

$$
\begin{array}{r}
10.13 \\
28.95 \\
128.97
\end{array}
$$
\]

\hline $$
\begin{aligned}
& 56613 \bullet \mathrm{U} \\
& {[19817-92-6]} \\
&
\end{aligned}
$$ \& Uridine-5-Triphosphate Trisodium Salt Dihydrate (UTP-Na3) extrapure, 90\% \& \[

$$
\begin{aligned}
& 100 \mathrm{Mg} \\
& 500 \mathrm{Mg}
\end{aligned}
$$
\] \& 26.32

65.80 \& \[
\underset{[68-19-9]}{56437}

\] \& Vitamin B12 for tissue culture, 97\% (Cyanocobalamin) \& | 250 Mg |
| :--- |
| 1 Gms | \& 14.48

36.85

\hline \multirow[t]{2}{*}{$$
\begin{gathered}
50178 \text { \& U } \\
{[128-13-2]}
\end{gathered}
$$} \& \multirow[t]{2}{*}{Ursodeoxycholic Acid (UDCS) extrapure, 99\%} \& 1 Gms

1 Gms
5 Gms \& 118.44
12.50

19.74 \& [84-80-0] \& | (Phytonadione, Phyllaquinone, |
| :--- |
| 2-Methyl-3-phytyl-1,4-Napthoquinone, |
| 3-Phytylmenadione) | \& 5 Gms \& 93.96

\hline \& \& 25 Gms \& 78.96 \& 50342 \& \& Vanadyl Acetylacetonate pure, 98\% \& 25 Gms \& 11.19

\hline \multirow[t]{2}{*}{\[
24436

\]} \& \multirow[t]{2}{*}{(+)- Usnic Acid, 98\%} \& | 1 Gms |
| :--- |
| 5 Gms | \& 19.74

39.48 \& \multirow[t]{2}{*}{[3153-26-2]} \& \multirow[t]{2}{*}{(Vanadyl Acetoacetate, Vanadium(IV) oxide acetylacetonate, $\mathrm{VO}(\mathrm{acac}) 2$, Vanadium(IV)-oxy acetylacetona} \& \multirow[t]{2}{*}{100 Gms} \& \multirow[t]{2}{*}{39.48}

\hline \& \& 25 Gms \& 118.44 \& \& \& \&

\hline
\end{tabular}

Catalogue 2024-25

| Code Name | Packing | \$ Price | Code Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { 94475 - }}{\text { [6382-93-0] }}$ Z-D-Arginine extrapure, 99% | 1 Gms | 80.01 | $\begin{aligned} & 14088 \text { Z-L-Hydroxyproline extrapure, 99\% } \\ & {[13504-85-3]} \end{aligned}$ | 1 Gms | 18.42 |
| | 5 Gms | 266.36 | | 5 Gms | 83.30 |
| | 25 Gms | 968.18 | | 25 Gms | 325.32 |
| $\begin{aligned} & 60020 \text { - Z-L-Arginine extrapure, 99\% } \\ & {[1234-35-1]} \end{aligned}$ | 25 Gms | 55.40 | $\begin{aligned} & 34913 \text { Z-L-Isoleucine extrapure, 95\% } \\ & \text { [3160-59-6] } \end{aligned}$ | $\begin{gathered} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{gathered}$ | $\begin{aligned} & 26.45 \\ & 82.64 \end{aligned}$ |
| $\begin{aligned} & 55237 \text { Z-L-Arginine HCI extrapure, 99\% } \\ & {[56672-63-0]} \end{aligned}$ | $\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$ | 68.83 257.94 | $\begin{aligned} & 46817 \text { Z-D-Leucine extrapure, } 99 \% \\ & \text { [28862-79-5] } \end{aligned}$ | 1 Gms | 14.34 59.35 |
| $\begin{aligned} & 92873 \text { - Z-D-Asparagine extrapure, } 99 \% \\ & {[4474-86-6]} \end{aligned}$ | 1 Gms | 14.34 | | 25 Gms | 247.41 |
| | 5 Gms | 59.09 | $\begin{aligned} & 76353 \text { Z-DL-Leucine extrapure, } 99 \% \\ & {[3588-60-1]} \end{aligned}$ | 5 Gms | 24.08 |
| | 25 Gms | 246.22 | | 25 Gms | 114.49 |
| $\begin{aligned} & 60164 \text { Z-DL-Asparagine extrapure, } 98 \% \\ & \text { [29880-22-6] } \end{aligned}$ | 1 Gms
 5 Gms | 20.00 65.54 | $\begin{aligned} & 85612 \text { Z-L-Leucine extrapure, 98\% } \\ & \text { [2018-66-8] } \end{aligned}$ | 5 Gms 25 Gms | 20.00 56.98 |
| $\begin{aligned} & 13328 \text { Z-L-Asparagine extrapure, } 99 \% \\ & {[2304-96-3]} \end{aligned}$ | 1 Gms
 5 Gms | 4.08 13.03 | $\begin{aligned} & 39218 \text { Z-D-Lysine extrapure, } 99 \% \\ & \text { [70671-54-4] } \end{aligned}$ | 1 Gms 5 Gms | 65.80 157.92 |
| | 25 Gms 100 Gms | 34.08 113.57 | $\begin{aligned} & 54420 \text { Z-L-Lysine extrapure, 99\% } \\ & {[2212-75-1]} \end{aligned}$ | 1 Gms
 5 Gms | $\begin{aligned} & 16.84 \\ & 77.64 \end{aligned}$ |
| $\begin{aligned} & 32899 \text { Z-D-Aspartic Acid extrapure, 99\% } \\ & \text { [78663-07-7] } \end{aligned}$ | 1 Gms
 5 Gms
 25 Gms | $\begin{array}{r} 8.42 \\ 35.01 \\ 145.81 \end{array}$ | 71691 - Z-N-e-Lysine Dicyclohexyl
 [2212-76-2] Ammonium Salt extrapure, 98\% (Z-Lysine(BOC)-OH.Dicyclohexylamine Salt) | 5 Gms | 78.30 |
| $\begin{aligned} & 84275 \text { Z-DL-Aspartic Acid extrapure, } 99 \% \\ & {[4515-21-3]} \end{aligned}$ | 5 Gms | 9.21 | | | |
| | 25 Gms | 31.58 | $\begin{aligned} & 91642 \text { Z-D-Methionine extrapure, } 99 \% \\ & {[28862-80-8]} \end{aligned}$ | 1 Gms | 19.74 |
| $\begin{aligned} & 63143 \text { Z-L-Aspartic Acid extrapure, 99\% } \\ & {[1152-61-0]} \end{aligned}$ | 5 Gms | 6.05 | | 5 Gms | 39.48 |
| | 10 Gms | 11.32 27.11 | $\begin{aligned} & 11751 \text { Z-DL-Methionine extrapure, } 99 \% \\ & {[4434-61-1]} \end{aligned}$ | 1 Gms
 5 Gms | 9.74 45.80 |
| 78064 Z-L-Aspartic Acid-4-Benzyl Ester
 [3479-47-8] extrapure, 98\%

 $($ Z-L-Asp(OBzl)-OH) | 10 Gms
 25 Gms | 178.45 312.29 | $\begin{aligned} & 55768 \bullet \text { Z-L-Methionine extrapure, 99\% } \\ & {[1152-62-1]} \end{aligned}$ | $\begin{array}{r} 1 \mathrm{Gms} \\ 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$ | $\begin{array}{r} 9.08 \\ 37.51 \\ 123.05 \end{array}$ |
| $\begin{aligned} & 97300 \text { Z-L-Glutamic Acid-5-Benzyl Ester } \\ & {[5680-86-4] \text { extrapure, } 98 \%} \end{aligned}$ | 10 Gms
 25 Gms | $\begin{aligned} & 185.95 \\ & 325.32 \end{aligned}$ | 21200 - Z-4-Nitro-L-Phenylalanine | 10 Gms
 25 Gms | $\begin{aligned} & 142.65 \\ & 249.65 \end{aligned}$ |
| $\begin{aligned} & 73971 \text { Z-D-Glutamic Acid extrapure, } 98 \% \\ & {[63648-73-7]} \end{aligned}$ | 1 Gms
 5 Gms | 10.00 35.01 | $\begin{aligned} & 66829 \text { Z-D-Norleucine extrapure, 99\% } \\ & {[15027-14-2]} \end{aligned}$ | $\begin{gathered} 500 \mathrm{Mg} \\ 2.5 \mathrm{Gms} \end{gathered}$ | 60.67 272.41 |
| $\begin{aligned} & 67271 \bullet \text { Z-L-Glutamic Acid extrapure, 99\% } \\ & {[1155-62-0]} \end{aligned}$ | 5 Gms
 25 Gms | 4.74 19.21 | $\begin{aligned} & 12185 \bullet \text { Z-DL-Norleucine extrapure, } 99 \% \\ & {[15027-13-1]} \end{aligned}$ | 1 Gms | 41.45 |
| | 100 Gms | 68.70 | $\begin{aligned} & 90175 \bullet \text { Z-L-Norleucine extrapure, 99\% } \\ & {[39608-30-5]} \end{aligned}$ | 1 Gms | 54.35 |
| $\begin{aligned} & 83309 \text { Z-D-Glutamine extrapure, 99\% } \\ & {[13139-52-1]} \end{aligned}$ | 1 Gms | 16.19 | | 5 Gms | 247.28 |
| | $5 \mathrm{Gms}$
 25 Gms | 67.25 279.91 | 34201 - Z-D-Norvaline extrapure, 99\% | 1 Gms
 5 Gms | $\begin{array}{r} 36.72 \\ 166.61 \end{array}$ |
| $\begin{aligned} & 44096 \text { Z-L-Glutamine extrapure, 99\% } \\ & {[2650-64-8]} \end{aligned}$ | 5 Gms 25 Gms | 9.87 34.08 | $\begin{aligned} & 21693 \bullet \text { Z-DL-Norvaline extrapure, } 99 \% \\ & \text { [21691-43-0] } \end{aligned}$ | 1 Gms 5 Gms | 30.40 137.92 |
| | 100 Gms | 113.57 | $\begin{aligned} & 75427 \text { Z-L-Norvaline extrapure, } 99 \% \\ & {[21691-44-1]} \end{aligned}$ | 1 Gms | 36.72 |
| $\begin{aligned} & 86632 \text { Z-Glycine extrapure, 99\% } \\ & {[1138-80-3]} \end{aligned}$ | 5 Gms | 9.21 | | 5 Gms | 166.61 |
| | $\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$ | 18.69 56.85 | $\begin{aligned} & 72850 \text { Z-L-Ornithine extrapure, 99\% } \\ & {[3304-51-6]} \end{aligned}$ | 1 Gms
 5 Gms | $\begin{array}{r} 65.93 \\ 299.52 \end{array}$ |
| $\begin{aligned} & 21793 \text { Z-DL-Histidine extrapure, } 99 \% \\ & \text { [19728-57-5] } \end{aligned}$ | 1 Gms
 5 Gms | 45.80 217.93 | $\begin{aligned} & 24317 \text { - Z-D-Phenylalanine extrapure, } 99 \% \\ & {[2448-45-5]} \end{aligned}$ | 1 Gms 5 Gms | 8.42 35.01 |
| 57156 - Z-L-Histidine extrapure, 99\% | 1 Gms | 15.79 | | 25 Gms | 145.29 |
| [14997-58-1] | 5 Gms
 25 Gms | 71.46 280.18 | $\begin{aligned} & 32900 \text { Z-DL-Phenylalanine extrapure, } 99 \% \\ & {[3588-57-6]} \end{aligned}$ | $\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$ | $\begin{array}{r} 30.40 \\ 137.92 \end{array}$ |

Part B - Bioreagents, Biochemicals \& Speciality Fine Chemicals

Catalogue 2024-25

| Code Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 42182 - Z-L-Phenylalanine extrapure, 99\% | 25 Gms | 29.48 | $\begin{aligned} & 70443 \\ & {[13139-17-8]} \end{aligned}$ | Z-OSu (Z-ONSu) extrapure, 99\% (Z-ONSu) | 25 Gms | 15.79 |
| [1161-13-3] | 100 Gms | 104.10 | | | 100 Gms | 59.22 |
| 27486 - Z-L-Phenyalanine Methyl Ester | 10 Gms | 161.08 | $\begin{aligned} & 81055 \\ & {[13114-27-7]} \end{aligned}$ | Zeatin mixed Isomers for tissue culture, $\sim 95 \%$ | 25 Mg | 38.69 |
| [35909-92-3] extrapure, 98\% | 25 Gms | 281.76 | | | 100 Mg | 98.70 |
| 41739 Z-Phenylalanine-p-Nitroanilide | 1 Gms | 99.88 | 67299
 [13114-27-7] | Zeatin mixed Isomers, ~95\% | 25 Mg | 28.43 |
| [19647-71-3] extrapure | | | | | 100 Mg | 78.96 |
| $\begin{aligned} & 16881 \text { Z-L-Phenylalanine-4-Nitrophenyl } \\ & \text { [2578-84-9] } \end{aligned}$ | 10 Gms 25 Gms | $\begin{aligned} & 145.02 \\ & 253.59 \end{aligned}$ | | | 250 Mg | 157.92 |
| | | | $\begin{aligned} & 80440 \\ & {[6025-53-2]} \end{aligned}$ | Zeatin Riboside extrapure, 99\% | 10 Mg | 26.32 |
| $\begin{aligned} & 12399 \text { Z-D-Phenylglycine extrapure, } 98 \% \\ & {[17609-52-8]} \end{aligned}$ | 10 Gms
 25 Gms | 97.38 | | | 25 Mg | 42.11 |
| | | 170.29 | | | 100 Mg | 107.91 |
| $\begin{aligned} & 74157 \text { Z-L-Phenylglycine extrapure, } 99 \% \\ & {[53990-33-3]} \end{aligned}$ | 10 Gms
 25 Gms | $\begin{array}{r} 85.41 \\ 149.50 \end{array}$ | | | 500 Mg | 473.76 |
| | | | 25910
 [7699-45-8] | Zinc Bromide Anhydrous, 99\% (Zinc Dibromide) | 100 Gms | 14.48 |
| $\begin{aligned} & 24037 \text { Z-D-Proline extrapure, } 99 \% \\ & {[6404-31-5]} \end{aligned}$ | 500 Mg
 1 Gms
 5 Gms
 25 Gms | $\begin{array}{r} 12.24 \\ 20.66 \\ 79.49 \\ 397.17 \end{array}$ | | | 500 Gms | 31.85 |
| | | | 86849
 [62625-22-3] | Zincon Sodium Salt ACS, 98\% | 1 Gms | 5.00 |
| | | | | | 5 Gms | 17.11 |
| | | | $\begin{aligned} & 52049 \\ & {[1314-23-4]} \end{aligned}$ | Zirconium Dioxide pure, 99\% (Zirconia, Zirconium (IV) Oxide) | 100 Gms | 11.05 |
| 31688 - Z-L-Proline extrapure, 99\% | 5 Gms
 25 Gms | $\begin{aligned} & 16.58 \\ & 49.74 \end{aligned}$ | | | 500 Gms | 39.48 |
| [1148-11-4] | | | | | | |
| 63273 - Z-D-Serine extrapure, 99%[6081-61-4] | 500 Mg | 28.69 | | | | |
| | 1 Gms | 44.22 | | | | |
| | 5 Gms | 184.63 | | | | |
| $\begin{aligned} & 75675 \text { Z-L-Serine extrapure, } 99 \% \\ & {[1145-80-8]} \end{aligned}$ | 1 Gms | 5.53 | | | | |
| | 5 Gms | 14.48 | | | | |
| | 25 Gms | 65.80 | | | | |
| $\begin{aligned} & 52287 \text { O-D-Threonine extrapure, } 99 \% \\ & {[80384-27-6]} \end{aligned}$ | 1 Gms | 17.11 | | | | |
| | 5 Gms | 68.43 | | | | |
| $\begin{aligned} & 11228 \text { Z-L-Threonine extrapure, 99\% } \\ & {[19728-63-3]} \end{aligned}$ | 5 Gms | 17.11 | | | | |
| $\begin{aligned} & 39868 \text { - Z-D-Tryptophan extrapure, 99\% } \\ & {[2279-15-4]} \end{aligned}$ | 1 Gms
 5 Gms | $\begin{aligned} & 23.69 \\ & 72.38 \end{aligned}$ | | | | |
| | | | | | | |
| $\begin{aligned} & 57591 \bigcirc \text { Z-L-Tryptophan extrapure, } 99 \% \\ & {[7432-21-5]} \end{aligned}$ | 25 Gms | 27.64 | | | | |
| $\begin{aligned} & 59268 \text { Z-D-Tyrosine extrapure, 99\% } \\ & {[64205-12-5]} \end{aligned}$ | 1 Gms
 5 Gms | $\begin{array}{r} 48.69 \\ 131.60 \end{array}$ | | | | |
| | | | | | | |
| $\begin{aligned} & 31078 \bullet \text { Z-L-Tyrosine extrapure, 99\% } \\ & {[1164-16-5]} \end{aligned}$ | $5 \mathrm{Gms}$$25 \text { Gms }$ | $\begin{aligned} & 25.66 \\ & 65.54 \end{aligned}$ | | | | |
| | | | | | | |
| $\begin{aligned} & 39463 \text { Z-O-Benzyl-L-Tyrosine extrapure, } \\ & {[16677-29-5] } 98 \% \\ &(\mathrm{Z}-\mathrm{L}-\operatorname{Tyr}(\mathrm{Bzl})-\mathrm{OH}) \end{aligned}$ | 10 Gms | 99.75 | | | | |
| $\underset{\text { 74556 }}{\text { [1685-33-2] }}$ - Z-D-Valine extrapure, 99\% | $\begin{gathered} 1 \text { Gms } \\ 5 \text { Gms } \\ 25 \text { Gms } \end{gathered}$ | 17.37 | | | | |
| | | 39.48 | | | | |
| | | 131.60 | | | | |
| $\begin{aligned} & 17520 \text { - Z-DL-Valine extrapure, } 99 \% \\ & {[3588-63-4]} \end{aligned}$ | 5 Gms
 25 Gms | 36.72 | | | | |
| | | 174.37 | | | | |
| 73743 - Z-L-Valine extrapure, 99%[1149-26-4] | $\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$ | $\begin{aligned} & 23.69 \\ & 61.59 \end{aligned}$ | | | | |
| | | | | | | |
| 92186 - Z-Isonipecotic Acid extrapure, 99\%
 [10314-98-4] (1-Carbobenzoxy-4-Piperidinecarboxyli c Acid) | 10 Gms
 25 Gms | 52.64 | | | | |
| | | | | | | |
| $\begin{aligned} & 88291 \text { Z-Nipecotic Acid, 95\% } \\ & {[78190-11-1]} \end{aligned}$ | 10 Gms | 85.15 | | | | |

Part B1

Animal Cell Culture

| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 68161
 [7365-82-4] | ACES Buffer for cell culture, 99.5\%, Endotoxin (BET) 1EU/mg | 25 Gms 100 Gms | 68.43 161.21 | $\begin{aligned} & 68722 \\ & {[11028-71-0]} \end{aligned}$ | Concanavalin A Lectin ex. Canavalia Ensiformis Type 2 for cell culture, $20 \mathrm{ug} / \mathrm{ml}$, (BET) $0.05 \mathrm{EU} / \mathrm{mg}$ | $\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$ | $\begin{aligned} & 35.14 \\ & 79.09 \end{aligned}$ |
| 23568 \& | N-Acetyl-DL-Tryptophan for cell | 5 Gms | 39.48 | | | | |
| [87-32-1] | culture, 99\%, Endotoxin (BET)
 $0.05 \mathrm{EU} / \mathrm{mg}$ | 25 Gms | 118.44 | $\begin{gathered} 15353 \\ {[60-27-5]} \end{gathered}$ | Creatinine for cell culture, 99\%, Endotoxin (BET) 0.05EU/mg | 25 Gms | 18.03 57.25 |
| $\begin{aligned} & 52937 \\ & {[3244-88-0]} \end{aligned}$ | Acid Fuchsin for cell culture, Endotoxin (BET) 0.05EU/mg (Acid Violet 19, Fuchsin S, Fuchsin acid, Rubine S) (C.I. No. 42685) | 25 Gms | 21.06 | | | 100 Gms
 1 Kg | $\begin{array}{r} 57.25 \\ 552.72 \end{array}$ |
| | | | | 67133
 [10510-54-0] | Cresyl Violet Acetate for cell culture, Endotoxin (BET) $0.5 \mathrm{EU} / \mathrm{mg}$ | 5 Gms | 131.60 |
| $\begin{aligned} & 75250 \\ & {[56-41-7]} \end{aligned}$ | L-Alanine for cell culture, 99%, Endotoxin (BET) 0.05EU/mg | 25 Gms 100 Gms | 13.82 32.77 | $\begin{aligned} & 29751 \\ & {[548-62-9]} \end{aligned}$ | Crystal Violet for cell culture, Endotoxin (BET) 1EU/mg (Methyl Violet 10B) (C.I. No.42555) | 25 Gms 100 Gms | $\begin{aligned} & 23.03 \\ & 76.33 \end{aligned}$ |
| 96409
 [9048-46-8] | Albumin Bovine (pH 7) fraction V for cell culture (Bovine Serum Albumin,BSA), 98\%, (BET) $0.05 \mathrm{EU} / \mathrm{mg}$ (Bovine Serum Albumin, BSA) | 5 Gms 25 Gms 100 Gms 500 Gms | $\begin{aligned} & 11.84 \\ & 46.06 \end{aligned}$ | | | | |
| | | | | 70134
 [7048-04-6] | L-Cysteine Hydrochloride Monohydrate for cell culture, 99\%, Endotoxin (BET) 0.05EU/mg | $\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$ | $\begin{aligned} & 15.13 \\ & 42.77 \end{aligned}$ |
| | | | 151.34 | | | | |
| | | | 671.16 | $\begin{aligned} & 54676 \\ & {[50-99-7]} \end{aligned}$ | Dextrose for cell culture, Endotoxin
 (BET) $0.05 \mathrm{EU} / \mathrm{mg}$
 (D-Glucose Anhydrous) | 100 Gms
 500 Gms | $\begin{array}{r} 6.58 \\ 19.08 \end{array}$ |
| $\begin{aligned} & 31539 \\ & {[33864-99-2]} \end{aligned}$ | Alcian Blue for cell culture, Endotoxin (BET) 0.05EU/mg | 5 Gms
 25 Gms | $\begin{array}{r} 72.38 \\ 315.84 \end{array}$ | | | | |
| | | | | 28525
 [3483-12-3] | DL-Dithiothreitol (DTT) for cell culture, 98\%, Endotoxin (BET) 1EU/mg
 (Clelands reagent) | 1 Gms
 5 Gms | $\begin{aligned} & 26.32 \\ & 92.12 \end{aligned}$ |
| 68860
 [7784-24-9] | Aluminium Potassium Sulphate Dodecahydrate for cell culture, 99.5%, Endotoxin (BET) $0.05 \mathrm{EU} / \mathrm{mg}$ | $\begin{array}{r} 500 \mathrm{Gms} \\ 1 \mathrm{Kg} \end{array}$ | 17.77 32.90 | | | | |
| $\begin{aligned} & 15875 \\ & {[1397-89-3]} \end{aligned}$ | Amphotericin B (AMT) Solution ($250 \mathrm{ug} / \mathrm{ml}$) for cell culture, Endotoxin (BET) 1EU/ml | $\begin{gathered} 20 \mathrm{ml} \\ 100 \mathrm{ml} \end{gathered}$ | 24.48 70.54 | $\begin{aligned} & 81614 \\ & {[17372-87-1]} \end{aligned}$ | Eosin Yellow (water soluble) for cell culture, Endotoxin (BET) 1EU/mg | $\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$ | $\begin{aligned} & 29.61 \\ & 59.22 \end{aligned}$ |
| $\begin{aligned} & 20969 \\ & {[74-79-3]} \end{aligned}$ | L-Arginine (free base) for cell culture, 99\%, Endotoxin (BET) $0.05 \mathrm{EU} / \mathrm{mg}$ | $\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$ | 15.13 46.72 | $\begin{aligned} & 74516 \\ & {[122-99-6]} \end{aligned}$ | Ethylene Glycol Monophenyl Ether for cell culture, 99\%, Endotoxin (BET) $0.05 \mathrm{EU} / \mathrm{ml}$
 (Phenyl Cellosolve, 2-Phenoxyethanol) | $\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$ | $\begin{aligned} & 31.58 \\ & 59.22 \end{aligned}$ |
| $\begin{aligned} & 33468 \\ & {[1405-87-4]} \end{aligned}$ | Bacitracin (BCT) ex. Bacillus Licheniformis for cell culture, Endotoxin (BET) 0.05EU/mg | $\begin{gathered} 50000 \\ \text { Units } \\ 250000 \\ \text { Units } \end{gathered}$ | 18.42 | | | | |
| | | | 59.22 | $\begin{aligned} & 11324 \\ & {[7782-63-0]} \end{aligned}$ | Ferrous Sulphate Heptahydrate for cell culture, 99.5\%, Endotoxin (BET) $0.05 \mathrm{EU} / \mathrm{mg}$ (Iron (II) Sulphate Heptahydrate) | 500 Gms | 15.79 |
| 36884[10191-18-1] | BES Buffer for cell culture, 99\%, Endotoxin (BET) 0.05EU/mg (N,N-bis(2-Hydroxyethyl)2Aminoethane Sulphonic Acid) | 25 Gms 100 Gms | $\begin{aligned} & 21.71 \\ & 71.06 \end{aligned}$ | | | | |
| | | | | 98131
 [518-47-8] | Fluorescein Sodium Salt (C.I. No. 45350) for cell culture, Endotoxin (BET) $0.05 \mathrm{EU} / \mathrm{mg}$
 (Acid Yellow 73) | 100 Gms | 32.90 |
| $\begin{gathered} 92370 \\ {[3513-03-9]} \\ \\ \hline \mathbf{0} \end{gathered}$ | Blasticidin S Hydrochloride for cell culture, 98\%, Endotoxin (BET) $0.05 \mathrm{EU} / \mathrm{mg}$ | 10 Mg
 25 Mg | $\begin{array}{r} 80.54 \\ 190.43 \end{array}$ | | | | |
| | | | | $\begin{aligned} & 76611 \\ & {[59-30-3]} \end{aligned}$ | Folic Acid for cell culture, 98%, Endotoxin (BET) 0.05EU/mg
 (Vitamin B9, Vitamin M,
 Pteroyl-L-Glutamic acid) | 5 Gms
 25 Gms | $\begin{array}{r} 9.87 \\ 42.77 \end{array}$ |
| $\underset{[3513-03-9]}{55594}$ | Blasticidin S HCI Solution in HEPES Buffer ($10 \mathrm{mg} / \mathrm{ml}$) Sterile for cell culture | $\begin{array}{r} 1 \mathrm{ml} \\ 5 \times 1 \mathrm{ml} \end{array}$ | $\begin{array}{r} 92.12 \\ 329.00 \end{array}$ | | | | |
| | | | | $\begin{aligned} & 20596 \\ & {[632-99-5]} \end{aligned}$ | Fuchsin Basic for cell culture, Endotoxin (BET) 0.05EU/mg (Basic Fuchsin) (C.I. No. 42510) | $\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$ | $\begin{array}{r} 28.95 \\ 105.28 \end{array}$ |
| $\begin{aligned} & 81642 \\ & {[64485-93-4]} \end{aligned}$ | Cephotaxime Sodium Salt (CFT) for cell culture, $916-964 \mathrm{ug} / \mathrm{mg}$, Endotoxin (BET) 0.20EU/mg | $\begin{gathered} 100 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{gathered}$ | $\begin{aligned} & 32.90 \\ & 78.96 \end{aligned}$ | | | | |
| | | | | 77469
 [51811-82-6] | Giemsa Stain for cell culture, Endotoxin (BET) 0.05EU/mg | 5 Gms
 25 Gms | $\begin{array}{r} 52.64 \\ 203.98 \end{array}$ |
| $\begin{aligned} & 84483 \\ & {[57-09-0]} \end{aligned}$ | Cetyltrimethyl Ammonium Bromide (CTAB) for cell culture, 99\%, Endotoxin (BET) 0.05EU/mg | 25 Gms 100 Gms | $\begin{aligned} & 32.90 \\ & 78.96 \end{aligned}$ | | | | |
| | | | | $\begin{aligned} & 75931 \\ & {[6106-04-3]} \end{aligned}$ | L-Glutamic Acid Monosodium Salt Monohydrate (MSG) for cell culture, 99\%, Endotoxin (BET) $0.05 \mathrm{EU} / \mathrm{mg}$
 (Monosodium Glutamate, Monosodium
 L-Glutamate) | 100 Gms | 11.84 |
| $\begin{aligned} & 97900 \\ & {[57-88-5]} \end{aligned}$ | Cholesterol ex. Sheep Wool (Lanolin) for cell culture, 99\%, Endotoxin (BET) 0.05EU/mg | 5 Gms 25 Gms 100 Gms | 31.58 138.18 394.80 | | | 500 Gms | 36.19 |
| $\begin{aligned} & 70553 \quad \bullet \\ & \text { [86393-32-0] } \end{aligned}$ | Ciprofloxacin Hydrochloride Hydrate (CPFX) for cell culture, 98-102\%, Endotoxin (BET) 0.05EU/mg | 1 Gms
 5 Gms | $\begin{array}{r} 9.08 \\ 30.27 \end{array}$ | $\begin{aligned} & 80952 \\ & {[56-85-9]} \end{aligned}$ | L-Glutamine for cell culture, 99%, Endotoxin (BET) 0.05EU/mg | 10 Gms
 25 Gms | $\begin{aligned} & 12.50 \\ & 23.69 \end{aligned}$ |
| | | | | $\begin{aligned} & 74693 \\ & {[27025-41-8]} \end{aligned}$ | Glutathione Oxidized (GSSG) for cell culture, 99\%, Endotoxin (BET) 1EU/mg | 100 Mg | 26.32 |
| $\begin{aligned} & 81395 \\ & {[11028-71-0]} \end{aligned}$ | Concanavalin A Lectin ex. Canavalia Ensiformis Type 1 for cell culture, $64 \mathrm{ug} / \mathrm{ml}$, (BET) $0.05 \mathrm{EU} / \mathrm{mg}$
 (Con A) (Jack bean) | $40 \mathrm{Mg}$ | 71.85 | | | 250 Mg 1 Gms 5 Gms | 48.69 92.12 427.70 |

| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 65542 \\ & {[56-81-5]} \end{aligned}$ | Glycerol (Glycerine) Anhydrous for cell culture, 99.5\%, Endotoxin (BET) $0.05 \mathrm{EU} / \mathrm{mg}$ | 500 ml | 17.11 | $\begin{aligned} & 42125 \\ & {[63-68-3]} \end{aligned}$ | L-Methionine for cell culture, 99\%, Endotoxin (BET) 0.05EU/mg | $\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$ | $\begin{aligned} & 14.48 \\ & 52.64 \end{aligned}$ |
| $\begin{aligned} & 34268 \\ & {[56-40-6]} \end{aligned}$ | Glycine for cell culture, 99.5\%, Endotoxin (BET) 1EU/mg
 (Aminoacetic Acid) | 100 Gms | 22.37 | $\begin{aligned} & 13908 \\ & {[1132-61-2]} \end{aligned}$ | MOPS Buffer for cell culture, 99%, Endotoxin (BET) 0.05EU/mg
 (3-Morpholinopropane Sulphonic Acid) | $\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$ | $\begin{array}{r} 42.11 \\ 102.65 \\ 223.72 \end{array}$ |
| $\begin{aligned} & 39149 \\ & {[7365-45-9]} \end{aligned}$ | HEPES Buffer for cell culture, 99.5\%, Endotoxin (BET) 0.05EU/mg (N-(2-Hydroxyethyl) piperazine-N(2-Ethane Sulphonic Acid) | $\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{gathered}$ | $\begin{array}{r} 25.66 \\ 84.22 \\ 348.74 \end{array}$ | $\begin{aligned} & 69599 \text { \& } \\ & {[1405-10-3]} \end{aligned}$ | Neomycin Sulphate (NMS) for cell culture, Endotoxin (BET) $0.05 \mathrm{EU} / \mathrm{mg}$ | $\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$ | 10.53 25.00 |
| $\begin{aligned} & 16509 \\ & {[71-00-1]} \end{aligned}$ | L-Histidine (base) for cell culture, 99\%, Endotoxin (BET) 1EU/mg | $\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$ | 16.45 46.06 | $\begin{aligned} & 64257 \\ & {[53-84-9]} \end{aligned}$ | B-Nicotinamide Adenine
 Dinucleotide (B-NAD,DPN) for cell culture, 98\%, Endotoxin (BET) $0.05 \mathrm{EU} / \mathrm{mg}$ | $\begin{gathered} 100 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{gathered}$ | $\begin{aligned} & 13.29 \\ & 61.59 \end{aligned}$ |
| 86877
 [5934-29-2] | L-Histidine Hydrochloride Monohydrate for cell culture, 99\%, Endotoxin (BET) 1EU/mg | 25 Gms 100 Gms | 14.48 46.06 | $\begin{gathered} 10581 \\ {[606-68-8]} \end{gathered}$ | B-Nicotinamide Adenine Dinucleotide Disodium Salt(Reduced) (B-NADH.Na2,DPNH.Na2) for cellculture,98\% | $\begin{gathered} 100 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{gathered}$ | $\begin{array}{r} 26.45 \\ 135.42 \end{array}$ |
| $\begin{aligned} & 54661 \\ & {[3258-02-4]} \end{aligned}$ | N -Hydroxycytidine (EIDD-1931) for cell culture, 98\%, Endotoxin (BET) $0.05 \mathrm{EU} / \mathrm{mg}$ | 10 Mg
 25 Mg | 92.12 184.24 | | | 5 Gms | 497.84 |
| $\begin{aligned} & 75054 \\ & \text { [99011-02-6] } \end{aligned}$ | Imiquimod for cell culture, 98\% | 250 Mg | 177.66 | 88722 ■-Nicotinamide Adenine
 [24292-60-2] Dinucleotide Phosphate Disodium
 Salt for cell culture,95\%, (BET)
 $0.05 \mathrm{EU} / \mathrm{mg}$ | | $\begin{array}{r} 100 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{array}$ | $\begin{array}{r} 48.43 \\ 278.20 \end{array}$ |
| 77379 | Inositol for cell culture, 99\%, | 25 Gms | 13.16 | | | | |
| [87-89-8] | (Vitamin B8) | 100 Gms | 42.11 | $28771 \square$ B-Nicotinamide Adenine
 $[1184-16-3]$ Dinucleotide Phosphate
 Monosodium Salt for cell culture,
 $98 \%,(B E T) 0.05 E U / \mathrm{mg}$ | | | 46.85 |
| $\begin{aligned} & 72828 \\ & {[11061-68-0]} \end{aligned}$ | r-Insulin ex. Human for cell culture, 25 USP U/mg, Endotoxin (BET) | $\begin{array}{r} 50 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$ | 92.12 171.08 | | | 1 Gms | 175.69 |
| | (Recombinant Insulin) | | | $\begin{aligned} & 93517 \\ & {[98-92-0]} \end{aligned}$ | Nicotinamide for cell culture, 99.5%, Endotoxin (BET) 0.05EU/mg (Niacinamide, Pyridine-3-Carboxylic Acid Amide) | 100 Gms | 16.45 |
| $\begin{aligned} & 11894 \\ & {[73-32-5]} \end{aligned}$ | L-Isoleucine for cell culture, 99\%, Endotoxin (BET) 1EU/mg | 25 Gms 100 Gms | 17.11 56.59 | | | 500 Gms | 49.35 |
| $\begin{aligned} & 95793 \\ & {[62851-42-7]} \end{aligned}$ | Jenners Stain (Eosin-methylene blue) for cell culture, Endotoxin (BET) $0.05 \mathrm{EU} / \mathrm{mg}$ | $\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$ | 40.80 128.97 | $\begin{aligned} & 63509 \text { B } \\ & {[1094-61-7]} \end{aligned}$ | B-Nicotinamide Mononucleotide (B-NMN) for cell culture, 99\%, Endotoxin (BET) 0.05EU/mg | 25 Mg | 85.01 |
| $\begin{aligned} & 95419 \\ & {[61-90-5]} \end{aligned}$ | L-Leucine for cell culture, 99\%, Endotoxin (BET) 1EU/mI | 100 Gms 500 Gms | 39.48 105.28 | $\begin{aligned} & 50275 \\ & {[59-67-6]} \end{aligned}$ | Nicotinic Acid
 (Pyridine-3-Carboxylic Acid) for cell culture, 99\%, Endotoxin (BET)
 $0.05 \mathrm{EU} / \mathrm{mg}$
 (3-Picolinic Acid, Niacin, Vitamin B3) | 100 Gms 500 Gms | 12.50 39.48 |
| $\underset{[56-87-1]}{95173}$ | L-Lysine (free base) Anhydrous for cell culture, 98\%, Endotoxin (BET) | $25 \mathrm{Gms}$ | $\begin{array}{r} 52.64 \\ 157.92 \end{array}$ | | | | |
| | $0.05 \mathrm{EU} / \mathrm{mg}$ | | | $\begin{aligned} & 16828 \\ & {[1400-61-9]} \end{aligned}$ | Nystatin (Mycostatin) for cell culture, 85\%, Endotoxin (BET) $0.05 \mathrm{EU} / \mathrm{mg}$
 (Fungicidin) | 250 Mg | 8.82 |
| $\begin{aligned} & 29011 \\ & {[12650-88-3]} \end{aligned}$ | Lysozyme (3x cryst) ex.Egg white (Muramidase) for cell culture, $15000 \mathrm{U} / \mathrm{mg}$, Endotoxin (BET) | $\begin{aligned} & 1 \mathrm{Gms} \\ & 5 \mathrm{Gms} \end{aligned}$ | 39.48 177.66 | | | $\begin{aligned} & 1 \mathrm{Gms} \\ & 5 \mathrm{Gms} \end{aligned}$ | 30.79 117.12 |
| | 0.05EU/mg | 25 Gms | 526.40 | $\begin{aligned} & 17565 \\ & {[1400-61-9]} \end{aligned}$ | Nystatin (Mycostatin) Solution ($10000 \mathrm{U} / \mathrm{ml}$) for cell culture, Endotoxin (BET) 10.0EU/ml (Fungicidin) | 20 ml | 16.32 |
| 22352
 [7786-30-3] | Magnesium Chloride Anhydrous for cell culture, 98\%, Endotoxin (BET) $0.05 \mathrm{EU} / \mathrm{mg}$ | 100 Gms | 23.69 | | | | |
| $\begin{aligned} & 13546 \\ & {[7791-18-6]} \end{aligned}$ | Magnesium Chloride Hexahydrate for cell culture, 99.5\%, Endotoxin (BET) $0.05 \mathrm{EU} / \mathrm{mg}$ | 500 Gms | 39.48 | $\begin{aligned} & 56341 \\ & {[3184-13-2]} \end{aligned}$ | L-Ornithine Monohydrochloride for cell culture, 99\%, Endotoxin (BET) $0.05 \mathrm{EU} / \mathrm{mg}$ | $\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$ | $\begin{aligned} & 21.06 \\ & 59.22 \end{aligned}$ |
| 36502
 [7487-88-9] | Magnesium Sulphate Dried for cell culture, 62-70\% MgSO4, 99\%, Endotoxin (BET) 0.05EU/mg | 500 Gms | 23.03 | $\begin{gathered} 30917 \\ {[328-42-7]} \end{gathered}$ | Oxalacetic Acid for cell culture, 98\%, Endotoxin (BET) 0.05EU/mg (Oxaloacetic Acid, Ketosuccinic Acid, | 1 Gms 5 Gms | 18.42 67.12 |
| $\begin{aligned} & 12493 \\ & {[6363-53-7]} \end{aligned}$ | D-Maltose Monohydrate for cell culture, Endotoxin (BET) $0.05 \mathrm{EU} / \mathrm{mg}$ | 100 Gms
 500 Gms | $\begin{aligned} & 13.16 \\ & 52.64 \end{aligned}$ | Acid) | | | |
| | | | | $\begin{aligned} & 79311 \\ & {[34487-61-1]} \end{aligned}$ | Phenol Red Sodium Salt (water soluble) for cell culture, 95%, Endotoxin (BET) $0.05 \mathrm{EU} / \mathrm{mg}$ (Phenolsulfonephthalein Sodium Salt) | 5 Gms | 14.48 |
| $\begin{aligned} & 20490 \\ & {[60-24-2]} \end{aligned}$ | 2-Mercaptoethanol for cell culture, 99%, Endotoxin (BET) 0.05EU/ml | $\begin{aligned} & 100 \mathrm{ml} \\ & 250 \mathrm{ml} \end{aligned}$ | 17.11 34.87 | | | 25 Gms | 52.64 |
| $\begin{aligned} & 55311 \\ & {[145224-94-8]} \end{aligned}$ | MES Monohydrate Buffer for cell culture, 99\%, Endotoxin (BET) $0.05 \mathrm{EU} / \mathrm{mg}$ | 25 Gms 100 Gms | 50.01 111.86 | $\begin{aligned} & 68793 \\ & {[63-91-2]} \end{aligned}$ | L-Phenylalanine for cell culture, 99\%, Endotoxin (BET) 1EU/mg | 25 Gms 100 Gms | 14.48 39.48 |
| | (2-Morpholineethane Sulphonic Acid Hydrate) | | | $\begin{aligned} & 77839 \\ & {[329-98-6]} \end{aligned}$ | Phenylmethane Sulphonyl Fluoride (PMSF) for cell culture, 99\%, Endotoxin (BET) 0.05EU/mg | 1 Gms 5 Gms | 17.11 57.90 |

Part C

Nanopowders \& Carbon Nanotubes (CNTs)

(Carbon Nanotubes, Nanodispersants and Nanodispersions, Nanowires, Nanofilms and Nanopowders)

| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 75964 \\ & {[1344-28-1]} \end{aligned}$ | Alumina (Alpha) Nanopowder, 20-30nm, 99.9\% | 25 Gms 100 Gms 250 Gms | 29.87 74.62 134.23 | 69126 | CdSe/ZnS Core Shell Quantum Dots, Fluorescence 560nm, (Hydrophobic)
 (CdSe/ZnS560) (Hydrophobic) | 10 Mg | 283.33 |
| 25536
 [1344-28-1] | Alumina (Gamma) Nanopowder, $15 \mathrm{~nm}, 99.5 \%$
 (Hydrophilic) | 25 Gms 100 Gms | 121.73 182.53 | 33618 d | CdSe/ZnS Core Shell Quantum Dots, Fluorescence 600nm, (Hydrophobic) (CdSe/ZnS600) (Hydrophobic) | 10 Mg | 283.33 |
| $\begin{aligned} & 96202 \\ & {[7429-90-5]} \end{aligned}$ | Aluminium Nanopowder (Type 1), 40nm, 99\% | 1 Gms | 159.63 | | | | |
| | | 5 Gms | 428.09 | 15377 | \& CaSe/ZnS Core Shell Quantum Dots, Fluorescence 630nm, (Hydrophobic) (CdSe/ZnS639) (Hydrophobic) | 10 Mg | 283.33 |
| $\begin{aligned} & 18412 \\ & \text { [7429-90-5] } \end{aligned}$ | Aluminium Nanopowder (Type 2), 70 nm, 99.9\% | 1 Gms 5 Gms | 159.63 428.09 | | | | |
| $\begin{aligned} & 41892 \\ & {[1318-23-6]} \end{aligned}$ | Aluminium Oxide (Boehmite) Nanodispersion (50nm), 20\% in water | 25 Gms 100 Gms | 37.37 113.31 | 50439 | \& CdTe Core Type COOH
 Functionalized Quantum Dots, Fluorescence 510 nm (Hydrophilic) | 10 Mg | 290.18 |
| $\begin{aligned} & 29603 \\ & {[12004-39-6]} \end{aligned}$ | Aluminium Titanate Nanopowder, 25nm, 98.5\% | 2 Gms | 177.13 | 37909 | \& CdTe Core Type $\mathbf{C O O H}$ Functionalized Quantum Dots, Fluorescence 610 nm (Hydrophilic) | 10 Mg | 290.18 |
| 38818 [7782-42-5] | Aminated Graphene Amino-PEG covalently linked (GnAmPG) Nanopowder
 (Reduced Graphene Oxide-NH2) | $\begin{aligned} & 10 \mathrm{Mg} \\ & 50 \mathrm{Mg} \end{aligned}$ | $\begin{array}{r} 65.80 \\ 210.56 \end{array}$ | 19960 | CdTe Core Type COOH
 Functionalized Quantum Dots, Fluorescence 710 nm (Hydrophilic) | 10 Mg | 290.18 |
| $\begin{aligned} & 19158 \\ & \text { [7782-42-5] } \end{aligned}$ | Aminated Graphene
 Octadecylamine covalently linked
 (GnAm18d) Nanopowder
 (Reduced Graphene Oxide-NH-
 (CH2)17-CH3) | $\begin{aligned} & 10 \mathrm{Mg} \\ & 50 \mathrm{Mg} \end{aligned}$ | 65.80 210.56 | $\begin{aligned} & 37194 \\ & {[7440-44-0]} \end{aligned}$ | Carbon Porous Nanopowder, $5000-8000 \mathrm{~nm}$ | $\begin{gathered} 1 \mathrm{Gms} \\ 10 \mathrm{Gms} \\ 50 \mathrm{Gms} \end{gathered}$ | $\begin{array}{r} 15.79 \\ 52.64 \\ 236.88 \end{array}$ |
| | | | | 28186 | CNT Dispersant AC | 20 ml | 151.34 |
| $\begin{aligned} & 67801 \\ & {[1309-64-4]} \end{aligned}$ | Antimony Trioxide Nanopowder, 80-200nm, 99.9\%
 (Diantimony Trioxide, Antimony (III) Oxide) | $\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$ | $\begin{aligned} & 17.50 \\ & 50.80 \end{aligned}$ | 35210 | CNT Dispersant AQ | 20 ml | 151.34 |
| | | | | 59800
 [308068-56-6] | TCNT Type 1-Carbon Nanotubes
] Thin Walled, Length $5-30 \mu \mathrm{~m}$, OD 2-5nm, 90\% | $\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$ | $\begin{aligned} & 162.39 \\ & 419.54 \end{aligned}$ |
| $\begin{aligned} & 10842 \\ & {[12047-27-7]} \end{aligned}$ | Barium Titanate Nanopowder, 100nm, 99.5\% | $\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$ | $\begin{array}{r} 41.45 \\ 110.54 \end{array}$ | | | | |
| 78768
 [1403674-49-
 6] | Bis(2`,4`-Bis(Hexyloxy)Biphenyl-4-
 yl)Amine extrapure, 95\%
 (Z-907 Modified Red Dye) | 25 Mg | 168.45 | $\begin{aligned} & 73953 \\ & {[308068-56-6]} \end{aligned}$ | SWCNT Type 1 Carbon Nanotubes Single- Walled, Length $5-30 \mu \mathrm{~m}$, $O D$ 1-2nm, 99\% | 250 Mg
 1 Gms | $\begin{aligned} & 157.92 \\ & 421.12 \end{aligned}$ |
| $\begin{aligned} & 14683 \\ & {[1304-76-3]} \end{aligned}$ | Bismuth (III) Oxide Nanopowder, 200nm, 99.8\%
 (Dibismuth Trioxide) | $\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$ | $\begin{array}{r} 82.91 \\ 234.91 \end{array}$ | 20770
 [308068-56-6] | SWCNT Type 2 Carbon Nanotubes Single- Walled (Short), Length $0.5-2.0 \mu \mathrm{~m}, \mathrm{OD} 1.0-2.0 \mathrm{~nm}, 90 \%$ | 100 Mg | 128.97 |
| $\begin{aligned} & 21772 \\ & \text { [1318-23-6] } \end{aligned}$ | Boehmite Nanopowder, 20nm, 99.9\% | $\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$ | $\begin{array}{r} 37.37 \\ 140.94 \end{array}$ | 29129
 [308068-56-6] | SWCNT Type 3 Carbon Nanotubes
 Single- Walled COOH
 Functionalized, Length $0.5-2.0 \mu \mathrm{~m}$, OD 1-2nm, 90\% | $\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$ | $\begin{array}{r} 65.80 \\ 118.44 \end{array}$ |
| $\begin{aligned} & 62554 \\ & {[12069-32-8]} \end{aligned}$ | Boron Carbide Nanopowder, 50nm, 99\% | 10 Gms
 25 Gms | $\begin{aligned} & 105.28 \\ & 223.72 \end{aligned}$ | $\begin{aligned} & 18989 \\ & {[308068-56-6]} \end{aligned}$ | SWCNT Type 4 Carbon Nanotubes Single-Walled, Length $5-30 \mu \mathrm{~m}$, OD 1-2nm, 90\% (-COOH Functionalized) | $\begin{array}{r} 50 \mathrm{Mg} \\ 250 \mathrm{Mg} \end{array}$ | $\begin{array}{r} 78.96 \\ 315.84 \end{array}$ |
| 50943
 [10043-11-5] | Boron Nitride (hBN) Aerosol Spray (13Oz/369g)
 (hexagonal Boron Nitride) | 1 piece | 167.26 | | | | |
| | | | | 55024
 [308068-56-6] | SWCNT Type 5 Carbon Nanotubes Single-Walled (-OH Functionalized) | $\begin{array}{r} 50 \mathrm{Mg} \\ 250 \mathrm{Mg} \end{array}$ | $\begin{aligned} & 140.68 \\ & 383.61 \end{aligned}$ |
| $\begin{aligned} & 75454 \\ & {[10043-11-5]} \end{aligned}$ | Boron Nitride Nanopowder, 70nm, 99\% | $\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$ | $\begin{array}{r} 41.45 \\ 110.54 \end{array}$ | | | | |
| $\begin{aligned} & 45882 \\ & {[10043-11-5]} \end{aligned}$ | Boron Nitride Nanotubes (C) Cylindrical, 50-100nm | 50 Mg | 421.12 | $\begin{aligned} & 27404 \\ & {[308068-56-6]} \end{aligned}$ | SWCNT Type 6 Carbon Nanotubes Single-Walled, Length $5-30 \mu \mathrm{~m}$, OD 1-2nm, 99\%
 (-NH2 Functionalized) | 250 Mg | 824.08 |
| 74899 | Calcium Carbonate Nanopowder, 80nm, 98\% | 25 Gms | 13.55 | | | | |
| [471-34-1] | | 100 Gms | 50.01 236.88 | 95425
 [308068-56-6] | SWCNT Type 7 Carbon Nanotubes Single-Walled in aq. media pure, Length $0.5-4 \mu \mathrm{~m}$, OD 1-2nm, 99% (Semiconducting) | 20 ml | 652.21 |
| $\begin{aligned} & 72893 \\ & {[12049-50-2]} \end{aligned}$ | Calcium Titanate Nanopowder, 90nm, 99.9\% | 1 Gms | 190.69 | | | | |
| $\begin{aligned} & 12918 \\ & {[12013-47-7]} \end{aligned}$ | Calcium Zirconium Oxide Nanopowder, 50nm, 99.5\% | 1 Gms 5 Gms | 187.92 599.96 | $\begin{aligned} & 52710 \\ & {[308068-56-6]} \end{aligned}$ | SWCNT Type 8 Carbon Nanotubes Single-Walled in aq. media extrapure (Semiconducting) | 20 ml | 895.14 |

| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 42480 \\ & {[308068-56-6]} \end{aligned}$ | SWCNT Type 9 Carbon Nanotubes Single-Walled in aq. media pure (Metallic/Conducting) | 20 ml | 767.23 | $\begin{aligned} & 58255 \\ & {[308068-56-6]} \end{aligned}$ | MWCNT Type 10 Carbon Nanotubes Multi-Walled, Length $10-30 \mu \mathrm{~m}$, OD 10-20nm, 95\% | 1 Gms
 5 Gms | $\begin{aligned} & 31.58 \\ & 65.80 \end{aligned}$ |
| $\begin{aligned} & 68069 \\ & {[308068-56-6]} \end{aligned}$ | SWCNT Type 10 Carbon Nanotubes Single-Walled in aq. media extrapure (Metallic/Conducting) | 20 ml | 1790.15 | 29466
 [308068-56-6] | (-COOH Functionalized)
 MWCNT Type 11 Carbon
 Nanotubes Multi-Walled, Length $10-30 \mu \mathrm{~m}$, OD $20 \mathrm{~nm}, 95 \%$ | $\begin{array}{r} 50 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$ | $\begin{aligned} & 42.64 \\ & 63.96 \end{aligned}$ |
| $\begin{aligned} & 81868 \\ & {[308068-56-6]} \end{aligned}$ | SWCNT Type 11 Carbon Nanotubes Single-Walled ultrapure (Semiconducting) | 50 Mg | 1074.12 | | (-NH2 Functionalized) | 1 Gms 5 Gms | 213.19 639.44 35.53 |
| $\begin{aligned} & 28989 \\ & {[308068-56-6]} \end{aligned}$ | SWCNT Type 12 Single-Walled Carbon Nanotubes ultrapure (Metallic/Conducting) | 50 Mg | 1074.12 | 82903
 [308068-56-6] | MWCNT Type 12 Carbon
 Nanotubes Multi-Walled, Length $10-30 \mu \mathrm{~m}$, OD $10-20 \mathrm{~nm}, 95 \%$ (-OH Functionalized) | 1 Gms
 5 Gms | $\begin{array}{r} 63.96 \\ 127.92 \end{array}$ |
| $\begin{aligned} & 36078 \\ & {[308068-56-6]} \end{aligned}$ | DWCNT Type 1 Carbon Nanotubes Double Walled, Length $50 \mu \mathrm{~m}$, OD 2-4nm, 60\% | 100 Mg 500 Mg | 284.26 710.51 | 28658
 [308068-56-6] | MWCNT Type 13 Carbon Nanotubes Multi-Walled, Length $10-30 \mu \mathrm{~m}$, OD $\mathbf{3 0 - 5 0 n m}, 95 \%$ | 500 Mg
 1 Gms | $\begin{aligned} & 31.32 \\ & 56.85 \end{aligned}$ |
| $\begin{aligned} & 85143 \\ & {[308068-56-6]} \end{aligned}$ | DWCNT Type 2 Carbon Nanotubes Double Walled (Short), Length $0.5-2 \mu \mathrm{~m}, \mathrm{OD} 2-4 \mathrm{~nm}, 60 \%$ | 100 Mg | 297.81 | | (-COOH Functionalized) | 25Gms | 113.70 369.53 142.13 |
| $\begin{aligned} & 45565 \\ & {[308068-56-6]} \end{aligned}$ | DWCNT Type 3 Carbon Nanotubes Double-Walled (-COOH Functionalized) | 50 Mg | 155.95 | 65875
 [308068-56-6] | MWCNT Type 14 Carbon Nanotubes Multi-Walled, Length $10-30 \mu \mathrm{~m}$, OD 30-50nm, 95% (-NH2 Functionalized) | 100 Mg | 213.19 |
| $\begin{aligned} & 69072 \\ & {[308068-56-6]} \end{aligned}$ | DWCNT Type 4 Carbon Nanotubes Double-Walled (-OH Functionalized) | 50 Mg 250 Mg | 155.95 487.18 | 24968
 [308068-56-6] | MWCNT Type 15 Carbon Nanotubes Multi-Walled, Length~ $10-30 \mu \mathrm{~m}, \mathrm{OD} 30-35 \mathrm{~nm}, 95 \%$ | 500 Mg
 1 Gms
 5 Gms | $\begin{aligned} & 31.32 \\ & 39.48 \\ & 92.12 \end{aligned}$ |
| $\begin{aligned} & 34528 \\ & {[308068-56-6]} \end{aligned}$ | HMWCNT Type1- Carbon Nanotubes Multi Walled Helical, Length $10 \mu \mathrm{~m}$, OD $\mathbf{1 0 0 - 2 0 0 n m}$,(C) 90\% | $\begin{array}{r} 250 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{array}$ | $\begin{aligned} & 162.39 \\ & 219.25 \end{aligned}$ | 33670
 [308068-56-6] | (-OH Functionalized)
 MWCNT Type 16 Carbon Nanotubes Multi-Walled Short, Length $0.5-2 \mu \mathrm{~m}$, OD $8 \mathrm{~nm}, 95 \%$ | 500 Mg
 1 Gms
 5 Gms | |
| $\begin{aligned} & 57743 \\ & {[308068-56-6]} \end{aligned}$ | MWCNT Type 1 Carbon Nanotubes Multi Walled, Length $10-30 \mu \mathrm{~m}$, OD 8nm, 95\% | 1 Gms
 5 Gms
 25 Gms | $\begin{array}{r} 46.98 \\ 163.05 \\ 469.81 \end{array}$ | $\begin{aligned} & 28174 \\ & {[308068-56-6]} \end{aligned}$ | MWCNT Type 17 Carbon Nanotubes Multi-Walled Short, Length $0.5-2 \mu \mathrm{~m}$, OD $10-20 \mathrm{~nm}, 95 \%$ | 500 Mg
 1 Gms
 5 Gms | 39.48
 69.09
 263.20 |
| $\begin{aligned} & 88440 \\ & {[308068-56-6]} \end{aligned}$ | MWCNT Type 2 Carbon Nanotubes Multi Walled, Length $10-30 \mu \mathrm{~m}$, OD 8-15nm, 95\% | 5 Gms 25 Gms | 65.80 171.08 | 90797
 [308068-56-6] | MWCNT Type 18 Carbon Nanotubes Multi-Walled Short, | 1 Gms
 5 Gms | $\begin{array}{r} 71.06 \\ 241.62 \end{array}$ |
| $\begin{aligned} & 68465 \\ & {[308068-56-6]} \end{aligned}$ | MWCNT Type 3 Carbon Nanotubes Multi Walled, Length $10-30 \mu \mathrm{~m}$, OD 10-20nm, 95\% | | 26.32 | | Length $0.5-2.0 \mu \mathrm{~m}$, OD 30-50nm, 95\% | | |
| | | $\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$ | 65.80 263.20 | 42927
 [308068-56-6] | MWCNT Type 19 - Carbon Nanotubes Multi Walled | 1 Gms
 5 Gms | $\begin{aligned} & 255.83 \\ & 852.50 \end{aligned}$ |
| $\begin{aligned} & 41067 \\ & {[308068-56-6]} \end{aligned}$ | MWCNT Type 4 Carbon Nanotubes Multi Walled, Length $10-30 \mu \mathrm{~m}$, OD 20-30nm, 95\% | 5 Gms | 46.06 | | (Conducting), Length 3-6micron,OD 10nm | | |
| | | 25 ms | 131.60 | 58908 | MWCNT-Ni Type 1 Carbon | 1 Gms | 149.23 |
| $\begin{aligned} & 41335 \\ & {[308068-56-6]} \end{aligned}$ | MWCNT Type 5 Carbon Nanotubes Multi Walled, Length $10-30 \mu \mathrm{~m}$, OD 30-50nm, 95\% | 5 Gms 25 Gms | 39.48 78.96 | [308068-56-6] | Nanotubes Multi Walled, Nickel coated, Length 10-30 micron, OD 5-20nm, 98\% | 5 Gms | 554.17 |
| | | 100 Gms | 289.52 | 53105 | MWCNT-Ni Type 2 Carbon | 1 Gms | 149.23 |
| $\begin{aligned} & 96390 \\ & {[308068-56-6]} \end{aligned}$ | MWCNT Type 6 Carbon Nanotubes Multi Walled, Length $10-30 \mu \mathrm{~m}$, OD 50nm, 95\% | 5 Gms
 25 Gms | 42.11 85.54 | [308068-56-6] | Nanotubes Multi Walled, Nickel coated | 5 Gms | 554.17 |
| | | | 302.68 | 90500
 [308068-56-6] | MWCNT-Ni Type 3 Carbon Nanotubes Multi Walled, Nickel | 1 Gms
 5 Gms | 149.23 554.17 |
| $\begin{aligned} & 35203 \\ & {[308068-56-6]} \end{aligned}$ | MWCNT Type 7 Carbon Nanotube Multi Walled (Graphitized), 99.9\% | 1 Gms | 105.54 | | coated | | |
| | | 5 Gms | 351.64 | 75288 | MWCNT-Ni Type 4 Carbon | 1 Gms | 149.23 |
| $\begin{aligned} & 73235 \\ & {[308068-56-6]} \end{aligned}$ | MWCNT Type 8 Carbon Nanotubes Multi-Walled, Length $\mathbf{2 0 \mu}$ m, OD 10-20nm, 99.9\%
 (Graphitized, -COOH Functionalized) | 500 Mg | 50.01 | [308068-56-6] | Nanotubes Multi Walled, Nickel coated | 5 Gms | 554.17 |
| | | 1 Gms | 78.96 | $\begin{aligned} & 65468 \\ & {[9012-76-4]} \end{aligned}$ | Chitosan Nanopowder, 80-100nm, 99\% | 5 Gms
 25 Gms | $\begin{array}{r} 44.74 \\ 134.23 \end{array}$ |
| $\begin{aligned} & 46918 \\ & {[308068-56-6]} \end{aligned}$ | MWCNT Type 9 Carbon Nanotubes Multi-Walled, Length $\mathbf{2 0 \mu m}$, OD 10-20nm, 99.9\%
 (Graphitized -OH Functionalized) | $\begin{array}{r} 500 \mathrm{Mg} \\ 1 \mathrm{Gms} \end{array}$ | 50.01 78.96 | 44316
 [1308-38-9] | Chromium (III) Oxide Nanopowder, 90nm, 99\%
 (Chromia) | 10 Gms | 184.24 |

| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 64835 \\ {[1152310-69-} \\ 4] \end{gathered}$ | C106 Dye, 90\%
 (Cis-Bis(Isothiocyanato)
 (2,2Bipyr-4,4-Dicarboxylato) | 25 Mg | 120.28 | $\begin{aligned} & 73225 \\ & {[7440-57-5]} \end{aligned}$ | Gold Nanoparticles Dispersion (Spherical) (AU05), 0.05mg/ml Citrate, 0.1 mM in PBS | $\begin{aligned} & 10 \mathrm{ml} \\ & 25 \mathrm{ml} \end{aligned}$ | 72.38 151.34 |
| | (4,4bis(5(Hexylthio)thiophen2yl)2,2-Bip y) $R u(I I))$ | | | $\begin{aligned} & 36848 \\ & {[7440-57-5]} \end{aligned}$ | Gold Nanoparticles Dispersion (Spherical) (AU10), 0.05mg/ml Citrate, 0.1 mM in PBS | $10 \mathrm{ml}$ | 72.38 51.34 |
| $\begin{aligned} & 35347 \text { V } \\ & {[847665-45-6]} \end{aligned}$ | K19 Dye (Sensitizer), 85\%
 (cis-Bis(Thiocyanato)
 (2,2-Bipyr-4,4-Dicarboxylic Acid)-
 (4,4-bis(Phexyloxystyryl)
 -2,2-Bipyr)Ru(II)) | 25 Mg | 121.60 | | | | |
| | | | | $\begin{aligned} & 72123 \\ & {[7440-57-5]} \end{aligned}$ | Gold Nanoparticles Dispersion (Spherical) (AU20), $0.05 \mathrm{mg} / \mathrm{ml}$ Citrate, 0.1 mM in PBS | $\begin{aligned} & 10 \mathrm{ml} \\ & 25 \mathrm{ml} \end{aligned}$ | 72.38 151.34 |
| | | | | $\begin{aligned} & 60974 \\ & {[7440-57-5]} \end{aligned}$ | Gold Nanoparticles Dispersion (Spherical) (AU40), 0.05mg/ml Citrate, 0.1 mM in PBS | 10 ml | 72.38 |
| $\begin{aligned} & 74373 \\ & \text { [1332-58-7] } \end{aligned}$ | Clay Nanopowder, 80-150nm, 99\% | 5 Gms 25 Gms | 89.49 134.23 | | | 25 ml | 151.34 |
| $\begin{aligned} & 31570 \\ & {[12052-28-7]} \end{aligned}$ | Cobalt Iron Oxide Nanopowder, 50nm, 99.9\%
 (Cobalt Ferrite) | 1 Gms 5 Gms | 15.79 52.64 | $\begin{aligned} & 91082 \\ & {[7440-57-5]} \end{aligned}$ | Gold Nanoparticles Dispersion (Spherical) (AU60), $0.05 \mathrm{mg} / \mathrm{ml}$ Citrate, 0.1 mM in PBS | $\begin{aligned} & 10 \mathrm{ml} \\ & 25 \mathrm{ml} \end{aligned}$ | $\begin{array}{r} 72.38 \\ 151.34 \end{array}$ |
| 74613
 [12052-28-7] | Cobalt Zinc Iron Oxide Nanopowder, 50nm, 99.9\% | 5 Gms 25 Gms | 78.96 210.56 | $\begin{aligned} & 27944 \\ & \text { [7782-42-5] } \end{aligned}$ | Single Layer Graphene (SLG) Nanopowder, 98\% | $\begin{array}{r} 10 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$ | 78.96 236.88 |
| $\begin{aligned} & 74343 \\ & \text { [7440-50-8] } \end{aligned}$ | Copper Nanopowder, 50nm, 99.9\% | 5 Gms | 389.01 | $\begin{aligned} & 73949 \\ & {[7782-42-5]} \end{aligned}$ | Single Layer Graphene Factory
 (SLGF) Nanopowder, 98\% | $\begin{aligned} & 100 \mathrm{Mg} \\ & 250 \mathrm{Mg} \end{aligned}$ | $\begin{array}{r} 69.09 \\ 172.79 \end{array}$ |
| $\begin{aligned} & 73612 \\ & {[7440-50-8]} \end{aligned}$ | Copper Nanowires | 10 Mg | 460.60 | $\begin{aligned} & 89922 \\ & \text { [7782-42-5] } \end{aligned}$ | Graphene Carboxyl (GCOOH)
 Nanopowder, 1000-5000nm, 99\% | 25 Mg | 157.92 |
| $\begin{aligned} & 28954 \\ & {[1317-38-0]} \end{aligned}$ | Cupric Oxide Nanopowder, 40nm, 99\%
 (Copper (II) Oxide) | 5 Gms 25 Gms | 25.00 71.59 | $\begin{aligned} & 60703 \\ & {[7782-42-5]} \end{aligned}$ | Graphene Carboxyl (GCOOHW)
 Nanodispersion, $5 \mathrm{mg} / \mathrm{ml}$ in water | 20 ml | 579.04 |
| | | 100 Gms | 131.21 | $\begin{aligned} & 88398 \\ & {[7782-42-5]} \end{aligned}$ | Graphene Film (Super Paper) (GFSP), 20000nm, 98\% | 1 piece | 1974.00 |
| $19151 \checkmark$ Diamond Nanopowder, 4-7nm[7782-40-3] | | 1 Gms | 285.57 | $\begin{aligned} & 87185 \\ & \text { [7782-42-5] } \end{aligned}$ | Graphene Nitrogen-doped (GNdp) Nanopowder, 500-5000nm | 50 Mg | 80.14 |
| 85476 \& | Diisobutyl | 100 Mg | 168.45 | | | 250 Mg | 368.48 |
| $\begin{gathered} {[1141011-53-} \\ 1] \end{gathered}$ | 2,2-Bipyridine-4,4-Dicarboxylate extrapure, 95\% | | | $\begin{aligned} & 90251 \\ & \text { [7782-42-5] } \end{aligned}$ | Graphene Oxide Film (Super Paper) (GOFSP),20000nm, 98\% | 1 piece | 1476.55 |
| $\begin{aligned} & 91287 \\ & {[1309-37-1]} \end{aligned}$ | Ferric Oxide (Alpha) Nanopowder, 30nm, 99\% (Iron (III) Oxide (Alpha)) | $\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$ | $\begin{aligned} & 25.14 \\ & 67.64 \end{aligned}$ | $\begin{aligned} & 55093 \\ & {[7782-42-5]} \end{aligned}$ | Graphene Platelet Nanopowder (GPN Type 1), 6-8nm, 99.5\% | $\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$ | $\begin{array}{r} 72.38 \\ 263.20 \end{array}$ |
| | | 250 Gms | 217.40 313.47 | $\begin{aligned} & 36529 \\ & {[7782-42-5]} \end{aligned}$ | Graphene Platelet Nanopowder (GPN Type 2), 11-15 nmnm, 99.5\% | 1 Gms
 5 Gms | $\begin{aligned} & 17.11 \\ & 55.27 \end{aligned}$ |
| $\begin{aligned} & 51744 \\ & {[1309-37-1]} \end{aligned}$ | Ferric Oxide (Gamma) Nanopowder, 20-50nm, 99.9\% (Iron (III) Oxide (Gamma)) | 5 Gms
 25 Gms
 100 Gms | $\begin{array}{r} 20.79 \\ 54.35 \\ 160.29 \end{array}$ | $\begin{aligned} & 98585 \\ & \text { [7782-42-5] } \end{aligned}$ | Graphene Platelet Nanopowder (GPN Type 3), 2-10nm, 99.5\% | $\begin{gathered} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{gathered}$ | 39.48 118.44 |
| | | 250 Gms | 285.57 | $\begin{aligned} & 53927 \\ & {[7440-40-0]} \end{aligned}$ | Graphene Quantum Dots ($1 \mathrm{mg} / \mathrm{ml}$) (GQD), 15nm, 80\% | $\begin{array}{r} 5 \mathrm{ml} \\ 25 \mathrm{ml} \end{array}$ | 89.36 331.63 |
| $\begin{aligned} & 16708 \\ & \text { [1317-61-9] } \end{aligned}$ | Ferrous Ferric Oxide Nanopowder (Type 1), 20-50nm, 99.9\% (Iron (II, III) Oxide) | 5 Gms
 25 Gms
 100 Gms | 27.64 62.25 197.40 | $\begin{aligned} & 49888 \\ & {[7782-42-5]} \end{aligned}$ | Single Layer Graphene Oxide (SLGO) Nanopowder, 0.8-1.2nm, 99\% | $\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$ | $\begin{array}{r} 59.22 \\ 144.76 \end{array}$ |
| $\begin{aligned} & 85993 \\ & {[146958-06-7]} \end{aligned}$ | Formamidinium Bromide extrapure, 99\%
 (Methanimidamide Bromide,
 Formamidine Hydrobromide, Iminomethylamine Hydrobromide) | 1 Gms
 5 Gms | $\begin{array}{r} 59.22 \\ 125.02 \end{array}$ | $\begin{aligned} & 58531 \\ & {[7782-42-5]} \end{aligned}$ | Single Layer Graphene Oxide (SLGOE) Nanodispersion, $5 \mathrm{mg} / \mathrm{ml}$ in ethanol | 10 ml | 274.12 |
| | | | | 72536 | Single Layer Graphene Oxide | 10 ml | 135.42 |
| $\begin{aligned} & 67537 \\ & {[879643-71-7]} \end{aligned}$ | Formamidinium lodide extrapure, 99\%
 (Formamidine Hydroiodide, Methanimidamide Hydroiodide) | 1 Gms
 5 Gms | $\begin{array}{r} 32.90 \\ 105.28 \end{array}$ | [7782-42-5] | (SLGOW) Nanodispersion, $5 \mathrm{mg} / \mathrm{ml}$ in water | 25 ml | 230.04 |
| | | | | $\begin{aligned} & 68908 \\ & {[7440-44-0]} \end{aligned}$ | Graphite Nanopowder (Type 2), 1-18nm, 87\% | 1 Gms 5 Gms | $\begin{aligned} & 129.49 \\ & 487.18 \end{aligned}$ |
| 37461 | Fullerene C60, 99.5\% | 250 Mg
 1 Gms | $\begin{aligned} & 128.97 \\ & 315.84 \end{aligned}$ | 85833 [7782-42-5] | Graphite Nanopowder (Type 1), 400nm, 98\% | 5 Gms 25 Gms | 32.90 98.70 |
| 44170 | Fullerene C70, 99\% | | | [7782-42-5] | 400nm, 98\% | 100 Gms | 329.00 |
| | | 500 Mg | 526.40 | $\begin{aligned} & 69869 \\ & {[7782-42-5]} \end{aligned}$ | Graphite Nanopowder Lubricant Grade, 50nm, 99.5\% | 5 Gms | 85.54 |
| $\begin{aligned} & 84500 \\ & {[7440-57-5]} \end{aligned}$ | Gold Nanopowder, 90nm, 99.99\% | 1 Gms | 1232.04 | | | 25 Gms | 329.00 |

| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 38058
 [51311-17-2] | Graphite Fluoride (Carbon Monofluoride) Nanopowder, $1000-10000 \mathrm{~nm}$ | 1 Gms 5 Gms | 34.61 98.17 | 30786 [207347-46-4] | N719 Dye, 95\%
 Di-Tetrabutylammonium cis-Bis(Isothiocyanato)Bis(2,2-Bipyridyl | $\begin{array}{r} 50 \mathrm{Mg} \\ 250 \mathrm{Mg} \end{array}$ | 76.06 152.00 |
| $\begin{aligned} & 39525 \\ & \text { [7782-42-5] } \end{aligned}$ | Graphite Oxide Nanopowder, Dia 500-1500nm | 100 Mg | 34.61 | | -4,4-Dicarboxylato) Ruthenium(II), N-7 | | |
| | | 500 Mg 1 Gms | 89.88 158.97 | $\begin{aligned} & 52716 \\ & {[359415-47-7]} \end{aligned}$ | N749 Dye (Black Dye), 95\%
 (Triisothiocyanato-
 (2,2:6,6-Terpyridyl-4,4,4-Tricarboxylato)
 Ruthenium(II)
 Di(Tetra-Butylammonium)) | 50 Mg | 273.60 |
| $\begin{aligned} & 11934 \\ & \text { [7782-42-5] } \end{aligned}$ | Graphite Pyrolytic Micronpowder, 50micron | 5 Gms | 110.54 | | | | |
| $\begin{aligned} & 69895 \\ & \text { [12167-74-7] } \end{aligned}$ | Hydroxyapatite Micronpowder, 12micron, 99\%
 (Calcium Hydroxyapatite, Calcium Phosphate Tribasic) | 5 Gms
 25 Gms | $\begin{array}{r} 76.06 \\ 159.63 \end{array}$ | $\begin{aligned} & 35001 \\ & {[7440-02-0]} \end{aligned}$ | Nickel Nanopowder, 20nm, 99.9\% | 5 Gms | 380.59 |
| | | | | $\begin{aligned} & 32293 \\ & {[1313-99-1]} \end{aligned}$ | Nickel (II) Oxide Nanopowder, 50nm, 99.5\%
 (Nickel Monoxide) | 25 Gms | 92.12 |
| $\begin{aligned} & 13616 \\ & {[12167-74-7]} \end{aligned}$ | Hydroxyapatite Nanopowder, 20nm, 99\%
 (Calcium Hydroxyapatite, Calcium Phosphate Tribasic) | $\begin{gathered} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{gathered}$ | $\begin{array}{r} 78.96 \\ 200.43 \end{array}$ | | | | |
| | | | | 73985 | Nickel Titanium Alloy Nanopowder, $30-120 \mathrm{~nm}$ | $250 \mathrm{Mg}$
 1 Gms | $\begin{aligned} & 243.59 \\ & 730.77 \end{aligned}$ |
| $\begin{aligned} & 66614 \\ & {[1312-43-2]} \end{aligned}$ | Indium (III) Oxide Nanopowder ultrapure, 50nm, 99.99\% | 1 Gms | 434.81 | 69691
 [12645-50-0] | Nickel Zinc Iron Oxide (NZFO) Nanopowder, APS 50nm, 99.9\% (Nickel Zinc Ferrite) | 5 Gms 25 Gms | 39.48 118.44 |
| $\begin{aligned} & 45974 \\ & {[1312-81-8]} \end{aligned}$ | Lanthanum Oxide Nanopowder ultrapure, $90 \mathrm{~nm}, 99.99 \%$ | $\begin{gathered} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{gathered}$ | $\begin{array}{r} 48.43 \\ 172.79 \end{array}$ | 74380 \& | Perovskite Quantum Dots (pQD 450), Fluorescence 450nm (Hydrophobic) | 50 Mg | 248.72 |
| $\begin{aligned} & 52726 \\ & {[15365-14-7]} \end{aligned}$ | Lithium Iron (II) Phosphate Micronpowder, 2micron, 98\% (Ferrous Lithium Phosphate, Iron Lithium Phosphate, LFP, Triphylite) | $\begin{array}{r} 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$ | $\begin{array}{r} 56.72 \\ 113.31 \end{array}$ | | | | |
| | | | | 15360 d | Perovskite Quantum Dots (pQD 480), Fluorescence 480nm (Hydrophobic) | 50 Mg | 248.72 |
| $\begin{aligned} & 53768 \\ & {[12031-95-7]} \end{aligned}$ | Lithium Titanate (LTO) (Spinel)
 Nanopowder, 200nm, 99\%
 (Tetralithium Titanate) | 5 Gms 10 Gms | $\begin{aligned} & 151.34 \\ & 236.88 \end{aligned}$ | 77345 d | Perovskite Quantum Dots (pQD 510), Fluorescence 510 nm (Hydrophobic) | 50 Mg | 248.72 |
| 69667
 [12068-51-8] | Magnesium Aluminate (Spinel) Nanopowder, 50nm, 99\% | $\begin{aligned} & 1 \mathrm{Gms} \\ & 2 \mathrm{Gms} \end{aligned}$ | $\begin{aligned} & 54.22 \\ & 94.75 \end{aligned}$ | 23300 8 | Perovskite Quantum Dots (pQD 550), Fluorescence 550nm (Hydrophobic) | 50 Mg | 248.72 |
| $\begin{aligned} & 71829 \\ & {[1309-48-4]} \end{aligned}$ | Magnesium Oxide Nanopowder, 50nm, 99.5\% | 5 Gms 25 Gms | $\begin{aligned} & 32.90 \\ & 98.70 \end{aligned}$ | $\begin{aligned} & 22116 \\ & {[7440-05-3]} \end{aligned}$ | Palladium Nanopowder (Type I), 30nm, 99.9\% | $\begin{aligned} & 100 \mathrm{Mg} \\ & 500 \mathrm{Mg} \end{aligned}$ | $\begin{array}{r} 78.96 \\ 289.52 \end{array}$ |
| $\begin{aligned} & 56176 \\ & {[73905-81-4]} \end{aligned}$ | Magnetic Iron Oxide Nanocrystals Powder, 20nm, 99\% | 20 Mg | 1574.20 | $\begin{aligned} & 41341 \\ & {[7440-05-3]} \end{aligned}$ | Palladium Nanopowder (Type II) | 100 Mg | 460.60 |
| $\begin{aligned} & 85918 \\ & \text { [1317-34-6] } \end{aligned}$ | Manganese (III) Oxide
 Nanopowder, 30nm,99\%
 (Manganese Sesquioxide) | 10 Gms | 110.54 | $\begin{aligned} & 14387 \\ & {[7440-06-4]} \end{aligned}$ | Platinum Nanopowder, 50nm, 99.9\% | 250 Mg | 723.80 |
| $\begin{aligned} & 39543 \\ & {[6876-37-5]} \end{aligned}$ | Methylammonium Bromide extrapure, 99%
 (Methanamine Hydrobromide, Methylamine Hydrobromide) | 1 Gms
 5 Gms | $\begin{array}{r} 76.33 \\ 197.40 \end{array}$ | $\begin{aligned} & 65469 \\ & {[9002-88-4]} \end{aligned}$ | Polyethylene Nanospheres - Type
 1, 740nm-4990nm | $\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$ | $\begin{array}{r} 85.54 \\ 164.50 \end{array}$ |
| | | | | $\begin{aligned} & 50349 \\ & {[9002-88-4]} \end{aligned}$ | Polyethylene Nanospheres - Type
 2, 200nm-9900nm | 25 Mg 100 Mg | 88.17 205.95 |
| $\begin{aligned} & 25334 \\ & {[14965-49-2]} \end{aligned}$ | Methylammonium lodide extrapure, 98\%
 (Methanamine Hydriodide) | $\begin{array}{r} 1 \text { Gms } \\ 5 \mathrm{Gms} \\ 25 \mathrm{Gms} \end{array}$ | $\begin{array}{r} 30.27 \\ 53.96 \\ 144.76 \end{array}$ | 64798
 [9011-14-7] | Poly(Methyl Methacrylate) (pMMAC) Nanospheres, 1500nm-11500nm | 100 Mg 100 Mg 500 Mg | 205.95 58.30 238.85 |
| $\begin{aligned} & 31562 \\ & {[247058-06-6]} \end{aligned}$ | Methyl 4,4` --Dimethyl- \\ [2,2`:6`,2`-Terpyridine]
 -4`-Carboxylate extrapure, 95\% | $\begin{array}{r} 50 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$ | $\begin{aligned} & 154.37 \\ & 238.46 \end{aligned}$ | $\begin{aligned} & 28699 \\ & {[7782-49-2]} \end{aligned}$ | Selenium Nanopowder in aq. media, $0.1 \mathrm{mg} / \mathrm{ml}$, 50 nm | 2 ml | 1562.88 |
| | | | | [7440-21-3] | Silicon Nanopowder, 40nm, 99\% | 1 Gms 5 Gms | $\begin{array}{r} 68.43 \\ 315.84 \end{array}$ |
| $\begin{aligned} & 83005 \\ & \text { [1317-33-5] } \end{aligned}$ | Molybdenum Disulfide Nanopowder Lubricant Grade, 90nm, 99\% | $\begin{gathered} 5 \mathrm{Gms} \\ 10 \mathrm{Gms} \end{gathered}$ | $\begin{aligned} & 148.05 \\ & 279.12 \end{aligned}$ | | | | |
| | | | | $\begin{aligned} & 43362 \\ & {[409-21-2]} \end{aligned}$ | Silicon Carbide Nanopowder, 50nm, 98\% | $\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$ | $\begin{array}{r} 73.30 \\ 255.83 \end{array}$ |
| 95822 | MXene Nanoflakes, Multilayer, 100-200nm | 100 Mg
 500 Mg | $\begin{aligned} & 236.88 \\ & 789.60 \end{aligned}$ | | | | |
| [12316-56-2] | | | | $\begin{aligned} & 69294 \\ & {[7631-86-9]} \end{aligned}$ | Silicon Dioxide Nanopowder, 15nm, 99.5\% | $\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$ | $\begin{aligned} & 29.22 \\ & 92.38 \end{aligned}$ |
| 22701 | MXene Nanoflakes, 1-10 layers (few-layer MXene Ti3C2Tx nanoflakes) | $\begin{array}{r} 25 \mathrm{Mg} \\ 100 \mathrm{Mg} \end{array}$ | $\begin{aligned} & 236.88 \\ & 460.60 \end{aligned}$ | | | | |
| [12363-89-2] | | | | 22806
 [7631-86-9] | Silicon Dioxide (Silica)
 Nanodispersion Type A (20nm), 40\% in water | $\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$ | $\begin{aligned} & 25.66 \\ & 78.17 \end{aligned}$ |
| $\begin{aligned} & 16806 \\ & {[141460-19-7]} \end{aligned}$ | N3 Red Dye, 95\%
 (N -3 Red Dye, | 100 Mg | 103.70 | | | | |
| | (N-3 Red Dye,
 Bis(Isothiocyanato)Bis(2,2-Bipyridyl-4,4
 -Dicarboxylato) Ruthenium(II)) | | | 69337
 [7631-86-9] | Silicon Dioxide (Silica)
 Nanodispersion Type B (20nm), 40% in water | $\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$ | $\begin{aligned} & 25.66 \\ & 78.17 \end{aligned}$ |

| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 38475
 [10097-28-6] | Silicon Monoxide Nanopowder, 400nm, 99.99\% | 1 Gms
 5 Gms | 111.99 442.18 | $\begin{aligned} & 64394 \\ & {[13463-67-7]} \end{aligned}$ | Titanium Dioxide Rutile Nanodispersion (30nm), 40\% in water | 25 Gms | 102.65 |
| $\begin{aligned} & 63338 \\ & {[12033-89-5]} \end{aligned}$ | Silicon Nitride Nanopowder, 20nm, 99\% | 5 Gms 25 Gms | $\begin{array}{r} 65.80 \\ 157.92 \end{array}$ | | (Titanium (IV) Oxid | | |
| | | | | 16547 | Titanium Dioxide Nanowires (Type | 50 Mg | 164.50 |
| $\begin{aligned} & 44416 \\ & {[7440-22-4]} \end{aligned}$ | Silver Nanopowder (Type I), 100nm, 99.9\% | 1 Gms
 5 Gms
 10 Gms | $\begin{array}{r} 55.27 \\ 171.08 \\ 315.84 \end{array}$ | [13463-67-7] | 1)
 (Titanium (IV) Oxide) | | |
| | | | | $\begin{aligned} & 22091 \\ & {[13463-67-7]} \end{aligned}$ | Titanium Dioxide Nanowires (Type 2) | 50 Mg | 164.50 |
| $\begin{aligned} & 36214 \\ & {[7440-22-4]} \end{aligned}$ | Silver Nanopowder (Type II), 20nm, 99.9\% | $\begin{gathered} 1 \mathrm{Gms} \\ 5 \mathrm{Gms} \\ 10 \mathrm{Gms} \end{gathered}$ | $\begin{array}{r} 39.48 \\ 144.76 \\ 236.88 \end{array}$ | | (Titanium (IV) Oxide) | | |
| | | | | $\begin{aligned} & 52163 \\ & {[25583-20-4]} \end{aligned}$ | Titanium Nitride Nanopowder, 20nm, 97\%
 (Titanium (III) Nitride) | $\begin{array}{r} 5 \mathrm{Gms} \\ 10 \mathrm{Gms} \end{array}$ | 75.01 144.76 |
| $\begin{aligned} & 53941 \\ & {[7440-22-4]} \end{aligned}$ | Silver Nanowires | $\begin{aligned} & 10 \mathrm{Mg} \\ & 50 \mathrm{Mg} \end{aligned}$ | 76.33 302.68 | $\begin{gathered} 75513 \quad V \\ {[1392221-69-9} \\ 0] \end{gathered}$ | FK 102 Co(II) PF6 Salt Complex, 98\%
 (Tris(2-
 (1H-Pyrazol-1-yl)Pyridine)Cobalt(II)
 Di[hexafluorophosphate]) | 1 Gms
 5 Gms | $\begin{array}{r} 48.43 \\ 165.82 \end{array}$ |
| | Silver Nanoparticles Dispersion (Spherical) (AG20), $0.02 \mathrm{mg} / \mathrm{ml}$ in Citrate (5 mM) | $\begin{aligned} & 10 \mathrm{ml} \\ & 25 \mathrm{ml} \end{aligned}$ | $\begin{array}{r} 72.38 \\ 151.34 \end{array}$ | | | | |
| | Silver Nanoparticles Dispersion (Spherical) (AG40), $0.02 \mathrm{mg} / \mathrm{ml}$ in Citrate (2mM) | $\begin{aligned} & 10 \mathrm{ml} \\ & 25 \mathrm{ml} \end{aligned}$ | $\begin{array}{r} 72.38 \\ 151.34 \end{array}$ | 51632
 [1346416-71-
 4] | FK 102 Co(III) PF6 Salt Complex, 98\%
 (Tris(2-
 (1H-Pyrazol-1-yl)pyridine)cobalt(III)
 Tri[Hexafluorophosphate]) | 5 Gms | 207.27 |
| $\begin{aligned} & 58322 \\ & {[7440-22-4]} \end{aligned}$ | Silver Nanoparticles Dispersion (Spherical) (AG60), $0.02 \mathrm{mg} / \mathrm{ml}$ in Citrate (2mM) | $\begin{aligned} & 10 \mathrm{ml} \\ & 25 \mathrm{ml} \end{aligned}$ | $\begin{array}{r} 72.38 \\ 151.34 \end{array}$ | | | | |
| | | | | 66142 V F | FK 102 Co(II) TFSI Salt Complex, 98\%
 (Tris(2-
 (1H-Pyrazol-1-yl)pyridine)cobalt(II)
 Di[bis(Trifluoromethane)sulfonimide]) | 1 Gms 5 Gms | 48.43 165.82 |
| $\begin{aligned} & 15669 \\ & {[18282-10-5]} \end{aligned}$ | Stannic Oxide Nanopowder, 60nm, 99.5\%
 (Tin (IV) Oxide) | 5 Gms
 25 Gms | $\begin{array}{r} 55.27 \\ 158.97 \end{array}$ | | | | |
| $\begin{aligned} & 27873 \\ & {[7440-25-7]} \end{aligned}$ | Tantalum Nanopowder, 70nm, 99.9\% | 250 Mg
 1 Gms | 157.92 421.12 | 84076
 [2057441-94-
 6] | FK 102 Co(III) TFSI Salt Complex, 98\%
 (Tris(2-
 (1H-pyrazol-1-yl)pyridine)cobalt(III) Tri[bis(Trifluoromethane)sulfonimide) | 1 Gms 5 Gms | 34.61 117.52 |
| 74708 ■ | Tectomer 2-Tailed (C8H16(CH2NHGLY4)2.2HCI), 90\% | 5 Mg | 172.79 | | | | |
| 73330 | $\begin{aligned} & \text { Tectomer 3-Tailed } \\ & \text { (CH3C(CH2-NH-Gly7)3.3CF3CO2H) } \\ & , 90 \% \end{aligned}$ | 5 Mg | 172.79 | $\begin{gathered} 33139 \text { \& } \\ {[1197995-33-} \\ 7] \end{gathered}$ | Triethyl [2,2`:6`,2`-Terpyridine] \(-4,4^{`}, 4^{`}\) '-Tricarboxylate extrapure, 95\% | 50 Mg | 140.29 |
| $\begin{aligned} & 27570 \quad ■ \\ & {[318286-59-8]} \end{aligned}$ | Tectomer 4-Tailed
 (C(CH2-NH-Gly7)4.4HCI), 90\% | 5 Mg | 172.79 | $\begin{aligned} & 88917 \\ & {[7440-33-7]} \end{aligned}$ | Tungsten Nanopowder, 50nm, 99.9\% | 1 Gms
 5 Gms | 59.22 184.24 |
| $\begin{aligned} & 72951 \\ & {[7440-32-6]} \end{aligned}$ | Titanium Nanopowder, 50nm, 99.9\% | 1 Gms | 125.41 | $\begin{aligned} & 51456 \\ & {[12070-12-1]} \end{aligned}$ | Tungsten Carbide Nanopowder, 200nm, 99\% | 25 Gms | 93.96 |
| $\begin{aligned} & 74629 \\ & {[13463-67-7]} \end{aligned}$ | Titanium Dioxide Photocatalyst Nanopowder, 7nm, 95\% (Titanium (IV) Oxide) | $\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$ | $\begin{array}{r} 53.96 \\ 138.18 \end{array}$ | | | 100 Gms | 351.50 |
| | | | | $\begin{aligned} & 23882 \\ & {[12138-09-9]} \end{aligned}$ | Tungsten Disulfide (WS2) Aerosol Spray (13Oz/369g) | 1 piece | 171.08 |
| $\begin{aligned} & 90885 \\ & {[13463-67-7]} \end{aligned}$ | Titanium Dioxide Catalyst Nanopowder, 50nm, 98\% (Titanium (IV) Oxide) | $\begin{array}{r} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$ | $\begin{array}{r} 44.74 \\ 134.23 \end{array}$ | $\begin{aligned} & 53032 \\ & {[12138-09-9]} \end{aligned}$ | Tungsten Disulfide Micronpowder, 0.6micron, 99.9\% (Tungsten (IV) Sulphide) | 25 Gms 100 Gms | 46.06 87.51 |
| $\begin{aligned} & 94632 \\ & {[13463-67-7]} \end{aligned}$ | Titanium Dioxide
 AnataseNanodispersion (15nm), 15% in water
 (Titanium (IV) Oxide) | 25 Gms | 125.02 | | | 500 Gms | 410.20 |
| | | | | $\begin{aligned} & 78519 \\ & {[12138-09-9]} \end{aligned}$ | Tungsten Disulfide Nanopowder, 90nm, 99\% | 1 Gms 5 Gms | 41.06 150.42 |
| $\begin{aligned} & 40566 \\ & {[13463-67-7]} \end{aligned}$ | Titanium Dioxide Ultrapure Nanopowder, 250nm, 99.97\% (Titanium (IV) Oxide) | 25 Gms 100 Gms | $\begin{array}{r}52.64 \\ 147.39 \\ \hline 51.32\end{array}$ | $\begin{aligned} & 23851 \\ & {[1314-35-8]} \end{aligned}$ | Tungsten Trioxide Nanopowder, 60-90nm, 99.5\%
 (Tungsten (VI) Oxide, Tungstic Anhydride) | 5 Gms 25 Gms | 29.08 124.36 |
| $\begin{aligned} & 35299 \\ & {[13463-67-7]} \end{aligned}$ | Titanium Dioxide Rutile Nanopowder, 20nm, 92\% (Titanium (IV) Oxide) | 25 Gms | 51.32 | $\begin{gathered} 82874 \quad \checkmark \\ {[502693-09-6]} \end{gathered}$ | Z907 Dye, 95\%
 cis-Bis(Isothiocyanato)
 (2,2-Bipyridyl-4,4-Dicarboxylato)
 (4,4-Di-Nonyl-2-Bipyridyl)
 Ruthenium(II), Mo | 50 Mg 250 Mg | 76.06 214.24 |
| $\begin{aligned} & 10161 \\ & {[13463-67-7]} \end{aligned}$ | Titanium Dioxide Rutile Nanopowder, 50nm, 99\% | 25 Gms | 52.64 | | | | |
| $\begin{aligned} & 86729 \\ & {[13463-67-7]} \end{aligned}$ | Titanium Dioxide Rutile
 Nanopowder (Hydrophilic), 50nm, 99\%
 (Titanium (IV) Oxide) | 25 Gms 100 Gms | $\begin{array}{r} 51.32 \\ 151.34 \end{array}$ | 19366 | Zeolite - Mesoporous Carbon Nanopowder (CMK-3 Type),Dia. 3-6nm | 100 Mg 250 Mg | 172.79 262.54 |
| | | | | 31755 | Zeolite - Mesoporous Silica Molecular Sieve KIT-5 | 1 Gms | 165.82 |

Catalogue 2024-25

| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 65276 | Zeolite - Mesoporous Silica Molecular Sieve Kit-6 | 1 Gms | 165.82 | | | | |
| 83881
 [7631-86-9] | Zeolite - Mesoporous Silica Nanopowder (SBA-15 Type), Dia. 6-11nm | 250 Mg
 1 Gms | $\begin{array}{r} 41.45 \\ 124.76 \end{array}$ | | | | |
| 97621
 [7631-86-9] | Zeolite - Mesoporous Silica Nanopowder (1D-Hexagonal SBA-41 Type) | $\begin{aligned} & 250 \mathrm{Mg} \\ & 500 \mathrm{Mg} \end{aligned}$ | $\begin{aligned} & 191.87 \\ & 281.36 \end{aligned}$ | | | | |
| 63876
 [7631-86-9] | Zeolite - Mesoporous Silica Nanopowder (3D-Cubic MCM-48 Type) | $\begin{aligned} & 250 \mathrm{Mg} \\ & 500 \mathrm{Mg} \end{aligned}$ | $\begin{aligned} & 191.87 \\ & 281.36 \end{aligned}$ | | | | |
| 79132 | Zeolite - Molecular Sieve SAPO-11 | 5 Gms | 127.92 | | | | |
| 52201 | Zeolite - Ultrastable Y | 5 Gms | 135.42 | | | | |
| $\begin{aligned} & 74601 \\ & \text { [7440-66-6] } \end{aligned}$ | Zinc Nanopowder, 50nm, 99.9\% | 5 Gms | 72.38 | | | | |
| $\begin{aligned} & 50841 \\ & {[12063-19-3]} \end{aligned}$ | Zinc Iron Oxide Nanopowder, 50nm, 98.5\%
 (Zinc Ferrite) | 10 Gms | 111.86 | | | | |
| 91148
 [1314-13-2] | Zinc Oxide Nanopowder (Type I), 30nm, 99.9\% | 10 Gms 25 Gms | $\begin{aligned} & 28.82 \\ & 57.51 \end{aligned}$ | | | | |
| | | 100 Gms | 86.20 | | | | |
| | | 500 Gms | 358.74 | | | | |
| $\begin{aligned} & 60345 \\ & {[1314-13-2]} \end{aligned}$ | Zinc Oxide Nanopowder (Type II), 240nm, 99.999\% | $5 \mathrm{Gms}$ | 28.82 | | | | |
| | | 100 Gms | 86.20 | | | | |
| | | 500 Gms | 358.74 | | | | |
| $\begin{aligned} & 64168 \\ & {[1314-13-2]} \end{aligned}$ | Zinc Oxide Nanodispersion Type A-Nonionic (70 nm), $\mathbf{5 0 \%}$ in water | 10 Gms | 133.97 | | | | |
| $\begin{aligned} & 80467 \\ & \text { [1314-13-2] } \end{aligned}$ | Zinc Oxide Nanodispersion Type
 B-Anionic (70nm), 50\% in water | 10 Gms | 128.57 | | | | |
| $\begin{aligned} & 74963 \\ & {[1314-13-2]} \end{aligned}$ | Zinc Oxide Nanodispersion Type C-Cationic (70 nm), $\mathbf{5 0 \%}$ in water | 10 Gms | 128.57 | | | | |
| $\begin{aligned} & 99997 \\ & {[12036-43-0]} \end{aligned}$ | Zinc Titanate Nanopowder, 90 nm , 99.5\% | 1 Gms | 221.35 | | | | |
| $\begin{aligned} & 38501 \\ & {[1314-23-4]} \end{aligned}$ | Zirconium Dioxide Nanopowder, 45nm, 99.5\%
 (Zirconia, Zirconium (IV) Oxide) | $\begin{gathered} 25 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$ | $\begin{array}{r} 46.06 \\ 118.44 \end{array}$ | | | | |

Media for Gel Filtration and Affinity Chromatography

| KRI Seraloses ${ }^{\text {TM }}$ | Particle size in wet state (microns) | Fractionation Range (as molecular weight) | | Approximate Exclusion Limits (as molecular wight) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Proteins | Polysaccarides | Proteins | Polysaccarides | DNA (basis pairs-bp) |
| $\begin{aligned} & \text { Seralose }^{T M} 2 \mathrm{~B} \\ & \text { Seralose }{ }^{T M} \mathrm{Cl}-2 \mathrm{~B} \end{aligned}$ | 60-250 | $\begin{aligned} & 7.5 \times 10^{4}- \\ & 45 \times 10^{6} \end{aligned}$ | $\begin{aligned} & 1 \times 10^{5}- \\ & 20 \times 106 \end{aligned}$ | 45×10^{6} | 20×10^{6} | 1353 bp |
| $\begin{aligned} & \text { Seralos }^{T \mathrm{TM}} 4 \mathrm{~B} \\ & \text { Seralose }{ }^{T M} \mathrm{Cl}-4 \mathrm{~B} \end{aligned}$ | 40-190 | $\begin{aligned} & 5 \times 10^{4}- \\ & 20 \times 10^{6} \end{aligned}$ | $\begin{aligned} & 3 \times 10^{4}- \\ & 5 \times 10^{6} \end{aligned}$ | 20×10^{6} | 5×10^{6} | 872 bp |
| $\begin{aligned} & {\text { Seralose }{ }^{T M} 6 \mathrm{~B}}_{\text {Seralose }{ }^{T M} \mathrm{Cl}-6 \mathrm{~B}} \end{aligned}$ | 40-190 | $\begin{aligned} & 1 \times 10^{4}- \\ & 5 \times 10^{6} \end{aligned}$ | $\begin{aligned} & 1 \times 10^{4}- \\ & 1 \times 10^{4}- \end{aligned}$ | 5×10^{6} | 10×10^{6} | 194 bp |

Seralite Products

Ion Exchange Resins

Our important range of Seralite products is very critical for ion exchange applications. These are acidic/basic exchange resins consisting of different polymers and copolymers. The particle size of these resins is between $20-50$ mesh and are excellent for cross-linking. Typical application of these resins are for water conditioning, softening and deionionisation, removal of recovery of high molecular weight anions, fractional separation of organic acids, amino acids, metals, peptides, inorganic and rare earth metals. They can also be used for th treatment of sugar solutions, amino acids and enzymes. SRL Ion exchange resins are highly recommended products for critical separation work.

| Product Name | Particle Size | Ion Exchange Capacity | pH Range | lonoc Form |
| :---: | :---: | :---: | :---: | :---: |
| Seralite SRA-400 | $20-50$ mesh BSS | $3.0-3.5 \mathrm{meq} / \mathrm{g}$ | $0-14$ | $\mathrm{Cl}-$ |
| Seralite SRC-120 | $20-50$ mesh BSS | $\min 4.5 \mathrm{meq} / \mathrm{g}$ | $0-14$ | $\mathrm{H}+$ |
| Seralite SRA-400 | $20-50$ mesh BSS | $\min 10 \mathrm{meq} / \mathrm{g}$ | $5-14$ | $\mathrm{H}+$ |

Our Seralite series is equivalent to the Amberlite series of the Rohm and Haas Company

Part D

Dehydrated Culture Media Products

- Product Listing • Media Supplements
- ChroMed ${ }^{\text {TM }} \cdot$ Media Kits

Harmonized Culture Media

In recent years, much of the focus has started shifing to newer methods of microbiological testing, led by the leading international pharmaceutical bodies across the world, namely European Pharmacopoeia, Japanese Pharmacopoeia and US Pharmacopoeia. These new methods include harmonization in microbiological testing and this will greatly simplify drug manufacturing norms.
SRL Harmonized Culture Media are manufactured, formulated, labelled and performance tested in compliance with the new harmonized standards.
$\mathbf{S R L}$ is ready to face the challenges of the future, be in Biotech, Pharmaceutical R \& D, Diagnostics, or any application or research in Microbiology. We offer this new range of products to cater to the new demands that we will be fulfilling through this range.

Important highlights of our Harmonized Media:

- The usage of only the Finest Quality of Bacteriological ingredients

- Strict quality control of Raw Material testing

- Highly trained microbiologists ensure that our Harmonized media are comparable to the best international products
- Very sensitive and precise instrumentation and media manufacturing equipments make sure that each batch is consistent in quality
- Constant R \& D and customer interaction helps us to design appropriate products

With our dedicated team of highly skilled microbiologists, an ISO 9001-2008 quality management system and our CE certification

All SRL culture media products are CE certified and now meet EU consumer safety, health and environmental requirements.

Conformité Européenne
All the manufacturing, testing parameters and packaging are done according to the CE norms.

Catalogue 2024-25

| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price | |
|---|---|---|---|---|---|---|---|---|
| 38515 | \checkmark A1 Broth (A-1 Medium) | 100 Gms
 500 Gms | 19.74 84.22 | 59640 | A. K. Agar No. 2 (Sporulating Agar, Arret \& Kirshbaum Medium) | 100 Gms
 500 Gms | $\begin{aligned} & 18.42 \\ & 61.85 \end{aligned}$ |
| | For the detection of faecal coliforms in foods, treated wastewater and seawater by Most Probable Number (MPN) Method. | | | | Used for production of spores of Bacillus subtilis ATCC 6633. | | |
| | | | | 55418 | \checkmark Aeromonas Isolation Medium Base | 100 Gms | 22.37 |
| 26408 | \checkmark AATCC Bacteriostasis Agar (FDA Agar)
 (FDA Agar, ATCC Medium 182) APHA, FDA recommended medium for detecting plate counts of microorganisms in food, water and waste water. | 100 Gms 500 Gms | 19.74 56.59 | | For the selective differentiation and isolation of Aeromonas hydrophila and other Aeromonas species from clinical specimens and foods. | 500 Gms | 75.01 |
| 49025 | AATCC Bacteriostasis Broth (FDA Broth)
 For testing antibacterial activities of antiseptics and disinfectants. | 100 Gms
 500 Gms | 15.79 55.27 | 63013 | \& Aeromonas Selective Supplement ($2.5 \mathrm{mg} / \mathrm{vl}$)
 For the selective isolation and cultivation of Aeromonas species. | 5 vl | 17.11 |
| | | | | 34609 | \checkmark Aero Pseudo Selective Agar (GSP Agar) | 100 Gms | 17.11 |
| 59235 | \checkmark Acetamide Agar | 100 Gms | 15.79 | | | 500 Gms | 68.43 |
| | For the differentiation of non-fermentative gram negative bacteria especially Pseudomonas aeruginosa. | 500 Gms | 57.90 | | Used for detection of Aeromonas and Pseudomonas in food, as well as in equipments and water supplies of food industry. | | |
| 20605 | \checkmark Acetamide Broth | 100 Gms
 500 Gms | 14.48 53.96 | $\begin{aligned} & 77981 \\ & \text { [9002-18-0] } \end{aligned}$ | Agar powder BactoBio for microbiology | 100 Gms
 500 Gms | $\begin{aligned} & 26.32 \\ & 98.70 \end{aligned}$ |
| | For the confirmation of Pseudomonas aeruginosa in bottle water. | | | Specially manufactured to provide clear, high gel strength agar, suitable for use in preparation of microbiological media. | | 2.5 Kg | 471.13 |
| 64773 | Acetate Differential Agar
 (Sodium Acetate Agar)
 For the differentiation of Shigella species from those of the Escherichia genus. | 100 Gms
 500 Gms | 17.11 55.27 | | | | | |
| | | | | 35799 | \checkmark Aleksandrow Agar | 100 Gms
 500 Gms | $\begin{aligned} & 17.11 \\ & 63.17 \end{aligned}$ |
| 31257 | \checkmark Acetobacter Agar (Glucose) | 100 Gms
 500 Gms | 17.11 59.22 | Widely used media for isolation and identification of Potassium solubilizing bacteria from soil samples. | | | |
| | Used for the cultivation and maintenance of glucose positive Acetobacter species. | | | 72439 | \checkmark Algae Culture Broth | 100 Gms | 13.16 |
| 85514 | \checkmark Acid Broth | 100 Gms | 15.79 | | | 500 Gms | 55.27 |
| | For the isolation of acid tolerant bacteria from canned foods. | 500 Gms | 52.64 | | Used for the isolation and cultivation of algae from soil, water and sewage. | | |
| | | | | 36191 | \checkmark Algae Culture Agar | 100 Gms | 14.48 |
| 76557 | \checkmark Actidione Agar Base w/o Actidione
 Used for the enumeration and detection of bacteria in specimens containing large numbers of yeasts and moulds. | 100 Gms | 21.06 | | | 500 Gms | 56.59 |
| | | 500 Gms | 66.46 | | Used for isolation and cultivation of algae from soil, water and sewage. | | |
| | | | | 45712 | \checkmark Alicyclobacillus Detection Agar (Alicyclobacillus Agar) | 100 Gms
 500 Gms | $\begin{array}{r} 30.27 \\ 107.91 \end{array}$ |
| 15126 | \& Actinomyces Broth | 100 Gms
 500 Gms | 15.79 52.64 | Used for detection of Alicyclobacillus in fruit juices. | | | |
| | Used for the maintenance and cultivation of Actinomyces species. | | | 80501 | \checkmark Alkaline Peptone Water | 100 Gms
 500 Gms | $\begin{aligned} & 10.53 \\ & 38.16 \end{aligned}$ |
| 24729 | \checkmark Actinomycete Isolation Agar | 100 Gms 500 Gms | 17.11 56.59 | For the cultivation of Vibrio species from sea foods and clinical specimens. | | | |
| | Used for the isolation and cultivation of Actinomyces species from soil and water. | | | 84893 | \checkmark Alkaline Peptone Water (I) | 100 Gms | 10.53 |
| | | | | | | 500 Gms | 38.16 |
| 31047 | \checkmark Adams Agar | 100 Gms | 14.48 | Used for the enrichment of Vibrio species. | | | |
| | | 500 Gms | 53.96 | 83863 | \checkmark Alkaline Peptone Water (B/S) | 100 Gms | 10.53 |
| | Used for examining sporulation in yeasts. | | | | | 500 Gms | 38.16 |
| | | | | | Used for the enrichment of Vibrio species. | | |

Part D - Dehydrated Culture Media Products

Part D - Dehydrated Culture Media Products

Used for enumeration of motility of Bacillus cereus strains.

Catalogue 2024-25

| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50362 | \checkmark Bile Salts BactoBio for bacteriology | 100 Gms 500 Gms | 71.06 260.57 | 55369 | \checkmark Bismuth Sulphite Agar (I) (Bismuth Sulfite Agar (I)) | 100 Gms
 500 Gms | $\begin{aligned} & 11.84 \\ & 48.69 \end{aligned}$ |
| | Used in microbiological culture media as a selectively inhibitory agent. | | | | For the selective isolation and identification of Salmonella typhi and other enteric | | |
| 18276 | Bile Salts No. 3 BactoBio for bacteriology
 Bile salts No. 3 is a refined bile salt for use as a selective inhibitory agent in bacteriological culture media. It consist of a specially modified fraction of bile acid salts (comprising mainly of sodium cholate and sodium deoxycholate). | 100 Gms 500 Gms | $\begin{aligned} & 106.60 \\ & 325.05 \end{aligned}$ | | bacilli. | | |
| | | | | 48794 | Blood Agar Base
 (Infusion Agar)
 For the preparation of blood agar by the addition of sheep blood. | 100 Gms
 500 Gms | $\begin{aligned} & 11.84 \\ & 48.69 \end{aligned}$ |
| | | | | 90935 | \checkmark Blood Agar Base (w/o sheep blood) | $\begin{array}{r} 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$ | $\begin{array}{r} 11.84 \\ 48.69 \\ 454.02 \end{array}$ |
| 69577 | Bile Salts Brilliant Green Starch Agar | 100 Gms
 500 Gms | $\begin{aligned} & 28.95 \\ & 76.33 \end{aligned}$ | | For the isolation, cultivation and detection of haemolytic activity of streptococci and | | |
| 56175 | Bile Salts Mixture BactoBio for bacteriology | 100 Gms | 102.65 | | other fastidious microorganisms. | | |
| | | 500 Gms | 296.10 | 67644 | \checkmark Blood Agar Base No.2 (w/ 1.2\% | 100 Gms | 13.16 |
| | Used as an inhibitory agent for gram positive organisms in microbiological media. | | | | Agar)
 For the isolation, cultivation and detection of haemolytic activity of streptococci, | 500 Gms | 48.69 |
| 18037 | Bile Salts Technical for bacteriology
 It is used in bacteriological culture media as an inhibitory agent for gram positive bacteria, making it selective for isolation and identification of pathogens. | 100 Gms
 500 Gms | 18.42 71.06 | | pneumococci and other particularly fastidious microorganisms. | | |
| | | | | 74999 | Blood Agar Base w/ Low pH (w/o sheep blood)
 For the isolation and growth of a wide variety of microorganisms. The slightly acid | 100 Gms 500 Gms | $\begin{aligned} & 13.16 \\ & 50.01 \end{aligned}$ |
| 79665 | Bile Tolerant Gram negative bacteria Test Kit (Pre-Weighed Media)
 Used for isolation, identification and cultivation of Bile tolerant gram negative bacteria. | 1 Kit | 15.79 | | pH of this medium enhances distinct hemolytic reactions. | | |
| | | | | 81083 | Blood Free Campylobacter
 Selectivity Agar Base
 Used for the selective isolation and | 100 Gms
 500 Gms | 19.74 71.06 |
| 92875 | Biochemical Test Kit - I
 (Pre-Weighed Media)
 Used for biochemical identification of gram negative enteric bacteria based on tests like Carbohydrate utilization, H2S production, Phenylalanine deaminase and Urease production. | 1 Kit | 34.22 | | differentiation of Campylobacter species from food and animal feeding stuffs. This medium is recommended by ISO 10272-1\&2:2017. | | |
| | | | | 71476 | \checkmark BG-11 Broth (Blue-Green Medium) | 100 Gms
 500 Gms | $\begin{aligned} & 19.74 \\ & 65.80 \end{aligned}$ |
| 65896 | \checkmark Biochemical Test Kit - II (Pre-Weighed Media)
 Used for biochemical identification of microorganisms based on tests - Nitrate reduction,Malonate utilisation, Gelatin liquefaction and Starch hydrolysis. | 1 Kit | 31.58 | | cyanobacteria. | | |
| | | | | 85308 | Bordet - Gengou Agar, Base (w/o rabbit blood)
 For the detection and isolation of Bordetella species from clinical specimens. | 100 Gms
 500 Gms | 17.11 65.80 |
| 55785 | Bio Peptone (Mixture of Casein \& Meat Peptone) BactoBio for bacteriology
 Biopeptone is a mixture of enzymic digest of casein and meat peptone. It is recommended for the cultivation of fastidious microorganisms in Columbia Broth Base, Dextrose Agar and Casman Agar Base. | $\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \\ 10 \mathrm{Kg} \end{array}$ | 38.16 304.00 580.36 | 15097 | \& B.P. Sulpha Supplement ($50 \mathrm{mg} / \mathrm{vl}$)
 Used for suppressing the growth of Proteus species on Baird Parker Agar Base. | 5 vl | 15.79 |
| | | | | 91661 | \checkmark BPL Agar (Brilliant Green Phenol Red Agar)
 For isolation and identification of Salmonellae except S.typhi in faeces, urine, milk and other materials. | 100 Gms 500 Gms | 17.11 59.22 |

Catalogue 2024-25

| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 53213 | Bromocresol Purple Lactose Broth w/o Sodium Chloride | 100 Gms
 500 Gms | 13.16 47.38 | 22197 | \checkmark Buffered Peptone Water BioVeg | 100 Gms 500 Gms | 38.16 |
| 46172 | 』 Bromothymol Blue Supplement (20mg/vl) Used for differentiating microflora from urine sample. | 5 vl | 7.90 | | A pre-enrichment medium, manufactured from animal free bases for the isolation of Salmonella, especially injured microorganisms from various food | 500 Gms | |
| 68035 | \checkmark Bryant and Burkey Agar | 100 Gms | 15.79 | | sources. | | |
| | | 500 Gms | 59.22 | 93439 | \checkmark Buffered Peptone Water w/ Casein | 100 Gms | 11.84 |
| | For the detection of lactate fermenting Clostridial species in milk and dairy products. | | | | A pre-enrichment medium, for the isolation of Salmonella, especially from cocoa (chocolates and confectionary). | 500 Gms | 46.06 |
| 61882 | \checkmark Bryant and Burkey Medium | 100 Gms | 14.48 | | | | |
| | For the detection of lactate fermenting Clostridial species in milk and dairy products. | 500 Gms | 55.27 | 85268 | \checkmark Buffered Tryptone Glucose Yeast Extract Broth
 Used for the isolation of Clostridium perfringens from food samples. | 500 Gms | 51.32 |
| 19814 | B.T.B. Lactose Agar
 (Bromothymol Blue Lactose Agar)
 For the isolation and cultivation of pathogenic Staphylococci. | 100 Gms
 500 Gms | 15.79 57.90 | 70054 | \checkmark Buffered Yeast Agar | 500 Gms | 51.32 |
| | | | | | For the cultivation of yeast and molds and for controlling bottle washing operations in the soft drinks and related industries. | | |
| 28540 | \& B12 Culture Agar, (U/P) | 100 Gms | 23.69 | | | | |
| | For the cultivation and maintenance of Lactobacillus leichmannii ATCC 7830 to be used as the test organism in the vitamin B12 assay. | | | 89637 | \checkmark Buffered Sodium Chloride-Peptone
 Solution pH 7.0,Harmonized
 Used as diluent in pharmaceutical testing according to harmonized methods. | 500 Gms | 38.16 |
| 79328 | \& B12 Inoculum Broth, (U/P) | 100 Gms 500 Gms | 22.37 94.75 | 73461 | \checkmark Burk`s Medium | 500 Gms | 53.96 |
| | For the preparation of inoculum cultures of Lactobacillus leichmannii ATCC 7830, | | | | Used for isolation and cultivation of nitrogen fixing bacteria such as Azotobacter species from soil. | | |
| | | | | 32639 | \checkmark Bushnell - Haas Agar | 100 Gms
 500 Gms | $\begin{aligned} & 13.16 \\ & 55.27 \end{aligned}$ |
| 21700 | \checkmark Buffered Glycerol Saline Base | 100 Gms | 11.84 | | | | |
| 72993 | \checkmark Buffered Peptone Water | 100 Gms
 500 Gms | $\begin{array}{r} 9.21 \\ 38.16 \end{array}$ | | For examining fuels for microbial contamination and for studying hydrocarbon utilization by microorganisms. | | |
| | A pre-enrichment medium for the isolation of Salmonella species, especially injured microorganisms from food sources. | | | 14509 | \checkmark Bushnell - Haas Broth | 500 Gms | 47.38 |
| 88680 | \checkmark Buffered Peptone Water (I/O) (B/S) | 100 Gms
 500 Gms | $\begin{aligned} & 10.53 \\ & 38.16 \end{aligned}$ | | For examining fuels for microbial contamination and for studying hydrocarbon utilization by microorganisms. | | |
| | Recommended medium for pre-enrichment of injured Salmonella species from foods, before selective enrichment and isolation. | | | 16574 | \checkmark CAE Agar Base (Citrate Azide Enterococcus)
 Used for identification of Enterococci in meat, dairy and other food products. | 100 Gms
 500 Gms | 14.48
 55.27 |
| 12995 | Buffered Peptone Water w/ NaCl
 An isotonic agent recommended for use as a diluent in performing microbial examination of non-sterile products. | 100 Gms | 13.16 | | | | |
| | | 500 Gms | 38.16 | 35512 | \checkmark CAL Agar (Cellobiose Arginine Lysine Agar)
 Used for the isolation and characterization of Yersinia enterocolitica from faecal specimens | 100 Gms | 97.38 |
| | | | | 95845 | \checkmark Calcium Caseinate Agar | 100 Gms | 19.74 |
| | | | | | For the detection and enumeration of proteolytic microorganism in foodstuff and other materials. | 500 Gms | 64.48 |
| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25867 | \checkmark Campylobacter Agar Base | 100 Gms 500 Gms | 17.11 65.80 | 61796 | Casein Peptone BactoBio for bacteriology | $\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$ | $\begin{array}{r} 31.58 \\ 296.10 \end{array}$ |
| | Used with addition of blood and antibiotics in isolation and cultivation of Campylobacter species. | | | | An enzymatic digest of casein, rich in amino acids and peptides. Used as a nitrogen source in microbiological media. | | |
| 36198 | \checkmark Candida BCG Agar, Base | 100 Gms
 500 Gms | 17.11 63.17 | 72689 | Casitone (Casitose) BactoBio for bacteriology | 500 Gms | 31.58 |
| | For use with added Neomycin for isolation and differentiation of Candida from primary specimens. | | | 49946 | Casitose Agar w/ 1.5\% Agar
 Used as a general purpose medium for | $\begin{array}{r} 500 \mathrm{Gms} \\ 5 \mathrm{Kg} \end{array}$ | $\begin{array}{r} 53.96 \\ 498.76 \end{array}$ |
| 95160 | Candida Isolation Agar (Candida Agar)
 For the isolation and differentiation of Candida albicans. | 100 Gms | 17.11 | | cultivation of microorganisms. | | |
| | | 500 Gms | 63.17 | 79033 | Casitose Soya Agar, Modified (Casein Soya Agar, Modified)
 For the growth of wide variety of | 100 Gms 500 Gms | $\begin{aligned} & 17.11 \\ & 55.27 \end{aligned}$ |
| 45568 | \checkmark Candida Albicans Test Kit (Pre-Weighed Media)
 Used for isolation, identification and cultivation of Candida albicans. | 1 Kit | 15.79 | | organisms. | | |
| | | | | 13927 | \checkmark Casitose Soya Blood Agar Base (Casein Soya Blood Agar Base)
 (Trypticase Soya Blood Agar Base) | 100 Gms
 500 Gms | $\begin{aligned} & 17.11 \\ & 59.22 \end{aligned}$ |
| 92558 | Carbohydrate Fermentation Test Kit - I (Pre-Weighed Media)
 For the differentiation of microorganisms on the basis of various carbohydrate fermentation reactions. | 1 Kit | 50.01 | | Recommended for the cultivation of fastidious microorganisms and detection of their hemolytic activity. | | |
| | | | | 91254 | \checkmark Casman Agar Base | 100 Gms 500 Gms | $\begin{aligned} & 14.48 \\ & 55.27 \end{aligned}$ |
| 40071 | Carbohydrate Fermentation Test Kit - II (Pre-Weighed Media)
 For the differentiation of microorganisms on the basis of various carbohydrate fermentation reactions. | 1 Kit | 96.07 | | Used with addition of blood, for isolation and cultivation of fastidious microrganisms from clinical specimes. | | |
| | | | | 18871 | \& CBI Supplement | 5 vl | 19.74 |
| 54951 | Carbon Utilisation Agar
 Used for characterization of Streptomyces on the basis of carbon utilization studies. | 500 Gms | 30.27 | | Used for selective isolation of Clostridium botulinum. | | |
| | | | | 90465 | \checkmark Cetrimide Agar Base, Harmonized | 100 Gms | 11.84 |
| 24715 | Cary - Blair Transport Medium, Base (w/o charcoal)
 For maintenance as a holding medium or transport medium of clinical specimens during collection or shipment. | 100 Gms
 500 Gms | 14.48 57.90 | | Used for the selective isolation and identification of Pseudomonas aeruginosa in pharmaceutical testing according to harmonized methods. | 500 Gms | 47.38 |
| 68806
 [65072-00-6] | \checkmark Acicase (Casein Acid Hydrolysate,
 6] Casamino Acids) BactoBio for bacteriology
 Acid digest of casein, a rich source of nitrogen recommended for use in microbiological culture media that require a completely hydrolyzed protein as a nitrogen source. | $\begin{array}{r} 500 \mathrm{Gms} \\ 2 \mathrm{Kg} \end{array}$ | 85.54 289.52 | 45470 | Cetrimide Agar, Base
 For the selective isolation, cultivation and identification of Pseudomonas aeruginosa. | 100 Gms
 500 Gms | 11.84 47.38 |
| | | | | 93927 | Cetrimide Agar BioVeg
 Made from Veg.based ingredients ; it is | 100 Gms
 500 Gms | 11.84 47.38 |
| $\begin{aligned} & 95305 \\ & {[65072-00-6} \end{aligned}$ | \checkmark Acicase (Casein Acid
 6] Hydrolysate,Casamino Acids) | $500 \text { Gms }$ | 65.80 | | identification of Pseudomonas aeruginosa. | | |
| | | 2 Kg | 236.88 | 31199 | \checkmark Cetrimide Broth (U/P) | 100 Gms | 11.84 |
| | Acid digest of casien; is a rich source of nitrogen. | | | | Used for the cultivation of Pseudomonas | 500 Gms | 43.43 |
| 68211 | \checkmark Casein Magnesium Broth (NZM | 100 Gms | 18.42 | | aeruginosa. | | |
| | Broth) | | | 94532 | \& Cetrinix Supplement | 5 vl | 25.00 |
| | Used in the cultivation of recombinant strains of Escherichia coli. | | | | Used for the selective isolation of Pseudomonas species. | $5 \times 5 \mathrm{vl}$ | 59.22 |

Catalogue 2024-25

| Code | Name | Packing | \$ Price | Code | | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 70984 | \& CFC Supplement | | 22.37 | 96599 | 8 | ChroMed ECC Agar | | |
| | | $5 \times 5 \mathrm{vl}$ | 65.80 | | | | 500 Gms | 211.88 |
| | Used for selective isolation of Pseudomonas species. | | | | | Differential medium recommended for presumptive identification of Escherichia | | |
| 11507 | \checkmark Chapman Stone Agar | 100 Gms 500 Gms | 14.48 51.32 | | | coli and other coliforms in food and environmental samples. | | |
| | For the isolation of staphylococci from a variety of specimens. | | | 75955 | d | ChroMed E.coli Agar | 100 Gms
 500 Gms | $\begin{array}{r} 38.16 \\ 169.76 \end{array}$ |
| 58323 | \checkmark Charcoal Agar | 100 Gms
 500 Gms | 15.79 55.27 | | | Recommended chromogenic medium, used for the detection and enumeration of Escherichia coli and coliforms from food samples. | | |
| | For the cultivation and maintenance of fastidious microorganisms, especially Bordetella pertussis, for production of vaccines. | | | 46706 | \& | ChroMed Klebsiella Selective Agar Base | 100 Gms
 500 Gms | $\begin{array}{r} 27.64 \\ 113.18 \end{array}$ |
| 53641 | \checkmark Charcoal Agar w/ Niacin | 100 Gms
 500 Gms | 18.42 65.14 | | | Used for the selective isolation and detection of Klebsiella species from water and other sources. This medium can also be used in membrane filtration procedure. | | |
| | Used for cultivation and isolation of Bordetella pertussis and Haemophilus influenzae. | | | 45615 | 8 | ChroMed Listeria Agar (I) | $100 \text { Gms }$ | 23.69 |
| 52057 | China Blue Lactose Agar
 Used for differentiating lactose fermenters and non fermenters and also in enumeration of bacteria in milk. | 100 Gms
 500 Gms | 14.48 59.22 | | | A selective and differential chromogenic medium recommended for rapid and direct identification of listeria species. | 500 Gms | 101.33 |
| | | | | 38284 | \checkmark | ChroMed Listeria Agar Base, Modified | 100 Gms | 23.69 |
| 52665 | \& Chloramphenicol Yeast Glucose Agar BioVeg
 Used for the isolation and enumeration of molds in milk and milk products. | 100 Gms
 500 Gms | 10.53 47.38 | | | For the selective identification and differentiation of Listeria monocytogenes. | 500 Gms | 97.38 |
| | | | | 65621 | 8 | ChroMed MeReSA Agar | 100 Gms | 36.85 |
| 27880 | \& ChroMed Aureus Agar | 100 Gms | 28.95 | | | | 500 Gms | 155.29 |
| | A chromogenic medium used for the identification of Staphylococcus aureus. | 500 Gms | 130.28 | | | A chromogenic media recommended for the isolation and selective identification of Methicillin Resistant Staphylococcus aureus (MRSA) from clinical isolates. | | |
| 78355 | ChroMed Bacillus Cereus Agar | 100 Gms
 500 Gms | 18.42 72.38 | 75213 | 8 | Chromed M-Lauryl Sulfate Agar (MLGA) | 100 Gms
 500 Gms | $\begin{array}{r} 68.43 \\ 275.04 \end{array}$ |
| | A chromogenic medium used for the isolation of Bacillus species from a mixed culture in foods, clinical and non-clinical samples. | | | | | (Membrane Lactose Glucuronide Agar)
 For the differentiation and enumeration of Escherichia coli and other coliforms by membrane filter technique. | | |
| 42436 | \& ChroMed Chromogenic Coliform Agar (CCA) (I) | $\begin{array}{r} 50 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{array}$ | 40.80 76.33 | 90219 | \& | ChroMed OGYE Agar Base (I) | 100 Gms
 500 Gms | $\begin{array}{r} 50.01 \\ 218.46 \end{array}$ |
| | For detection of Escherichia coli and coliforms in water samples as per ISO | 500 Gms | 359.27 | | | Selective and differential medium for isolation of yeasts and moulds from milk and milk products. | | |
| | | | | 92671 | \& | ChroMed Salmonella Agar | 100 Gms | 135.55 |
| 19440 | \& ChroMed Chromogenic Coliform Agar w/ SLS (CCA w/ SLS) | $\begin{array}{r} 50 \mathrm{Gms} \\ 100 \mathrm{Gms} \\ 500 \mathrm{Gms} \end{array}$ | $\begin{array}{r} 32.90 \\ 59.22 \\ 230.30 \end{array}$ | | | A chromogenic medium used for the differentiation of Salmonella species. | 500 Gms | 636.94 |
| | For detection of Escherichia coli and coliforms in water samples. | | | 52496 | d | ChroMed TBX Agar (E.coli Agar
 Modified) | 100 Gms
 500 Gms | $\begin{array}{r} 28.95 \\ 132.92 \end{array}$ |
| | | | | | | A selective chromogenic medium used for the detection and enumeration of Escherichia coli in food samples, animal feeds and water. | | |

Part D - Dehydrated Culture Media Products

| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 42979 | ChroMed UTI Agar | 100 Gms 500 Gms | $\begin{array}{r} 39.48 \\ 188.19 \end{array}$ | 12655 | Clostridium Test Kit (Pre-Weighed Media)
 Used for isolation, identification and cultivation of Clostridium species. | 1 Kit | 15.79 |
| | A chromogenic medium used for the presumptive identification and differentiation of microorganisms causing urinary tract infections. | | | 64078 | \& CNA Supplement | 5 vl | 23.69 |
| 80559 | CHO Medium, Base
 (Carbohydrate Medium, Base) | 100 Gms | 13.16 | | anaerobic gram-positive cocci. | | |
| | | 500 Gms | 50.01 | 19156 | \checkmark Coagulase Mannitol Agar Base | 100 Gms | 14.48 |
| | Used as a basal medium to which carbohydrates are added for fermentation studies of anaerobic bacteria. | | | | For the cultivation, differentiation of Staphylococcus aureus from other | 500 Gms | 61.85 |
| 28850 | \checkmark Chocolate Agar, Base | 100 Gms | 15.79 | | Staphylococcus species, based on | | |
| | | 500 Gms | 55.27 | | coagulase production and mannitol fermentation. | | |
| | For the isolation and identification of a variety of fastidious microorganisms. | | | 52655 | \checkmark Coliform Medium (CM, Coliform | 100 Gms | 13.16 |
| 14602 | Chloramphenicol Selective Supplement ($50 \mathrm{mg} / \mathrm{vl}$)
 Used for the selective isolation and cultivation of yeasts and moulds. | 5 vl | 15.79 | | Broth) | 500 Gms | 47.38 |
| | | $5 \times 5 \mathrm{vl}$ | 46.06 | | For the isolation \& cultivation of coliform organisms from raw milk, cream, yoghurt. | | |
| | | | | 21493 | \checkmark Columbia Agar Base, Harmonized | 100 Gms | 11.84 |
| 60822 | Chloramphenicol Yeast Glucose Agar (I) | 100 Gms | 10.53 | | | 500 Gms | 48.69 |
| | | 500 Gms | 48.69 | | Used for the isolation of fastidious and | | |
| | For selective enumeration of fungi, yeasts and molds in milk and milk products. | | | | non-fastidious microorganisms in pharmaceutical testing according to | | |
| 93306 | Christensen Citrate Agar | 100 Gms | 13.16 | | harmonized methods. | | |
| | | 500 Gms | 57.90 | 45481 | \checkmark Columbia Agar, Base | 100 Gms | 11.84 |
| | For the differentiation of enteric pathogens based on their ability to utilize citrate as a carbon source. | | | | | 500 Gms | 48.69 |
| | | | | | For the isolation and cultivation of fastidious and non-fastidious | | |
| 55769 | CLED Agar
 (Brolacin Agar) | 100 Gms | 13.16 | | microorganisms. | | |
| | | 500 Gms | 48.69 | 97789 | \checkmark Columbia C.N.A. Agar Base | 100 Gms | 32.90 |
| | For the isolation, enumeration and presumptive identification of microorganisms from urine. | | | | For selective isolation and cultivation of pathogenic Gram-positive cocci from | 500 Gms | 132.92 |
| 88366 | CLED Agar w/ Andrade Indicator | 100 Gms | 13.16 | | clinical and non-clinical specimens. | | |
| | | 500 Gms | 48.69 | 23588 | \checkmark Conn`s Agar | 100 Gms | 28.95 |
| | For differentiating various microorganisms depending on their colony characteristics. | | | | Used for the cultivation of fungi. | 500 Gms | 119.76 |
| 40980 | Clostridium Botulinum Isolation Agar, Base | 100 Gms | 14.48 | 16340 | \checkmark Corn Meal Agar w/ Dextrose | 100 Gms | 13.16 |
| | | 500 Gms | 57.90 | | | 500 Gms | 56.59 |
| | For the isolation, cultivation and differentiation of Clostridium botulinum from food samples. | | | | Cultivation of phytopathological and other fungi. | | |
| | | | | 26998 | \checkmark Corn Meal Agar | 100 Gms | 13.16 |
| 26836 | Clostridium Difficile Agar Base | 100 Gms | 18.42 | | | 500 Gms | 56.59 |
| | | 500 Gms | 65.14 | | For the chlamydospore production by | | |
| | Recommended for selective isolation of Clostridium difficile from food and certain | | | | Candida albicans and maintenance medium for fungal stock cultures. | | |
| | pathological specimens | | | 60277 | \checkmark Corn Meal Peptone Yeast Agar | 100 Gms | 15.79 |
| 93834 | Clostridium Difficile Supplement | 5 vl | 17.11 | | | 500 Gms | 55.27 |
| | | $5 \times 5 \mathrm{vl}$ | 51.32 | 73398 | \checkmark Cooke Rose Bengal Agar Base | 100 Gms | 22.37 |
| | Used for the selective isolation of Clostridium difficile. | | | | | 500 Gms | 77.64 |
| | | | | | Used for the selective cultivation and isolation of fungi. | | |

Catalogue 2024-25

| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 45455 | \checkmark CPC Agar Base
 For cultivation and differentiation of Vibrio species from food samples. | 100 Gms | 82.91 | 61195 | 』 Dairy samples Testing Kit (Pre-Weighed Media)
 Used for identification and enumeration of microorganisms from dairy products. | 1 Kit | 27.64 |
| 65165 | For isolation and enumeration of Vibrio species from foods | 5 vl | 30.27 | 96640 | Decarboxylase Test Medium Base
 (Falkow)
 (Decarboxylase Basal Medium,
 Decarboxylase Media, Falkow) | 100 Gms
 500 Gms | $\begin{aligned} & 13.16 \\ & 48.69 \end{aligned}$ |
| 48743 | \checkmark Craigs Medium | 100 Gms
 500 Gms | $\begin{aligned} & 17.11 \\ & 51.32 \end{aligned}$ | | For the differentiation of bacteria based on their ability to decarboxylate the amnio acid. | | |
| 70952 | \checkmark CRAMP Agar Base | 100 Gms | 69.75 | 47129 | \checkmark Deoxycholate Agar | 100 Gms | 11.84 |
| | For the cultivation of Yersinia species with plasmids. | | | | Differential medium for direct counts of | 500 Gms | 51.32 |
| 27793 | \checkmark Cystine Tryptone Agar
 (Cystine Tryptic Agar) | 100 Gms
 500 Gms | $\begin{aligned} & 13.16 \\ & 48.69 \end{aligned}$ | | coliforms from dairy products and for the isolation of enteric microorganisms from clinical and non-clinical specimens. | | |
| | Used for the maintenance, subculturing and detection of motility of various bacteria. | | | 20023 | \checkmark Deoxycholate Citrate Agar (1/P) | 100 Gms
 500 Gms | $\begin{aligned} & 18.42 \\ & 82.91 \end{aligned}$ |
| 77853 | \checkmark Crystal Violet Agar
 (Crystal Violet Lactose Agar)
 For the differentiation of pathogenic and non- pathogenic staphylococci. | 100 Gms
 500 Gms | $\begin{aligned} & 15.79 \\ & 56.59 \end{aligned}$ | | Used for the selective isolation and cultivation of enteric pathogens, especially Salmonella and Shigella species. | | |
| | | | | 38695 | \checkmark Deoxycholate Lactose Agar | 100 Gms | 15.79 |
| 57485 | Crystal Violet Lactose Broth
 For the detection of coliforms in water filtration control works. | 100 Gms
 500 Gms | $\begin{aligned} & 18.42 \\ & 50.01 \end{aligned}$ | | For the isolation and differentiation of Gram-negative enteric bacilli and for enumeration of coliforms from water, waste water, milk and dairy products. | | |
| 91022 | Crystal Violet Tetrazolium Agar, Base | 100 Gms
 500 Gms | $\begin{array}{r} 14.48 \\ 59.22 \end{array}$ | 18752 | Dermatophyte Test Agar Base (D.T.M. Agar Base) | 100 Gms
 500 Gms | $\begin{aligned} & 15.79 \\ & 59.22 \end{aligned}$ |
| | Used for the detection of gram-negative psychrotrophic bacteria causing food spoilage. | | | | For the isolation and cultivation of dermatophytic fungi. | | |
| | | | | 68650 | \checkmark DEV Nutrient Agar | 100 Gms | 14.48 |
| 29212 | \checkmark Czapek - Dox Agar | 100 Gms | 11.84 | | | 500 Gms | 51.32 |
| | For the cultivation of fungi and bacteria capable of utilizing sodium nitrate as the | 500 Gms | 43.43 | | To determine total germ count in water acc. To the "Deutschen Einheitsverfahren" regulations of drinking water. | | |
| | sole source of nitrogen. | | | 22438 | \checkmark DEV Tryptophan Broth | 100 Gms | 10.53 |
| 93812 | \checkmark Czapek - Dox Agar Modified | 100 Gms | 15.79 | | | 500 Gms | 38.16 |
| | For the cultivation and maintenance of numerous fungal species, also for chlamydospore production by Candida | 500 Gms | 55.27 | | Used for sub-cultivation for coliform differentiation and for indole testing in the bacteriological examination of water as per German Standard methods. | | |
| | albicans. | | | 15923 | \checkmark Dextrose Agar | 100 Gms | 11.84 |
| 74367 | \checkmark Czapek - Dox Broth | 100 Gms | 10.53 | | | 500 Gms | 50.01 |
| | For the cultivation of fungi and bacteria capable of utilizing sodium nitrate as the sole source of nitrogen. | 500 Gms | 38.16 | | For the cultivation of a wide variety of microorganisms and used as a base for blood agar and for general laboratory purposes. | | |
| 95417 | \checkmark Czapek Malt Agar | 100 Gms | 11.84 | 64098 | \checkmark Dextrose Broth | 100 Gms | 10.53 |
| | | 500 Gms | 48.69 | | | 500 Gms | 35.53 |
| | For the isolation and cultivation of saprophytic fungi. | | | | For the isolation and enrichment of fastidious or damaged microorganisms. | | |

| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 83607 | Dextrose Mannitol Agar (Gillies
 Agar No.1)
 Recommended medium for primary isolation of Salmonella and Shigella | $\begin{aligned} & 100 \mathrm{Gms} \\ & 500 \mathrm{Gms} \end{aligned}$ | 17.11 61.85 | 52978 | Differential Reinforced Clostridial Broth, Base (I)
 For the cultivation of Clostridia from water samples. | 100 Gms
 500 Gms | $\begin{aligned} & 11.84 \\ & 43.43 \end{aligned}$ |
| | Recommended medium for primary isolation of Salmonella and Shigella species, by detection of urease production, dextrose and mannitol fermentation. | | | 88167 | \checkmark Differential Reinforced Clostridial Broth, Base BioVeg | 100 Gms
 500 Gms | $\begin{aligned} & 11.84 \\ & 46.06 \end{aligned}$ |
| 98009 | Dextrose Proteose Peptone Agar Base | $\begin{aligned} & 100 \mathrm{Gms} \\ & 500 \mathrm{Gms} \end{aligned}$ | 14.48 51.32 | For the cultivation of Clostridia from water samples. | | | |
| | Used in combination with blood and tellurite for the isolation of Corynebacterium diphtheriae. | | | 63899 | \checkmark Dihydrolase Broth, Base | 100 Gms
 500 Gms | $\begin{aligned} & 17.11 \\ & 53.96 \end{aligned}$ |
| 11581 | \checkmark Dextrose Salt Agar | 100 Gms 500 Gms | 14.48 56.59 | 14912 | \checkmark Diluting Fluid A | 100 Gms 500 Gms | $\begin{aligned} & 10.53 \\ & 39.48 \end{aligned}$ |
| | For the enumeration of yeasts and molds in butter and dairy products. | | | | Used for sterility testing of pharmaceuticals. | | |
| 87461 | \checkmark Dextrose Salt Broth | 100 Gms
 500 Gms | 13.16 47.38 | 23121 | \checkmark Diluting Fluid D | 100 Gms
 500 Gms | $\begin{aligned} & 11.84 \\ & 44.74 \end{aligned}$ |
| | For the enumeration of yeasts and molds in butter and dairy products. | | | | Used for sterility testing of pharmaceutical products in accordance with USP. | | |
| 44486 | \checkmark Dextrose Starch Agar | 100 Gms
 500 Gms | 15.79 55.27 | 53277 | \checkmark Diluting Fluid K | 100 Gms
 500 Gms | $\begin{aligned} & 13.16 \\ & 39.48 \end{aligned}$ |
| | For the cultivation and maintenance of Neisseria gonorrhoeae and other fastidious microorganisms. | | | | Used as diluting or rinsing fluid, when performing. sterility testing of pharmaceuticals. | | |
| 50223 | \checkmark Dextrose Tryptone Agar
 (Dextrose Casein Peptone Agar) | 100 Gms
 500 Gms | 14.48 53.96 | 82965 | \checkmark Disinfectant Test Broth, AOAC | 100 Gms
 500 Gms | 13.16 50.01 |
| | For the isolation and cultivation of mesophilic and thermophilic aerobic microorganisms related to food spoilage. | | | | For the determination of phenol coefficient of disinfectants. | | |
| | | | | 82359 | \checkmark DNase Test Agar Base | 100 Gms | 48.69 |
| 78209 | \checkmark Dey-Engley Neutralizing Broth | 100 Gms | 15.79 | | | 500 Gms | 203.98 |
| | For the testing and neutralization of antiseptics and disinfectants. | 500 Gms | 57.90 | | Used for differentiation of microorganisms based on their production of deoxyribonuclease. | | |
| 73318 | \checkmark Diamalt Agar | 100 Gms | 18.42 | 78317 | \checkmark DNase Test Agar w/Methyl Green | | 55.27 |
| | | 500 Gms | 68.43 | | | 500 Gms | 211.88 |
| 29412 | \checkmark Dichloran Glycerol Medium Base | 100 Gms | 12.50 | | Used for differentiation of microorganisms based on deoxyribonuclease activity. | | |
| | | 500 Gms | 59.22 | 88941 | \checkmark Drakes Medium 10 | 100 Gms | 19.74 |
| 63110 | Dichloran Medium Base w/ Rose Bengal | 100 Gms 500 Gms | 18.42 78.96 | | Recommended for isolation of | 500 Gms | 67.12 |
| | Used for isolation and enumeration of yeasts and moulds associated with food spoilage. | | | | Pseudomonas species from water samples. | | |
| | | | | 53292 | \checkmark DRBC Agar (Dichloran Rose | 100 Gms | 19.74 |
| 66473 | Differential Reinforced Clostridial Agar
 For the cultivation of Clostridia from water samples. | 100 Gms 500 Gms | 15.79 55.27 | | Bengal Chloramphenicol Agar)
 Base
 Used for the selective isolation and enumeration of yeasts and moulds of significance in food spoilage. | 500 Gms | 71.06 |
| 27548 | Differential Reinforced Clostridial Broth, Base
 For the cultivation of Clostridia from water samples. | 100 Gms
 500 Gms | 10.53 36.85 | 84127 | \checkmark Drigalski Lactose Agar | 100 Gms
 500 Gms | 22.37 65.80 |
| | | | | 56107 | \checkmark Drigalski Litmus Lactose Agar | 100 Gms
 500 Gms | 17.11 57.90 |

Catalogue 2024-25

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Code \& Name \& Packing \& \$ Price \& Code \& Name \& Packing \& \$ Price

\hline \multirow[t]{3}{*}{76861} \& \multirow[t]{2}{*}{\& Doyle`s Antibiotic Supplement} & 5 vl & 14.48 & 65512 & \(\checkmark\) Emerson Agar & 100 Gms & 17.11 \\ \hline & & \(5 \times 5 \mathrm{vl}\) & 51.98 & & & 500 Gms & 56.59 \\ \hline & \multicolumn{3}{|l|}{Used for enrichment of Campylobacter species.} & & Used for isolation and cultivation of Actinomycetaceae, Streptomycetaceae, & & \\ \hline \multirow[t]{3}{*}{26609} & \multirow[t]{2}{*}{\(\checkmark\) Doyle`s Enrichment Broth Base} \& 100 Gms \& 15.13 \& \& fungi and moulds. \& \&

\hline \& \& 500 Gms \& 61.19 \& 85046 \& \checkmark Endo Agar \& 100 Gms \& 11.84

\hline \& \multicolumn{3}{|l|}{Used for enrichment of Campylobacter species} \& \& For the selective isolation, cultivation and \& 500 Gms \& 44.74

\hline \multirow[t]{2}{*}{80907} \& \multirow[t]{2}{*}{| Doyle`s Enrichment Broth Base BioVeg |
| :--- |
| Used for enrichment of Campylobacter species |} \& \[

$$
\begin{aligned}
& 100 \mathrm{Gms} \\
& 500 \mathrm{Gms}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 18.42 \\
& 65.14
\end{aligned}
$$
\] \& \& differentiation of coliforms and other enteric microorganisms based on their ability to ferment lactose. \& \&

\hline \& \& \& \& 81496 \& \checkmark Endo DEV Agar \& 100 Gms \& 14.48

\hline 49763 \& | E. Coli Test Kit (Pre-Weighed Media) |
| :--- |
| Used for isolation, identification and cultivation of Escherichia coli. | \& 1 Kit \& 18.42 \& \& Used for selection and differentiation of E.coli acc. To the "Deutschen Einheitsverfahren" regulations for drinking \& 500 Gms \& 51.32

\hline \multirow[t]{2}{*}{25549} \& \checkmark EC Medium (EC Broth) \& 100 Gms \& 11.84 \& \& water. \& \&

\hline \& For the differentiation and enumeration of coliforms in water, wastewater, shellfish and foods. \& 500 Gms \& 47.38 \& 95904 \& | Enriched Thioglycollate Broth |
| :--- |
| (Thioglycollate Medium, Enriched, Thioglycollate Medium, Base) For the isolation, cultivation and identification of a wide variety of obligate | \& | 100 Gms |
| :--- |
| 500 Gms | \& \[

$$
\begin{aligned}
& 10.53 \\
& 48.69
\end{aligned}
$$
\]

\hline \multirow[t]{3}{*}{66389} \& \multirow[t]{2}{*}{\checkmark EC Medium w/MUG} \& 100 Gms \& 18.42 \& \& anaerobic bacteria. \& \&

\hline \& \& 500 Gms \& 73.70 \& 33945 \& \checkmark Enteric Fermentation Media \& 100 Gms \& 13.16

\hline \& Used for the fluorogenic detection of Escherichia coli in water, food and milk samples. \& \& \& \& For the cultivation and differentiation of a variety of bacteria based on their ability to \& 500 Gms \& 38.16

\hline \multirow[t]{2}{*}{54723} \& \checkmark Elliker Broth (Lactobacilli Broth) \& 100 Gms \& 13.16 \& \& ferment different carbohydrates. \& \&

\hline \& Used for cultivation of streptococci and lactobacilli, especially in dairy procedures. \& 500 Gms \& 50.01 \& 71611 \& Enterobacteria Enrichment Broth Mossel (EE Broth Mossel), Harmonized \& | 100 Gms |
| :--- |
| 500 Gms | \& 17.11

75.01

\hline \multirow[t]{2}{*}{11983} \& \multirow[t]{2}{*}{| Eijkman Lactose Medium (Eijkman Lactose Broth) |
| :--- |
| For the cultivation and differentiation of Escherichia coli from other coliform organisms based on their ability to ferment lactose and produce gas. |} \& | 100 Gms |
| :--- |
| 500 Gms | \& 14.48

47.38 \& \& Used for the selective enrichment of Enterobacteriaceae in pharmaceutical testing according to harmonized methods. \& \&

\hline \& \& \& \& 58444 \& | Enterococcus Confirmatory Agar |
| :--- |
| For the identification of enterococci from | \& 100 Gms 500 Gms \& 13.16

52.64

\hline \multirow[t]{2}{*}{95514} \& | EMB Agar |
| :--- |
| (Eosin Methylene Blue Agar) | \& | 100 Gms |
| :--- |
| 500 Gms | \& 10.53

46.06 \& \& water supplies and other sources by the confirmatory test. \& \&

\hline \& For the isolation, cultivation and differentiation of gram negative enteric bacteria based on lactose fermentation. \& \& \& 64819 \& | Enterococcus Confirmatory Broth |
| :--- |
| For the identification of enterococci from | \& | 100 Gms |
| :--- |
| 500 Gms | \& 11.84

48.69

\hline \multirow[t]{2}{*}{46675} \& \checkmark EMB Agar, Levine \& 100 Gms \& 10.53 \& \& water by the confirmatory test. \& \&

\hline \& | (Eosin Methylene Blue Agar, Levine) |
| :--- |
| For the isolation, cultivation and differentiation of Gram-negative enteric bacteria based on lactose fermentation. | \& \& 46.06 \& 47082 \& | \& Enterococcus Selective Supplement |
| :--- |
| Used for the selective isolation and cultivation of Enterococci. | \& \[

$$
\begin{array}{r}
5 \mathrm{vl} \\
5 \times 5 \mathrm{vl}
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 22.37 \\
& 72.38
\end{aligned}
$$
\]

\hline \multirow[t]{4}{*}{51207} \& | EMB Broth |
| :--- |
| (Eosin Methylene Blue Broth) | \& | 100 Gms |
| :--- |
| 500 Gms | \& 10.53

42.11 \& 60312 \& \checkmark Esculin Iron Agar \& \begin{tabular}{l}
100 Gms

500 Gms

\end{tabular} \& \[

$$
\begin{array}{r}
53.96 \\
235.56
\end{array}
$$
\]

\hline \& \multirow[t]{2}{*}{For the differentiation of gram negative enteric bacteria from clinical and non clinical specimens.} \& \& \& \& For cultivation and identification of Enterococci based on their ability to hydrolyze esculin. \& \&

\hline \& \& \& \& 27131 \& \& Esculin Supplement (0.5gm/vl) \& 5 vl \& 36.85

\hline \& \& \& \& \& Used for detection of group D streptococci on the basis of esculin hydrolysis. \& \&

\hline
\end{tabular}

Part D - Dehydrated Culture Media Products

Catalogue 2024-25

| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 76875 | \checkmark MacConkey Agar | 100 Gms
 500 Gms | 10.53 43.43 | 64030 | MacConkey Agar w/o C.V., NaCl w/ 0.5\% Bile Salts | 100 Gms
 500 Gms | 10.53 44.74 |
| | For the selective isolation, cultivation and differentiation of coliforms and enteric pathogens based on the ability to ferment lactose. | | | 72074 | MacConkey Agar No. 3
 For the selective isolation, cultivation and differentiation between coliforms and non | 100 Gms
 500 Gms | $\begin{aligned} & 15.79 \\ & 52.64 \end{aligned}$ |
| 96871 | \checkmark MacConkey Agar BioVeg | 100 Gms 500 Gms | 10.53 | | -lactose fermentors. | | |
| | For the selective isolation, cultivation and differentiation of coliforms and enteric pathogens based on ability to ferment lactose. | | 43.43 | 74726 | MacConkey Broth (MacConkey Broth w/ Neutral Red)
 For the selective isolation and cultivation of coliforms in milk and water. | 100 Gms
 500 Gms | 10.53 36.85 |
| 37775 | \checkmark MacConkey Agar, Harmonized | 100 Gms
 500 Gms | 10.53 43.43 | 44448 | \checkmark MacConkey Broth, Harmonized | 100 Gms 500 Gms | 10.53 36.85 |
| | Used for the selective isolation and differentiation of Escherichia coli and coliform bacteria in pharmaceutical testing according to harmonized methods. | | | | Used for the identification of coliforms in pharmaceutical testing according to harmonized methods. | | |
| | | | | 54056 | MacConkey Broth w/ Neutral Red | | |
| 80302 | \checkmark MacConkey Agar w/ MUG | 100 Gms | 19.74 | | | 500 Gms | 36.85 |
| | | 500 Gms | 80.28 | 20309 | \checkmark MacConkey Broth Double Strength | 100 Gms | 9.21 |
| 71117 | \checkmark MacConkey Agar (B/S) | 100 Gms | 10.53 | | | 500 Gms | 34.22 |
| | | 500 Gms | 43.43 | | For the selective isolation and cultivation of coliforms in milk and water from large samples. | | |
| 83870 | \checkmark MacConkey Agar, Base | 100 Gms | 10.53 | | | | |
| | | 500 Gms | 43.43 | 92933 | \checkmark M-MacConkey Broth | 100 Gms | 10.53 |
| 26823 | \checkmark MacConkey Agar Medium | 100 Gms | 11.84 | | | 500 Gms | 43.43 |
| | | 500 Gms | 44.74 | | For detecting and enumerating lactose fermenting enteric bacteria from milk and water by the membrane filter method. | | |
| 95199 | \checkmark MacConkey Agar, Modified | 100 Gms | 39.48 | | | | |
| 98384 | MacConkey Agar w/ Bromothymol Blue | 100 Gms | 13.16 | 42944 | \checkmark MacConkey Broth Purple | 100 Gms | 10.53 |
| | | 500 Gms | 48.69 | | | 500 Gms | 38.16 |
| 58370 | MacConkey Agar w/ 0.15\% Bile salts, C.V. and $\mathrm{NaCl}(\mathrm{U} / \mathrm{P})$
 Selective medium for gram-negative organisms by suppressing the growth of a number of gram positive bacteria. | 100 Gms
 500 Gms | 10.53 47.38 | | Selective medium for isolation and cultivation of coliforms in milk and water. | | |
| | | | | 38989 | \checkmark MacConkey Broth Purple w/BCP (I) | 100 Gms
 500 Gms | $\begin{array}{r} 9.21 \\ 34.22 \end{array}$ |
| | | | | 90084 | \checkmark MacConkey Broth Purple w/BCP | 100 Gms | 9.21 |
| 33759 | MacConkey Agar w/o C.v., w/ 1.2\% Agar | 100 Gms
 500 Gms | $\begin{aligned} & 13.16 \\ & 51.32 \end{aligned}$ | | (I/P) | 500 Gms | 34.22 |
| | For the selective isolation and differentiation of enteric bacteria on the basis of lactose fermentation. | | | 51545 | MacConkey Broth Purple w/BCP (B/S) | 100 Gms 500 Gms | $\begin{array}{r} 9.21 \\ 34.22 \end{array}$ |
| | | | | 57608 | MacConkey Broth Purple Double
 Strength w/ BCP | 100 Gms | |
| 50372 | \checkmark MacConkey Agar w/o C.V., NaCl w/ 0.5\% Sodium Taurocholate
 Differential medium for detection and isolation of enteric organisms by restricting the swarming of Proteus species. | 100 Gms
 500 Gms | 15.79 51.32 | | For the primary isolation of coliforms from large water and wastewater samples. | 500 Gms | 42.11 |
| | | | | 98664 | MacConkey Sorbitol Agar (Sorbitol Agar) | 100 Gms 500 Gms | 17.11 56.59 |
| 79447 | MacConkey Agar w/o C.V. w/ 0.15\% Bile Salts | 100 Gms
 500 Gms | $\begin{aligned} & 10.53 \\ & 38.16 \end{aligned}$ | | For the isolation and identification of pathogenic Escherichia coli. | | |
| 64300 | \checkmark MacConkey Agar w/o C.V. w/ 0.5\% Bile Salts | 100 Gms 500 Gms | 10.53 44.74 | 57340 | \checkmark MacConkey Sorbitol Agar, Base (I) | 100 Gms 500 Gms | 15.79 55.27 |
| | For isolation and detection of coliforms and enteric pathogens. | | | | For the selective isolation and detection of Escherichia coli 0157:H7 from food and animal feeds stuff. | | |
| 64024 | MacConkey Agar w/o C.V., NaCl, w/ 0.0075\% NR, 1.2\% Agar BioVeg | 100 Gms 500 Gms | 11.84 43.43 | | | | |

Catalogue 2024-25

Catalogue 2024-25

Catalogue 2024-25

Part D - Dehydrated Culture Media Products

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Code \& Name \& Packing \& \$ Price \& Code \& Name \& Packing \& \$ Price \\
\hline \multirow[t]{2}{*}{39992} \& \multirow[t]{2}{*}{\(\checkmark\) Pantothenate Culture Agar} \& 100 Gms \& 22.37 \& \multirow[t]{4}{*}{11522} \& \multirow[t]{2}{*}{\(\checkmark\) Peptone Water BioVeg} \& 100 Gms \& 11.84 \\
\hline \& \& 500 Gms \& 98.70 \& \& \& 500 Gms \& 43.43 \\
\hline \multirow[t]{2}{*}{50769} \& \multirow[t]{2}{*}{\(\checkmark\) PE 2 Medium} \& 100 Gms \& 15.79 \& \& \multirow[t]{2}{*}{General purpose growth medium and as the base of carbohydrate fermentation media.} \& \& \\
\hline \& \& 500 Gms \& 55.27 \& \& \& \& \\
\hline 89858 \& \& PEMBA Supplement (\(10 \mathrm{KU} / \mathrm{vl}\)) \& 5 vl \& 13.16 \& 56562 \& \(\checkmark\) Peptone Water w/ Phenol Red \& 100 Gms \& 10.53 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& 95292 \\
\& {[73049-73}
\end{aligned}
\]} \& Peptone BactoBio for bacteriology \& \[
\begin{array}{r}
500 \mathrm{Gms} \\
5 \mathrm{Kg} \\
25 \mathrm{Kg}
\end{array}
\] \& \[
\begin{array}{r}
23.69 \\
205.30 \\
900.14
\end{array}
\] \& \multicolumn{2}{|r|}{For cultivation of non-fastidious microorganisms and as a base for carbohydrate fermentation tests.} \& 500 Gms \& 43.43 \\
\hline \& Used in various general and diagnostic media, also for large-scale production of enzymes, vaccines, antibiotics, etc. Peptic digest of animal tissue also used in microbiological culture media. \& \& \& \multirow[t]{2}{*}{70376} \& \multirow[t]{2}{*}{\begin{tabular}{l}
\(\checkmark\) Peptonized Milk (Peptonized SM Powder) BactoBio for microbiology \\
Peptonized milk is an enzymatic digest of fat free milk solids. It contains peptones, polypeptides and amino acids derived from milk protein as well as other nutritive components of skim milk. Used for isolation and cultivation of Lactobacilli and Streptococci, especially in dairy products.
\end{tabular}} \& \begin{tabular}{l}
100 Gms \\
500 Gms
\end{tabular} \& 13.16
43.43 \\
\hline \multirow[t]{3}{*}{51960} \& Peptone BioVeg BactoBio for bacteriology \& \[
\begin{array}{r}
500 \mathrm{Gms} \\
5 \mathrm{Kg} \\
10 \mathrm{Kg}
\end{array}
\] \& 28.95
235.56
454.02 \& \& \& \& \\
\hline \& \multirow[t]{2}{*}{Peptone derived from vegetable/plant source; is alternative to traditional animal based peptones.It contains polypeptides and amino acids which provides readily available source of nitrogen and minerals for the growth of bacteria and fungi.} \& \& \& 17511 \& Peptonized Milk Agar (Peptonized SM Agar) \& \begin{tabular}{l}
100 Gms \\
500 Gms
\end{tabular} \& \[
\begin{aligned}
\& 17.11 \\
\& 68.43
\end{aligned}
\] \\
\hline \& \& \& \& 66916 \& \(\checkmark\) Perfringens Agar Base (O.P.S.P.) \& \[
\begin{aligned}
\& 100 \mathrm{Gms} \\
\& 500 \mathrm{Gms}
\end{aligned}
\] \& \[
\begin{aligned}
\& 17.11 \\
\& 64.48
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{29002} \& \multirow[t]{2}{*}{\begin{tabular}{l}
\(\checkmark\) Peptone BioVeg Sterile for bacteriology (Gamma Irradiated) \\
Sterile (gamma irradiated) vegetable source of peptone, recommended for use in manufacturing of vaccines, enzymes, antibiotics,etc.
\end{tabular}} \& \begin{tabular}{l}
100 Gms \\
500 Gms
\end{tabular} \& 11.19
42.24 \& \& For presumptive identification of Clostridium perfringens in foods. \& \& \\
\hline \& \& \& \& 11976 \& \begin{tabular}{l}
\& Perfringens Supplement-I (\(50 \mathrm{mg} / \mathrm{vl}\)) \\
Used for selective isolation of Clostridium perfringens
\end{tabular} \& \[
\begin{array}{r}
5 \mathrm{vl} \\
5 \times 5 \mathrm{vl}
\end{array}
\] \& \[
\begin{aligned}
\& 13.16 \\
\& 34.22
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{23136} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Peptone Granulated BactoBio for bacteriology \\
A peptic digest of animal tissue used in various general and diagnostic media also for large scale production of enzyme, vaccines, antibiotics, etc.
\end{tabular}} \& \[
\begin{array}{r}
500 \mathrm{Gms} \\
5 \mathrm{Kg}
\end{array}
\] \& 36.85
352.69 \& \multirow[t]{2}{*}{62598} \& Perfringens Supplement-II \& \[
\begin{array}{r}
5 \mathrm{vl} \\
5 \times 5 \mathrm{vl}
\end{array}
\] \& 17.11
46.06 \\
\hline \& \& \& \& \& Used for selective isolation of Clostridium perfringens. \& \& \\
\hline \& \& \& \& 92096 \& \& Perfringens S.F.P. Supplement (S.F.P. Supplement) \& \[
\begin{array}{r}
5 \mathrm{vl} \\
4 \times 5 \mathrm{vl}
\end{array}
\] \& 15.79
52.64 \\
\hline \multirow[t]{2}{*}{95672} \& Peptone Special BactoBio for bacteriology \& \[
\begin{array}{r}
500 \mathrm{Gms} \\
5 \mathrm{Kg}
\end{array}
\] \& 32.90
304.00 \& \& Used for the selective isolation of clostridium perfringens. \& \& \\
\hline \& Peptic digest of animal tissue used in microbiological culture media. \& 10 Kg \& 563.25 \& 55688 \& \& Perfringens T.S.C. Supplement (T.S.C Supplement) (\(200 \mathrm{mg} / \mathrm{vl}\)) \& 5 vl
\(4 \times 5 \mathrm{vl}\) \& 17.11
48.69 \\
\hline \multirow[t]{2}{*}{65059} \& Peptone Iron Agar \& 100 Gms \& 30.27
8291 \& \& Used for selective isolation of Clostridium perfringens. \& \& \\
\hline \& For the cultivation and differentiation of microorganisms based on their ability to produce H2S. \& \& 82.91 \& 23504 \& \begin{tabular}{l}
Pikovskaya`s Agar \\
Used for the detection of phosphate
\end{tabular} \& 100 Gms
500 Gms \& 14.48
57.90 \\
\hline \multirow[t]{2}{*}{21025} \& \multirow[t]{2}{*}{Peptone Sorbitol Bile Broth} \& 100 Gms \& 17.11 \& \& solubilizing soil microorganism. \& \& \\
\hline \& \& 500 Gms \& 57.90 \& \multirow[t]{2}{*}{52133} \& \(\checkmark\) Pikovskaya`s Broth \& \begin{tabular}{l}
100 Gms \\
500 Gms
\end{tabular} \& 13.16
56.59 \\
\hline \multirow[t]{2}{*}{55010} \& \(\checkmark\) Peptone Water \& 100 Gms
500 Gms \& 10.53
36.85 \& \& Used for detection of phosphate solubilizing microorganisms. \& \& \\
\hline \& For the cultivation of non-fastidious microorganisms, for carbohydrate fermentation tests and also for performing the indole tests. \& \& \& 59048 \& \begin{tabular}{l}
Phenol Red Agar, Base \\
For the determination of fermentation reaction.
\end{tabular} \& 100 Gms
500 Gms \& 14.48
53.96 \\
\hline
\end{tabular}

Catalogue 2024-25

Catalogue 2024-25

| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10666 | \checkmark Pyridoxine Assay Medium | 100 Gms | 48.69 | 63380 | Ringer Salt Solution Powder | 100 Gms | 22.37 |
| | For the microbiological assay of pyridoxine using Neurospora sitophila as the test organism. | | | | Used as an isotonic diluent during food, milk and dairy products microbiological examination. | 500 Gms | 93.44 |
| 29051 | \checkmark PYR Agar | 100 Gms 500 Gms | $\begin{aligned} & 18.42 \\ & 68.43 \end{aligned}$ | 57672 | Rosolic Acid Supplement
 ($0.1 \mathrm{gm} / \mathrm{vl}$)
 Used for the selective isolation of coliforms. | 5 vl | 17.11 |
| | Used for the isolation and identification of Streptococcus pyogenes. | | | | | | |
| 50846 | \checkmark R2A Agar | 100 Gms | 17.11 | 76126 | \checkmark SA Agar Base | 100 Gms | 25.00 |
| | | 500 Gms | 61.85 | | | 500 Gms | 76.33 |
| | Used for enumerating heterotrophic bacteria from drinking water. | | | | Used for isolation and differentiation of Aeromonas hydrophila from foods based | | |
| 34629 | \checkmark R2A Agar BioVeg | 100 Gms | 15.13 | on starch hydrolysis (as per APHA). | | | |
| | Used for enumeration of heterotrophic bacteria from drinking water | 500 Gms | 65.14 | 99752 | S. Aureus Test Kit (Pre-Weighed Media)
 Used for isolation, identification and cultivation of Staphylococcus aureus. | 1 Kit | 52.64 |
| 16437 | R3A Agar | 100 Gms | | 67506 | \checkmark SABHI Agar Base | 100 Gms | 18.42 |
| | | 500 | 64.4 | | | 500 Gms | 59.22 |
| | For the cultivation and maintenance of heterotrophic bacteria from potable waters. | | | 44970 | Sabouraud Chloramphenicol Agar | 100 Gms | 14.48 |
| 39167 | \checkmark Rappaport Vassiliadis R 10 Broth | 100 Gms
 500 Gms | 13.16 52.64 | For the cultivation of yeasts and molds. | | 500 Gms | 55.27 |
| | Used for the selective enrichment of Salmonella from meat and dairy products, faeces and sewage polluted water. | | | 55941 | Sabouraud Chloramphenicol Agar BioVeg
 For the cultivation of yeasts and molds. | 100 Gms 500 Gms | $\begin{aligned} & 14.48 \\ & 55.27 \end{aligned}$ |
| 59912 | Rappaport Vassiliadis Salmonella Enrichment Broth, Harmonized
 Used for selective enrichment of Salmonella species in pharmaceutical testing according to harmonized methods. | 100 Gms 500 Gms | 11.84 47.38 | 19427 | Sabouraud Dextrose Agar (U/P)
 (I/P)
 (Sabouraud Glucose Agar)
 For the cultivation of dermatophytes, yeasts and filamentous fungi. | 500 Gms | 43.43 |
| 22140 | Rappaport Vassiliadis Soyabean Meal Broth (RVSM Broth)
 Used for enrichment and isolation of Salmonella species. | 100 Gms
 500 Gms | $\begin{aligned} & 15.79 \\ & 53.96 \end{aligned}$ | 28055 | Sabouraud Dextrose Agar
 Used for the cultivation of dermatophytes, yeasts \& filamentous fungi. | 500 Gms | 42.11 |
| 18530 | \checkmark Razi`s Medium | 100 Gms
 500 Gms | $\begin{aligned} & 15.79 \\ & 63.17 \end{aligned}$ | 95430 | \& Sabouraud Dextrose Agar
 Cycloheximide and Chloramphenicol (Mycobiotic Agar)
 For the selective isolation and cultivation of fungi. | $\begin{gathered} 50 \mathrm{Gms} \\ 100 \mathrm{Gms} \end{gathered}$ | $\begin{array}{r} 55.27 \\ 102.65 \end{array}$ |
| 78777 | \checkmark Reinforced Clostridial Agar | 100 Gms 500 Gms | 11.84 47.38 | | | | |
| | Used for the cultivation and enumeration of Clostridium species and other anaerobes from clinical specimens and foods. | | | 24613 | \checkmark Sabouraud Dextrose Agar, Harmonized | 100 Gms
 500 Gms | $\begin{aligned} & 10.53 \\ & 43.43 \end{aligned}$ |
| 11999 | Reinforced Medium for Clostridia, Harmonized | 100 Gms
 500 Gms | 10.53 38.16 | | For the cultivation and isolation of yeasts, molds and aciduric microorganisms in pharmaceutical testing according to harmonized methods. | | |
| | Used for the cultivation and enumeration of Clostridia in pharmaceutical testing according to harmonized methods. | | | 88999 | \checkmark Sabouraud Dextrose Agar BioVeg | 500 Gms | |
| 71467 | \checkmark Rhizobium Medium | 100 Gms 500 Gms | $\begin{aligned} & 18.42 \\ & 56.59 \end{aligned}$ | | Used for the cultivation of dermatophytes, yeasts and filamentous fungi. | | 43.43 |
| | Used for the cultivation of Rhizobium species. | | | | | | |
| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24835 | Sabouraud Dextrose Broth, Harmonized
 For the cultivation and isolation of yeasts, molds and aciduric microorganisms in pharmaceutical testing according to harmonized methods. | 100 Gms
 500 Gms | $\begin{array}{r} 7.90 \\ 26.32 \end{array}$ | 87213 | Selenite Broth w/ Dulcitol (Twin Pack)
 Used for enrichment of Salmonella species. | 500 Gms | 94.75 |
| | | | | 16709 | Selenite Cystine Broth, Base w/o Selenite | 100 Gms 500 Gms | $\begin{aligned} & 10.53 \\ & 43.43 \end{aligned}$ |
| 64402 | \checkmark Sabouraud Dextrose Maltose Broth | 100 Gms
 500 Gms | $\begin{aligned} & 15.79 \\ & 61.85 \end{aligned}$ | 38926 | Selenite F Broth, Base w/ Selenite (Twin Pack) | 100 Gms
 500 Gms | $\begin{aligned} & 14.48 \\ & 57.90 \end{aligned}$ |
| | Used for the cultivation of moulds, yeasts and aciduric organisms as well as testing of antimycotic substances. | | | 83179 | \checkmark Selenite F Broth, Base w/o Selenite | 100 Gms
 500 Gms | $\begin{aligned} & 10.53 \\ & 43.43 \end{aligned}$ |
| 14506 | Sabouraud Glucose Broth
 (Sabouraud Dextrose Broth)
 For the cultivation of dermatophytes, yeasts and filamentous fungi. | 100 Gms
 500 Gms | $\begin{array}{r} 6.58 \\ 19.74 \end{array}$ | | and cultivation of Salmonella species from faeces, dairy products and other specimens. | | |
| | | | | 17458 | \checkmark Semi-Solid Nutrient Agar (I) | 100 Gms | 14.48 |
| 57791 | \checkmark Sabouraud Maltose Agar | 100 Gms | 15.79 | | | 500 Gms | 57.90 |
| | | 500 Gms | 59.22 | 75917 | \checkmark Semi-Solid Nutrient Agar (B/S) | 100 Gms | 14.48 |
| | For the cultivation and maintenance of yeasts, molds and a variety of fungi. | | | | | 500 Gms | 57.90 |
| 33387 | \checkmark Sabouraud Maltose Broth | 100 Gms
 500 Gms | $\begin{array}{r} 13.16 \\ 53.96 \end{array}$ | 37963 | Semi-solid Rappaport Vassiliadis (MSRV) Medium Base | 100 Gms
 500 Gms | $\begin{aligned} & 15.79 \\ & 56.59 \end{aligned}$ |
| 36370 | \checkmark Saline Agar | 100 Gms
 500 Gms | $\begin{aligned} & 15.79 \\ & 55.27 \end{aligned}$ | 84809 | \checkmark Sensitest Agar | 100 Gms 500 Gms | 27.64 111.86 |
| | Used for detection of alpha -toxin in Clostridium perfringens | | | | For the performance of antibiotic sensitivity test. | | |
| 39930 | \checkmark SS Agar (Salmonella Shigella Agar) | 100 Gms
 500 Gms | $\begin{aligned} & 11.84 \\ & 47.38 \end{aligned}$ | 11580 | S.F.P Agar Base (Shahidi Ferguson Perfringens Agar Base) | 100 Gms
 500 Gms | 14.48 67.12 |
| | For the selective isolation and differentiation of pathogenic enteric bacilli especially Salmonella and Shigella species. | | | | Used for the isolation and enumeration of Clostridium perfringens from foods. | | |
| | | | | 94074 | \checkmark Shigella Broth Base | 100 Gms 500 Gms | $\begin{aligned} & 14.48 \\ & 52.64 \end{aligned}$ |
| 36856 | \checkmark SS Agar, Modified
 (Salmonella-Shigella Agar,
 Modified)
 (Salmonella Shigella Agar)
 A modified medium, which provides better growth of Salmonella and Shigella species. | 100 Gms
 500 Gms | $\begin{aligned} & 14.48 \\ & 55.27 \end{aligned}$ | | Used for the isolation and cultivation of Shigella species from food. | | |
| | | | | 45290 | \& Shigella Selective Supplement ($0.55 \mathrm{mg} / \mathrm{vl}$)
 Used for the selective isolation and cultivation of Shigella species. | 5 vl | 15.79 |
| 55521 | Salmonella Test Kit (Pre-Weighed Media)
 Used for isolation, identification and cultivation of Salmonella species. | 1 Kit | 28.95 | 91694 | Slanetz and Bartley Medium | 100 Gms 500 Gms | 14.48 56.59 |
| 48589 | \checkmark Salt Polymyxin Broth, Base (I) (Polymyxin Salt Broth) | 100 Gms 500 Gms | 13.16 51.32 | | enterococci by membrane filtration method. | | |
| 22887 | \checkmark Salt Polymyxin Broth, Base (B/S) | 100 Gms
 500 Gms | 13.16 51.32 | 49810 | SIM Medium (Sulfite Indole Motility Medium) | 100 Gms 500 Gms | 11.84 46.06 |
| 58249 | Schaedler Agar w/o Thioglycollate (Schaedler Anaerobic Agar w/o Thioglycollate) | 100 Gms 500 Gms | 22.37 63.17 | | For the differentiation of members of the Enterobacteriaceae, based on H2S production, indole production and motility. | | |
| 16164 | \checkmark Schaedler Agar
 (Schaedler Anaerobic Agar)
 Used for the enumeration of various aerobic and anaerobic bacterial species present in the gastrointestinal tract. | 100 Gms 500 Gms | 14.48 56.59 | 57309 | \checkmark SIM Medium BioVeg | 100 Gms 500 Gms | 11.84 46.06 |
| | | | | | Used for the differentiation of members of the Enterobacteriaceae, based onH2S production, indole production and motility. | | |

Catalogue 2024-25

| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 39726 | Staphylococcus Medium 110
 (Stone Gelatin Agar, Gelatin Mannitol Salt Agar)
 For the isolation \& enumeration of Staphylococci based on mannitol fermentation, pigment formation \& gelatinase activity. | 100 Gms 500 Gms | 13.16 46.06 | 49778 | \checkmark Sulphite Agar
 (Sulfite Agar) | 100 Gms
 500 Gms | $\begin{aligned} & 19.74 \\ & 61.85 \end{aligned}$ |
| | | | | 84524 | Iron Sulphite Agar
 (Sulfite Iron Agar)
 Used for the detection of Clostridia in the examination of meat and meat products. | 100 Gms 500 Gms | 13.16 55.27 |
| 37547 | \checkmark Starch Agar | 100 Gms 500 Gms | $\begin{array}{r} 14.48 \\ 57.90 \end{array}$ | 34050 | \& Sulpha Supplement | 5 vl | 23.69 |
| | For detection of starch hydrolyzing microorganisms. | | | | Used for the selective isolation of Salmonella species. | | |
| 78486
 [9005-84-9] | Starch Soluble Special (Cold Water Soluble) BactoBio for microbiology
 A special grade of Starch, suitable for media preparations in microbiology since it is cold water soluble due to its special preparation method. The solution characteristics being clear, make it especially suitable for such use in labs. | 100 Gms 500 Gms | 23.69 51.32 | 68041 | \checkmark Syncase Broth | 100 Gms 500 Gms | $\begin{aligned} & 15.79 \\ & 63.17 \end{aligned}$ |
| | | | | 23635 | \checkmark T1N1 Agar (Tryptone Salt Agar) (Tryptone Salt Agar) | 100 Gms
 500 Gms | 15.79 59.22 |
| | | | | 65235 | \checkmark T1N1 Broth (Tryptone Salt Broth) | 100 Gms
 500 Gms | 9.21 38.16 |
| | | | | 15600 | \checkmark T.A.T. Broth Base | | 11.84 |
| 76043 | Sterility Test Kit (Pre-Weighed
 Media)
 Used for sterility testing of products as per pharmacoepial standards. | 1 Kit | 14.48 | | (Tryptone-Azolectin-Tween Broth Base) | 500 Gms | 53.96 |
| | | | | 86626 | TCBS Agar
 (Thiosulphate Citrate Bile Salts Sucrose Agar) | 100 Gms
 500 Gms | 13.16 53.96 |
| 11475 | \& Strepto Supplement | 5 vl $5 \times 5 \mathrm{vl}$ | 17.11 53.96 | | For the selective isolation of Vibrio cholerae and Vibrio parahaemolyticus from a variety of clinical specimens. | | |
| | species. | | | 50165 | \checkmark TCBS Agar (B/S)
 (Thiosulfate Citrate Bile Salts Sucrose | 100 Gms | 13.16 |
| 35140 | \& Streptococcus Selective Supplement
 Used for the selective isolation and cultivation of Streptococcus species. | 5 vl $5 \times 5 \mathrm{vl}$ | 23.69 55.27 | | Agar)
 Used for selective isolation of Enteropathogenic Vibrio species. | 500 Gms | 53.96 |
| | | | | 68331 | \checkmark TCBS Agar BioVeg | 100 Gms | 14.48 |
| 31025 | Streptococcus Thermophilus Isolation Agar
 For determining the ratio of Streptococcus thermophilus and Lactobacillus bulgaricus in yoghurt. | 100 Gms
 500 Gms | 17.11 59.22 | | For the selective isolation of Vibrio cholerae and Vibrio parahaemolyticus from clinical specimens. | 500 Gms | 59.22 |
| | | | | 15297 | \& Tellurite Cefixime Supplement | 5 vl | 18.42 |
| 77304 | Streptomyces Agar
 For the cultivation and maintenance of Streptomyces. | 100 Gms 500 Gms | 14.48 56.59 | | Used for the selective isolation and cultivation of Escherichia coli 0157:H7 | | |
| | | | | 30431 | \checkmark Tellurite Glycine Agar Base | 100 Gms | 13.16 |
| 43048 | \checkmark Stuart Transport Medium | 100 Gms | 18.42 | | | 500 Gms | 64.48 |
| | For the preservation of Neisseria species and other fastidious organisms during their transport from clinic to laboratory. | 500 Gms | 76.33 | 97630 | Tergitol- 7 Agar, Base (B/S)
 (T7 Agar)
 Used for selective enumeration and identification of coilform organisms | 100 Gms 500 Gms | 14.48 67.12 |
| 14840 | \checkmark Sucrose Salicin Agar (Gillies Agar No.2) | 100 Gms | 77.64 | 67662 | \checkmark Tergitol-7 Agar H, Base (T7 Agar, H) | 100 Gms 500 Gms | 18.42 75.01 |
| 69237 | Sugar Free Agar (Count Agar Sugar-free) | 100 Gms 500 Gms | $\begin{aligned} & 15.79 \\ & 55.27 \end{aligned}$ | 99371 | - Tergitol-7 Broth (T7 Broth) | 100 Gms 500 Gms | 13.16 53.96 |
| | For the enumeration of psychotropic and mesophilic gram- negative rods in butter and other dairy products as per formula described by the International Dairy Federation. | | | 30086 | Terrific Broth (Tartoff-Hobbs Broth)
 For the cultivation of recombinant strains of Escherichia coli. | 100 Gms 500 Gms | 11.84 43.43 |

Catalogue 2024-25

| Code | Packing | \$ Price | Code | Name |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Catalogue 2024-25

| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 47253 | \checkmark Tryptose Blood Agar Base | 100 Gms | 17.11 | 80192 | \& 40% Urea Solution ($5 \mathrm{ml} / \mathrm{vl}$) | 5 vl | 7.90 |
| | | 500 Gms | 67.12 | | | $5 \times 5 \mathrm{vl}$ | 28.95 |
| | For the cultivation and maintenance of a wide variety of fastidious microorganisms. | | | | Used for the detection of urease activity. | | |
| | | | | 26117 | \& Vancomycin Supplement (3mg/vl) | 5 vl | 23.69 |
| $\begin{aligned} & 12514 \\ & {[84843-69-} \end{aligned}$ | Tryptose BactoBio for bacteriology
 6]
 Mixed enzymatic hydrolysate of protein, especially used in media to grow fastidious microorganisms. | 500 Gms | 28.95 | | Used for the selective isolation of | | |
| | | | | | Enterococci. | | |
| | | | | 34123 | \& VCN Supplement | $\begin{array}{r} 5 \mathrm{vl} \\ 5 \times 5 \mathrm{vl} \end{array}$ | $\begin{array}{r} 32.90 \\ 114.49 \end{array}$ |
| 82302 | Tryptose Cycloserine Dextrose Agar Base
 Used for isolation of mesophilic spore forming anaerobes in food spoilage. | 100 Gms
 500 Gms | 16.45 67.12 | | Used for selective isolation of Neisseria species. | | |
| | | | | 32249 | \& VCNT Supplement | $\begin{array}{r} 5 \mathrm{vl} \\ 5 \times 5 \mathrm{vl} \end{array}$ | $\begin{array}{r} 32.90 \\ 114.49 \end{array}$ |
| 48200 | \checkmark Tryptose Phosphate Broth | 100 Gms
 500 Gms | $\begin{aligned} & 10.53 \\ & 42.11 \end{aligned}$ | Used for selective isolation of Neisseria species. | | | |
| | For the cultivation of variety of fastidious bacteria. | | | 78604 | V Infusion Agar (Veal Infusion Agar) | 100 Gms
 500 Gms | $\begin{aligned} & 18.42 \\ & 55.27 \end{aligned}$ |
| 45989 | \checkmark Tryptose Phosphate Broth BioVeg | 100 Gms
 500 Gms | $\begin{aligned} & 11.84 \\ & 43.43 \end{aligned}$ | 86771 | V Infusion Broth (Veal Infusion Broth) | 100 Gms
 500 Gms | 14.48 51.32 |
| | For the cultivation of a variety of fastidious bacteria. | | | | Recommended for cultivation of fastidious pathogenic bacteria. | | |
| 55052 | TTC Solution 1\% ($10 \mathrm{ml} / \mathrm{vl}$) | $\begin{array}{r} 5 \mathrm{vl} \\ 5 \times 5 \mathrm{vl} \end{array}$ | 47.38 | 67389 | \checkmark Veg Extract Agar BioVeg | 500 Gms | 57.90 |
| | Used for detecting microorganisms on the basis of TTC reduction. | | | 55605 | \checkmark Veg Extract Broth BioVeg | 500 Gms | 57.90 |
| 18339 | Jrea Agar, Base (I) (B/S) | 100 Gms | 15.79 | 53818 | \checkmark Violet Red Bile Agar (B/S) | 100 Gms | 11.84 |
| | | 500 Gms | 55.27 | | | 500 Gms | 47.38 |
| | Used for the detection of urease production by Proteus species and for identification of other members of Enterobacteriaceae. | | | | Recommended medium for selective isolation, detection and enumeration of coliforms in water, milk and other dairy products. | | |
| 88708 | \checkmark Urea Agar Base | 100 Gms | 13.16 | 57081 | \checkmark Violet Red Bile Agar (1.2\%) (I) | 100 Gms | 14.48 |
| | | 500 Gms | 48.69 | | | 500 Gms | 48.69 |
| | Used for the detection of urease production by Proteus species and for identification of other members of Enterobacteriaceae | | | | Recommended medium for selective isolation, detection and enumeration of coliforms in water, milk and other dairy products. | | |
| 42465 | \checkmark Urea Agar Base (Christensen) | 100 Gms | 13.16 | 33690 | \checkmark Violet Red Bile Agar w/ MUG | 100 Gms | 22.37 |
| | BioVeg | 500 Gms | 50.01 | | | 500 Gms | 94.75 |
| | Used for the detection of urease production by Proteus species and for dentification of other members of Enterobacteriaceae. | | | | For the differentiation of Escherichia coli from dairy products and other foods by fluorogenic procedure. | | |
| | | | | 88966 | \checkmark Violet Red Bile Broth | 100 Gms | 11.84 |
| 97438 | Urea Broth, Base | 100 Gms | 11.84 | | | 500 Gms | 43.43 |
| | | 500 Gms | 48.69 | | For detection and enumeration of coliforms from water and foods. | | |
| | For identifying bacteria on the basis of urea utilization, for the differentiation of Proteus species from Salmonella and Shigella species. | | | 43459 | \checkmark Violet Red Bile Dextrose Agar BioVeg | 100 Gms 500 Gms | 15.79 48.69 |
| 58028 | \checkmark Urea Indole Medium | 100 Gms | 14.48 | | Enterobacteriaceae from foods. | | |
| | | 500 Gms | 56.59 | 55373 | \checkmark Violet Red Bile Glucose Agar (I) | 100 Gms | 11.84 |
| | Used for the differentiation of Enterobacteria on the basis of urease and indole production and the transdeamination of tryptophan. | | | | (Violet Red Bile Glucose Agar w/o Lactose)
 Used for detection and enumeration of Enterobacteriaceae from foods. | 500 Gms | 46.06 |

For the cultivation and enumeration of yeasts. Its low pH inhibits bacterial growth.

Catalogue 2024-25

| Code | Name | Packing | \$ Price | Code | Name | Packing | \$ Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 52184 | Water soluble portion of autolysed yeast, suitable for cell culture applications. Many media containing Yeast extract have been recommended for use in fermentations, cell culture media, molecular genetic media, and culture media for cultivation and resuscitation of a large variety of fastidious microorganisms and antibiotics assays. | 100 Gms 500 Gms | 15.79 42.11 | 83385 | Yeast Glucose Chloramphenicol Agar (YGC Agar, Chloramphenicol Agar)
 Used for the isolation and enumeration of molds in milk and dairy products. | 100 Gms
 500 Gms | 10.53 48.69 |
| | | | | 66995 | YPD Broth (Yeast Peptone Dextrose Broth, YEPD Broth)
 For maintenance and propagation of yeasts in molecular microbiology procedures. | 100 Gms
 500 Gms | $\begin{aligned} & 15.79 \\ & 65.80 \end{aligned}$ |
| | | | | 98271 | \checkmark YT Broth (2X YT Broth) | 100 Gms | 13.16 |
| 36504 | \checkmark Yeast Extract Agar | 100 Gms | 22.37 | | | 500 Gms | 48.69 |
| | | 500 Gms | 73.70 | | Used for the cultivating of recombinant strains of Escherichia coli. | | |
| | For the enumeration of microorganisms in potable and fresh water samples. | | | 19510 | \checkmark YXT Agar Base | 100 Gms | 14.48 |
| 62332 | \checkmark Yeast Lactose Agar | 100 Gms | 28.95 | | | 500 Gms | 56.59 |
| | For cultivation of soil microorganisms like Rhizobium species. | 500 Gms | 118.44 | | Used for detection of yeasts and molds, with or without added Tetracycline. | | |
| 49723 | Yeast Malt Agar
 (YM Agar)
 For the cultivation of fungi including yeasts and other aciduric organisms. | 100 Gms
 500 Gms | $\begin{aligned} & 14.48 \\ & 59.22 \end{aligned}$ | | | | |
| | | | | | | | |
| 63973 | Yeast Malt Extract Broth
 (YM Broth)
 For the cultivation of fungi, yeasts and other aciduric microorganisms. | 100 Gms
 500 Gms | $\begin{aligned} & 11.84 \\ & 47.38 \end{aligned}$ | | | | |
| | | | | | | | |
| 40965 | \checkmark Yeast Mannitol Agar | 100 Gms | 15.79 | | | | |
| | | 500 Gms | 72.38 | | | | |
| | For the isolation and enumeration of soil microorganisms like Rhizobium species. | | | | | | |
| 56342 | \checkmark Yeast Mannitol Broth | 100 Gms | 11.84 | | | | |
| | | 500 Gms | 50.01 | | | | |
| | For the cultivation of soil microorganisms like Rhizobium species. | | | | | | |
| 54250 | YPD Agar (Yeast Peptone Dextrose Agar, YEPD Agar)
 For maintaining and propagating yeasts in molecular biology studies. | 100 Gms 500 Gms | $\begin{aligned} & 13.16 \\ & 53.96 \end{aligned}$ | | | | |
| | | | | | | | |
| 51830 | \checkmark Yersinia Isolation Agar | 100 Gms | 17.11 | | | | |
| | | 500 Gms | 61.85 | | | | |
| | For the isolation of Yersinia species from foods. | | | | | | |
| 27810 | \checkmark Yersinia Selective Agar Base | 100 Gms | 17.11 | | | | |
| | | 500 Gms | 61.85 | | | | |
| | For the isolation of Yersinia enterocolitica from clinical specimens and food samples. | | | | | | |
| 15061 | Yersinia Selective (C.I.N.)
 Supplement | $\begin{array}{r} 5 \mathrm{vl} \\ 5 \times 5 \mathrm{vl} \end{array}$ | $\begin{aligned} & 19.74 \\ & 57.90 \end{aligned}$ | | | | |
| | Used for isolation of Yersinia enterocolitica. | | | | | | |

Pharmacopoeial Products

We take pride in introducing a select range of pharmacopoeial grade products according to IP/BP/USP/NF to meet the critical requirements of the pharmaceutical and biotech industries for drug manufacture and diagnostics use.
These products have stringent limits of purity and impurities, often more critical than specified in the pharmacopoeial standards. This will enable the niche pharmaceutical manufacturers to obtain very high quality raw material ingredients indigenously.

IP, BP, USP \& NF Product List

| 85996 | Aminocaproic Acid IP |
| :--- | :--- |
| 99093 | Aminocaproic Acid BP |
| 50445 | Aminocaproic Acid USP |
| 40682 | Glycine IP |
| 74072 | Glycine BP |
| 37449 | Glycine USP |
| 61988 | Proline BP |
| 68128 | L-Proline USP |
| 47638 | Propyl Gallate IP |
| 14086 | Propyl Gallate BP |
| 16067 | Propyl Gallate NF |
| 50090 | Sodium Caprylate BP |
| 81340 | Sodium Caprylate NF |
| 34378 | Sodium Lauryl Sulphate BP |
| 82958 | Sucrose IP (Non-Parenteral Use) |
| 38142 | Sucrose BP (Non-Parenteral Use) |
| 56799 | Sucrose NF (USP)
 (Non-Parenteral Use) |
| 16622 | Tris Buffer USP, 99-101\%
 (Non Injectable Use) |

Part E

(DNA \& Protein Tools and Kits)

BioLit ${ }^{\oplus}$ PCR Products (Traq Polymerase, Euffers \& Kits)

BioLit ${ }^{\circledR}$ TAQ Polymerases

Taq DNA Polymerases (offered in different concentrations) are enzymes used in Routine PCR. They are thermostable recombinant DNA polymerases derived from thermophilic bacterium Thermus aquaticus. They can amplify DNA target up to 5 kb (simple template) and have a 5^{\prime} to 3^{\prime} polymerase activity but lack 3^{\prime} to 5^{\prime} exonuclease activity that result in a 3^{\prime}-dA overhang PCR product.

BioLit ${ }^{\oplus}$ Routine PCR

Applications - PCR amplification of DNA fragments as long as 5 kb , DNA labeling, DNA sequencing, PCR for cloning.

| 61524 | TAQ DNA | Includes Taq DNA Polymerase ($1 \mathrm{U} / \mu \mathrm{l}$) | 500 units | 30.00 |
| :---: | :---: | :---: | :---: | :---: |
| | Polymerase (1U/ $/$) | 10X PCR Buffer (MgCl_{2} free), $25 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ | 1000 units | 56.85 |
| | | | 5000 units | 276.49 |
| 32976 | TAQ DNA | Includes Taq DNA Polymerase (3U/ $/ \mathrm{l}$) | 500 units | 30.00 |
| | Polymerase ($3 \mathrm{U} / \mu \mathrm{l}$) | 10X PCR Buffer (MgCl_{2} free), $25 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ | 1000 units | 56.85 |
| | | | 5000 units | 276.49 |
| 82487 | TAQ DNA | Includes Taq DNA Polymerase (5U/ $/ \mathrm{l}$) | 500 units | 30.00 |
| | Polymerase ($5 \mathrm{U} / \mu \mathrm{l}$) | 10X PCR Buffer (MgCl_{2} free), $25 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ | 1000 units | 56.85 |
| | | | 5000 units | 276.49 |
| 12816 | TAQ DNA | Includes Taq DNA Polymerase (5U/ $/ \mathrm{l}$) | 500 units | 37.37 |
| | Polymerase (5U/ $\mu \mathrm{l}$) | 10X PCR Buffer (Mg^{2+} Plus) | 1000 units | 64.35 |
| | (w/6X Buffer) | 6X Loading Buffer | 5000 units | 291.49 |
| 51613 | TAQ DNA
 Polymerase (5U/ $\mu \mathrm{l}$)
 (w/6X Buffer, w/dNTP) | Includes Taq DNA Polymerase ($5 \mathrm{U} / \mathrm{\mu l}$) | 500 units | 40.40 |
| | | 10X PCR Buffer (Mg^{2+} Plus) | 1000 units | 67.38 |
| | | 6X Loading Buffer | 5000 units | 306.36 |
| | | dNTP mix (each 2.5 mM) | | |

A Thermostable recombinant DNA polymerase, useful in amplification of DNA fragments upto 6 kb from genomic DNA with high purity and specificity. Sources of template - plant genomic DNA , mouse cDNA, bacterial colony DNA , bacterial plasmid DNA , viral DNA and zygocity PCR templates. No loading buffers or tracking dyes required. Samples may be added directly to an agarose gel after PCR and visualized.

| 57694 | Red TAQ DNA | Includes Red Taq DNA Polymerase (1U/ $\mu \mathrm{l}$) | 500 units | 52.38 |
| :---: | :---: | :---: | :---: | :---: |
| | Polymerase (1U/ $\mu \mathrm{l}$) | 10X Red Taq Buffer, $25 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ | 1000 units | 91.20 |
| 12192 | Roseate Taq DNA | | 500 units | 39.87 |
| | | | 1000 units | 65.54 |

Roseate Taq DNA Polymerase is a thermostable recombinant DNA polymerase derived from thermophilic bacterium Thermus aquaticus. Its molecular weight is 94 kDa . Taq DNA Polymerase can amplify DNA targets up to 5 kb (simple template). The elongation velocity is $0.9 \sim 1.2 \mathrm{~kb} /$ min $\left(70 \sim 75^{\circ} \mathrm{C}\right.$). It has 5^{\prime} to 3^{\prime} polymerase activity but lacks of 3^{\prime} to 5^{\prime} exonuclease activity that result ion a 3'-dA overhangs PCR product.
The buffer given is 10X Rosette PCR Buffer with Mg2+. This buffer has a roseate coloured dye enabling the researcher to load the sample directly after PCR into an agarose gel for electrophoresis.

Other different polymerases described below are useful when there is a need for higher specificity for primer incorporation, high fidelity with proof reading capability, amplifying long and complex templates \& need for efficient and fast elongation, and DNA Polymerase which is suitable for Hot Start PCR. The polymerases here each have one of these features and can be chosen to suit the needs of the researcher.

BioLit ${ }^{\oplus}$ Hot Start PCR

This product is a DNA Polymerase coated with antibody, which is suitable for Hot Start PCR. There is no activity of this enzyme at room temperature, and the antibody can be inactivated rapidly at $70^{\circ} \mathrm{C}$ or above. This ensures that the enzyme is active only during PCR and prolonged heating or denaturation steps can be avoided.

| 81646 | Hot Start Taq | Includes Includes HotStart Taq Polymerase (5U/ $\mu \mathrm{l})$ | 250 units | 101.73 |
| :--- | :--- | :--- | :--- | :--- |
| | Polymerase (5U/ $\mu \mathrm{I})$ | $10 \times$ HotStart buffer with Mg²+ 2.5 mM dNTP Mix | 1000 units | 388.61 |

```
code product name application/description
unit
\$ price
```


BioLit ${ }^{\circledR}$ High Specificity PCR

Can amplify DNA target up to 5 kb . The elongation velocity is $0.9 \sim 1.2 \mathrm{~kb} / \mathrm{min}$. It has 5 ' to 3^{\prime} polymerase activity but lacks 3^{\prime} to 5 ' exonuclease activity that results in a $3^{\prime}-\mathrm{dA}$ overhang PCR product.
Applications - PCR amplification of DNA fragments as long as 5 kb , DNA labeling, DNA sequencing, PCR for cloning.

46033 | HSP TAQ DNA | Includes HSP Taq DNA Polymerase $(5 \mathrm{U} / \mu \mathrm{l})$ | 500 units | 62.90 |
| :--- | :--- | ---: | ---: |
| | Polymerase $(\mathbf{5 U} / \mu \mathrm{l})$ | $10 \times$ HSP PCR Buffer $\left(\right.$ with $\left.\mathrm{Mg}^{2+}\right)$ | 1000 units |

BioLit ${ }^{\oplus}$ High Fidelity PCR

Pfu DNA polymerase, derived from the hyperthermophilic archae Pyrococcus furiosus, has superior thermostability and proofreading properties. It can amplify DNA target up to 2 kb (simple template), possesses 3 ' to 5 ' exonuclease proofreading activity, generates PCR fragments will have fewer errors, results in blunt-ended PCR products, which are ideal for cloning into blunt-ended vectors Applications - High-fidelity PCR and primer-extension reactions, High fidelity PCR for cloning into blunt-ended vectors, Site-directed mutagenesis.

| 22774 | Pfu DNA | Includes Pfu DNA Polymerase (5U/ $/$ l | 250 units | 85.28 |
| :---: | :---: | :---: | :---: | :---: |
| | Polymerase (5U/ $\mu \mathrm{l}$) | 10X Pfu Buffer (Mg^{2+}) | 1000 units | 299.00 |
| | | 6X Loading Buffer | | |
| 49069 | Pfu DNA | Includes Pfu DNA Polymerase ($5 \mathrm{U} / \mu \mathrm{l}$) | 250 units | 88.30 |
| | Polymerase ($5 \mathrm{U} / \mu \mathrm{l}$) | 10X Pfu Buffer (Mg^{2+}) | 1000 units | 313.87 |
| | (w/dNTP) | 6X Loading Buffer | | |
| | | dNTP mix (each 2.5 mM) | | |

Taq Plus DNA Polymerase is a mixture of Taq and Pfu DNA polymerase that allows amplification of higher fidelity and longer templates Ideal for amplifying complex template, such as GC-rich template.
Applications - Amplification of long template up to 20kb, Amplification of complex template, High fidelity PCR

| 85737 | TAQ Plus DNA Polymerase ($2.5 \mathrm{U} / \mu \mathrm{I}$) | Includes Taq plus DNA Polymerase (2.5U/ $\mu \mathrm{l}$) 10X PCR Buffer (Mg ${ }^{2+}$ Plus) 6X Loading Buffer | $\begin{aligned} & 250 \text { units } \\ & 1000 \text { units } \end{aligned}$ | $\begin{array}{r} 53.82 \\ 194.37 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| 93561 | TAQ Plus DNA Polymerase ($2.5 \mathrm{U} / \mu \mathrm{I}$) (w/dNTP) | Includes Taq plus DNA Polymerase ($2.5 \mathrm{U} / \mu \mathrm{l}$) 10X PCR Buffer (Mg^{2+})
 6X Loading Buffer dNTP mix (each 2.5 mM) | $\begin{aligned} & 250 \text { units } \\ & 1000 \text { units } \end{aligned}$ | $\begin{array}{r} 56.85 \\ 200.30 \end{array}$ |

BioLit ${ }^{\circledR}$ Long PCR

Long Taq DNA Polymerase, a combination of two thermostable DNA polymerases, Taq and Pfu, is a special formulation designed for amplifying large fragments. This specially formulated Long Taq was shown to amplifiy long templates from λ phage genome of up to 40 kb . It is also a better choice for amplifying complex template, such as GC-rich template. Long Taq is suitable as a direct replacement for ordinary Taq Polymerase in most applications. Using Long Taq in your PCR results in PCR products with 3'-dA overhangs which can be used in TA clone.

| 15367 | Long TAQ DNA | Includes Long Taq DNA Polymerase ($5 \mathrm{U} / \mu \mathrm{l}$) | 250 units | 43.43 |
| :---: | :---: | :---: | :---: | :---: |
| | Polymerase ($5 \mathrm{U} / \mu \mathrm{l}$) | 10X Long Taq Buffers I \& II (Mg^{2+}) | 1000 units | 157.92 |
| | | 6X Loading Buffer | | |
| | | PCR Enhancer | | |
| 94126 | Long TAQ DNA | Includes Long Taq DNA Polymerase ($5 \mathrm{U} / \mu \mathrm{l}$) | 250 units | 65.80 |
| | Polymerase (5U/ $\mu \mathrm{l}$) (w/dNTP) | 10X Long Taq Buffers I \& II (Mg^{2+}) | 1000 units | 197.40 |
| | | 6X Loading Buffer | | |
| | | PCR Enhancer | | |
| | | dNTP mix (each 2.5 mM) | | |

BioLit ${ }^{\circledR}$ Fast PCR

FSP Taq DNA polymerase is the latest generation Taq-based DNA polymerase. It possesses high amplification efficiency as Taq polymerase and with fast elongation ability, it can be used in a variety of PCR. The FSP PCR Buffer, designed for FSP Taq DNA polymerase, can be used in fast amplification reactions.
The elongation rate of FSP Taq DNA polymerase is 2-fold higher than the one of regular Taq DNA polymerase, which shortens the amplification time by half.

| 58235 | FSP TAQ DNA | Includes FSP Taq DNA Polymerase (5U/ $\mu \mathrm{l}$) | 250 units | 47.90 |
| :---: | :---: | :---: | :---: | :---: |
| | Polymerase (5U/ $\mu \mathrm{l}$) | 10X FSP Taq Buffer (with Mg^{2+}) | 1000 units | 149.50 |
| | | 6X Loading Buffer | | |
| 70073 | FSP TAQ DNA | Includes FSP Taq DNA Polymerase (5U/ $\mu \mathrm{l}$)
 10X FSP Taq Buffer (with Mg^{2+})
 6X Loading Buffer
 dNTP mix (each 2.5 mM) | 250 units | 50.93 |
| | Polymerase ($5 \mathrm{U} / \mu \mathrm{l}$) | | 1000 units | 155.55 |
| | (w/dNTP) | | | |
| | | | | |

BioLit ${ }^{\circledR}$ PCR Mixes

Routine PCR Master Mixes

Ready-to-use solutions containing the specific DNA Polymerase, dNTP, Mg^{2+} and Reaction Buffer at optimal concentrations for efficient amplification of DNA templates by PCR. This pre-mixed formulation saves time and reduces contamination due to the fewer pipetting steps. Includes Specific DNA Polymerase Mix, Water Nuclease Free.

| 50900 | Taq Mix (2X) (PCR Master Mix (2X)) | 1 ml (40 rxns) | 32.90 |
| :---: | :---: | :---: | :---: |
| | | $5 \times 1 \mathrm{ml}$ (200 rxns) | 98.70 |
| | | $5 \times 2.5 \mathrm{ml}$ (500 rxns) | 197.40 |
| 46503 | Roseate PCR Master Mix (2X) (Taq Mix (2X)) | 1 ml (40 rxns) | 35.53 |
| | | $5 \times 1 \mathrm{ml}$ (200 rxns) | 107.91 |
| | | $5 \times 2.5 \mathrm{ml}$ (500 rxns) | 223.72 |
| 94531 | Pfu Mix (2X) | 1 ml (40 rxns) | 96.46 |
| | | $5 \times 1 \mathrm{ml}$ (200 rxns) | 380.32 |
| 23782 | Plus Mix (2X) | 1 ml (40 rxns) | 98.17 |
| | | $5 \times 1 \mathrm{ml}(200 \mathrm{rxns})$ | 380.32 |
| 66677 | HSP Mix (2X) | $1 \mathrm{ml}(40 \mathrm{rxns})$ | 48.30 |
| | | $5 \times 1 \mathrm{ml}$ (200 rxns) | 199.51 |
| 36250 | Long Taq Mix (2X) | 1 ml (40rxns) | 96.46 |
| | | $5 \times 1 \mathrm{ml}$ (200 rxns) | 238.46 |
| 11307 | FSP Taq Mix (2X) | 1 ml (40 rxns) | 64.35 |
| | | $5 \times 1 \mathrm{ml}$ (200 rxns) | 288.07 |
| 84729 | FSP Taq Mix Direct for blood (2X) | 1 ml (40 rxns) | 97.25 |
| | | $5 \times 1 \mathrm{ml}$ (200 rxns) | 403.49 |
| 20220 | FSP Taq Mix Direct for tissue (2X) | 1 ml (40 rxns) | 97.25 |
| | | $5 \times 1 \mathrm{ml}$ (200 rxns) | 403.49 |

Realtime PCR Master Mix (qPCR)

2X Master Mix for Real-Time PCR, contains all components, except the primer \& template. This reagent is applicable for intercalation assay with FluroGreen dye which is similar to SYBR Green I. Reagent can be used in various detection devices. Also available with passive reference dye of low or high concentrations.
Includes FluroGreen qPCR Mix(2X)w/wt passive refrence dye, Nuclease Free Water

| $0.5 \mathrm{ml}(20 \mathrm{amps})$ | 32.90 |
| ---: | ---: |
| $1 \mathrm{ml}(40 \mathrm{amps})$ | 59.22 |
| $5 \times 1 \mathrm{ml}(200 \mathrm{amps})$ | 236.88 |

| code | product name | application/description | unit | \$ price |
| :---: | :---: | :---: | :---: | :---: |
| 78797 | BioLit FluroGreen qPCR Master Mix (Low CAR) (2X) $\begin{array}{r}0.51 \mathrm{~m} \\ 5 \times 1 \mathrm{~m}\end{array}$ | | (20 amps) (40 amps) (200 amps) | $\begin{array}{r} 39.48 \\ 65.80 \\ 250.04 \end{array}$ |
| 38151 | BioLit FluroGreen qPCR Master Mix (High CAR) (2X) | | (20 amps) (40 amps) (200 amps) | $\begin{array}{r} 39.48 \\ 65.80 \\ 250.04 \end{array}$ |
| BioLit ${ }^{\circledR}$ PCR Accessory Reagents | | | | |
| Ready-to-use reagents for PCR for the user's convenience. | | | | |
| 61318 | 10X PCR Buffer with KCl (Mg^{2+} free) | | $4 \times 1.25 \mathrm{ml}$ | 19.21 |
| 41212 | 10X PCR Buffer with $15 \mathrm{mM} \mathrm{Mg}{ }^{2+}$ | | $4 \times 1.25 \mathrm{ml}$ | 19.21 |
| 43386 | 10X PCR Buffer with Mg^{2+} set | | $6 \times 1.25 \mathrm{ml}$ | 23.69 |
| 90508 | 10X Roseate PCR Buffer with Mg^{2+} | Ready-to-use reagent having two tracking dyes along with the buffer \& MgCl2. Atter PCR, samples can be loaded directly onto the agarose gel for electrophoresis. | $4 \times 1.25 \mathrm{ml}$ | 18.56 |
| 86687 | $25 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ | | $4 \times 1.25 \mathrm{ml}$ | 21.71 |
| 66886 | DEPC-Treated Water | Suitable in any application where RNA is involved and all molecular biology applications. | $\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$ | $\begin{array}{r} 7.24 \\ 22.50 \end{array}$ |
| 96370 | Water, nuclease-free | Suitable for use in all molecular biology applications. | $\begin{array}{r} 5 \times 1 \mathrm{ml} \\ 100 \mathrm{ml} \\ 500 \mathrm{ml} \end{array}$ | $\begin{array}{r} 3.82 \\ 7.24 \\ 22.50 \end{array}$ |
| 20870 | PCR Enhancer | Useful to optimize PCR of problematic and/or GC-rich templates Offers higher primer specificity,and improved themostability of DNA polymerases. | $\begin{array}{r} 0.5 \mathrm{ml} \\ 4 \times 1 \mathrm{ml} \end{array}$ | $\begin{aligned} & 10.53 \\ & 36.85 \end{aligned}$ |
| 52531 | PCR Sample Preparation Solution | Simple, all-inclusive sample preparation solutions for varied samples suitable for direct PCR techniques. | $\begin{aligned} & 50 \text { preps } \\ & 200 \text { preps } \end{aligned}$ | $\begin{aligned} & 22.50 \\ & 86.72 \end{aligned}$ |
| 48044 | Glycogen $(20 \mathrm{mg} / \mathrm{ml})$
 Aq. Solution Ultrapure | | $\begin{array}{r} 2 \times 0.25 \mathrm{ml} \\ 1 \mathrm{ml} \end{array}$ | $\begin{array}{r} 59.22 \\ 111.86 \end{array}$ |
| 79326 | Shrimp Alkaline
 Phosphatase (rSAP) (1U | | 500 units 1000 units | $\begin{aligned} & 113.97 \\ & 213.59 \end{aligned}$ |

Shrimp Alkaline Phosphatase (r-SAP) is a heat labile alkaline phosphatase purified from a recombinant source. rSAP is identical to the native enzyme and contains no affinity tags or other modifications. rSAP nonspecifically catalyzes the dephosphorylation of 5' and 3' ends of DNA and RNA phosphomonoesters.

BioLit ${ }^{\circledR}$ NTP and dNTP Sets, Mixes \& Solutions

NTP Set \& Solutions (100mM each)
The set and individual solutions consist of 100 mM aqueous solutions of ATP, TTP, CTP and GTP each supplied in separate vials. These ready-to-use solutions offer maximum flexibility for various molecular biology applications viz. in vitro transcription, RNA amplification. Applications - for use in PCR, long PCR, RT-PCR, cDNA synthesis, primer extension, DNA sequencing, DNA labeling.

| $\mathbf{6 5 2 4 0}$ | NTP Set Ultrapure $(1040 \mathrm{mM}$ each) | $4 \times 0.25 \mathrm{ml}$ | 72.38 |
| :--- | :--- | ---: | :--- |
| $\mathbf{8 9 8 8 9}$ | ATP Solution Ultrapure $(100 \mathrm{mM})$ | 0.25 ml | 23.95 |
| $\mathbf{7 1 6 3 6}$ | CTP Solution Ultrapure $(100 \mathrm{mM})$ | 0.25 ml | 23.95 |
| $\mathbf{8 8 7 0 5}$ | GTP Solution Ultrapure $(100 \mathrm{mM})$ | 0.25 ml | 23.95 |
| $\mathbf{9 3 6 3 3}$ | UTP Solution Ultrapure $(\mathbf{1 0 0 m M})$ | 0.25 ml | 23.95 |

code product name application/description unit \$price

dNTP Sets ($100 \mathrm{mM}, 10 \mathrm{mM}$)

The sets consists of $10 \mathrm{mM} / 100 \mathrm{mM}$ aqueous solution of dATP, dTTP, dCTP and dGTP, pH 7.0, each supplied in a separate vial. The dNTP Set offers maximum flexibility in preparation of reaction mixes for different molecular biology applications.
Applications - for use in PCR, long PCR, RT-PCR, cDNA synthesis, primer extension, DNA sequencing, DNA labeling.

| 94903 | dNTP Set Ultrapure (100mM each) | $4 \times 0.25 \mathrm{ml}$ | 103.17 |
| :--- | :--- | ---: | ---: |
| | | $4 \times 1 \mathrm{ml}$ | 358.74 |
| $\mathbf{6 9 4 7 8}$ | dNTP Set Ultrapure(10mM each) | $4 \times 0.1 \mathrm{ml}$ | 22.50 |
| | | $4 \times 0.5 \mathrm{ml}$ | 59.88 |
| | | $5 \times(4 \times 0.2 \mathrm{ml})$ | 119.62 |

dNTP Mixes

dNTP Mix is an aqueous solution at pH 7.0 containing dATP, dCTP, dGTP and dTTP, each at a final concentration of $2.5 \mathrm{mM} / 10 \mathrm{mM} / 25 \mathrm{mM}$. They are ready-to-use solutions designed to save time, provide higher reproducibility in PCR and other applications, reduce the number of pipetting steps and the risk of reaction set-up errors.
Applications - for use in PCR, long PCR, RT-PCR, cDNA synthesis, primer extension, DNA sequencing, DNA labeling.

| $\mathbf{7 0 5 9 6}$ | dNTP Mix Ultrapure (2.5mM each) | 31.45 | |
| :--- | :--- | ---: | ---: |
| | | 1 ml | 112.12 |
| $\mathbf{1 8 8 2 1}$ | dNTP Mix Ultrapure (10mM each) | $5 \times 1 \mathrm{ml}$ | 41.98 |
| $\mathbf{1 4 4 6 4}$ | dNTP Mix Ultrapure (25mM each) | $5 \times 1 \mathrm{ml}$ | 127.13 |
| | | 1 ml | 49.35 |
| | | | $5 \times 1 \mathrm{ml}$ |

dNTP Solutions

Each individual dNTP is supplied as a 100 mM solution in sterile, deionized water at pH 7.0 and is prepared from monosodium salts of the free nucleotides.
Applications - for use in PCR, long PCR, RT-PCR, cDNA synthesis, primer extension, DNA sequencing, DNA labeling.

| 72009 | dATP (100 mM Solution) | | $0.2 \mathrm{ml}$ | $\begin{aligned} & 32.90 \\ & 59.88 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 19809 | dCTP (100mM Solution) | | 0.2 ml | 32.90 |
| 47435 | dGTP (100mM Solution) | | 0.5 ml | 59.88 |
| 47435 | dGTP (100mM Solution) | | 0.5 ml | 59.88 |
| 91474 | dTTP (100mM Solution) | | 0.2 ml | 32.90 |
| | | | 0.5 ml | 59.88 |
| 71411 | dUTP (100mM Solution) | | 0.25 ml | 148.05 |
| BioLit ${ }^{\text {® }}$ RNA Accessory Reagents | | | | |
| 75044 | Oligo (dT) 15 primer ($50 \mu \mathrm{M}$) | A synthetic single-stranded 15-mer oligonucleotide with 5'- and | 50 mcl | 26.98 |
| | | 3'-hydroxyl ends. Supplied as an aqueous solution. Used for first strand cDNA synthesis synthesis in presence of reverse transcripta | | |
| 53704 | Random Hexamer Primer 6 -mer ($50 \mu \mathrm{M}$) | A mixture of single-stranded random hexanucleotides with 5'- and 3'-hydroxyl ends. Used during cDNA synthesis to produce cDNAs randomly scattered through mRNA resulting in short strands of cD | 50 mcl
 NA. | 26.98 |
| 96710 | Ribonuclease A Solution ex. Bovine Pancreas (RNAse A Soln) ($10 \mathrm{mg} / \mathrm{ml}$) | RNase A is an endoribonuclease extracted from bovine pancreas that specifically degrades single-stranded RNA.
 (DNase, Protease Free) | $\begin{array}{r} 3 \times 1 \mathrm{ml} \\ 10 \mathrm{ml} \end{array}$ | $\begin{array}{r} 47.90 \\ 149.50 \end{array}$ |
| 38080 | Ribonuclease H (RNase H) (5U/ul) | RNase H is a recombinant endoribonuclease that hydrolyses specifically the phosphodiester bonds of RNA hybridized to DNA and produces 5' phosphate-terminated oligoribonucleotides and | 50 units 250 units single-stran | $\begin{aligned} & 99.75 \\ & 299.00 \\ & \text { NA. } \end{aligned}$ |
| 92030 | RNasin (RNase inhibitor) (40U/ $\mu \mathrm{I}$) | Ribonuclease inhibitor purified from human placenta. It inhibits ribonuclease (RNase) activity of common eukaryotic enzymes such as RNaseA, RNase B, RNase C. Inhibits RNA degradation in the following procedures: in vitro transcription, cDNA synthesis, in vitro translation, isolation of mammalian cell fractions that contain mRNA-protein complex etc. | 1000 units | 53.82 |

| code | product name | application/description | unit | \$ price |
| :---: | :---: | :---: | :---: | :---: |
| 71969 | RNA Stabilizing Solution | An aqueous tissue storage reagent that stabilizes and protects cellular RNA in intact, unfrozen tissue samples. It eliminates the need to immediately process tissue samples or to freeze samples in liquid nitrogen. It does not jeopardize the quality or quantity of RNA in the sample. | $\begin{gathered} 5 \times 1 \mathrm{ml} \\ 100 \mathrm{ml} \\ 500 \mathrm{ml} \end{gathered}$ | 33.16 44.22 103.70 |
| 20310 | RNA Loading Buffer (5X) | It is used to load RNA sample on a formaldehyde agarose gel. It consists of two tracking dyes, Bromophenol blue and Xylene cyanol | $\begin{array}{r} 1 \mathrm{ml} \\ \text { ol. } 5 \times 1 \mathrm{ml} \end{array}$ | $\begin{aligned} & 15.79 \\ & 72.38 \end{aligned}$ |
| 98343 | T7 RNA Polymerase (50U/ul) (w/10X IVT Buffer) | T7 RNA polymerase is a monomeric bacteriophage encoded DNA directed RNA polymerase which catalyzes the formation of RNA in the 5'-3' direction. | 1000 units 5000 units | $\begin{aligned} & 105.28 \\ & 513.24 \end{aligned}$ |
| 76516 | M-MLV (Recombinant) (200U/ μ I) | A Reverse Transcriptase enzyme that generates first PCR strand cDNA for use in PCR, real-time. Includes 10X Reaction Buffer | 5000 units 0000 units | $\begin{aligned} & 118.44 \\ & 210.56 \end{aligned}$ |
| 94837 | RT-PCR Kit (First Strand cDNA Synthesis Kit) | Reverse Transcriptase -PCR Kit is optimized to synthesize first-strand cDNA from purified poly (A) + or total RNA. Includes - M-MLV (200U/ $\mu \mathrm{l})$, RNasin (40U/ $\mu \mathrm{l})$, Oligo(dT)15 ($50 \mu \mathrm{M}$), 100 Random hexamer primer ($50 \mu \mathrm{M}$), 5X First-strand Buffer, RNase-free Water, dNTP mix (10mM each) | 20 preps
 40 preps
 100 preps | $\begin{array}{r} 93.44 \\ 157.00 \\ 373.61 \end{array}$ |
| 41066 | TRIzol-C Reagent | Ready-to-use reagent for the isolation of high yields of total RNA from cells and tissues. As it is differently buffered from TRIzol-T reagent, the isolated RNA may interact with these metal ions if involved in downstream processes. | $\begin{array}{r} 20 \mathrm{ml} \\ 100 \mathrm{ml} \end{array}$ | $\begin{aligned} & 23.95 \\ & 83.70 \end{aligned}$ |
| 99359 | TRIzol-T Reagent | Ready-to-use reagent for the isolation of high yields of total RNA from cells and tissues. Differs in the buffer of TRIzol-T reagent, and is innocuous to all downstream processes. | $\begin{array}{r} 20 \mathrm{ml} \\ 100 \mathrm{ml} \end{array}$ | $\begin{aligned} & 21.06 \\ & 80.80 \end{aligned}$ |

BioLit ${ }^{\circledR}$ Tracking dyes \& Buffers

6x Gel Loading Dyes are pre-mixed loading buffers with tracking dye/s to be added to the nucleic acid samples for agarose and nondenaturing poylacrylamide gel electrophoresis.

| 78591 | 6X Blue Loading Dye | Contains Bromophenol blue as tracking dye. | $5 \times 1 \mathrm{ml}$ | 36.45 |
| :---: | :---: | :---: | :---: | :---: |
| 83184 | 6X DNA Loading Dye | Contains Bromophenol blue and Xylene Cyanol FF as trac | $5 \times 1 \mathrm{ml}$ | 36.45 |
| 56885 | 6X DNA Loading Dye \& SDS solution | Contains Bromophenol blue and Xylene Cyanol FF as trackin The buffer also contains SDS which results in sharper bands some restriction enzymes remain bound to DNA following cl | $5 \times 1 \mathrm{ml}$ | 41.06 |
| 46200 | 6X Orange Loading Dye | Contains Orange G and Xylene Cyanol FF as tracking dyes | $5 \times 1 \mathrm{ml}$ | 36.45 |
| 55895 | 6X TriColor Loading Dye | Contains Orange G, Bromophenol Blue and Xylene Cyanol FF as tracking dyes | $5 \times 1 \mathrm{ml}$ | 36.45 |
| 73530 | 20X DoubleQuick DNA Electrophoresis Buffer | An exceptionally 'swift' agarose gel tank buffer that electrophoreses the DNA samples in less than 10 minutes. | $\begin{aligned} & 250 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$ | $\begin{aligned} & 54.75 \\ & 99.09 \end{aligned}$ |

BioLit ${ }^{\circledR}$ Staining Dyes for Nucleic Acids

Nucleic acid \& protein staining dyes.
50358 BioLit FluroBronze Stain

| A non-carcinogenic nucleic acid stain that is eco-friendly and | 50 mcl | 15.00 |
| :--- | ---: | ---: |
| replaces the use of ethidium bromide. Used for viewing | 250 mcl | 47.90 |
| nucleic acids on agarose gel. | 1 ml | 149.50 |

Advantage: The stain is not added to the gel matrix or the running buffers, but is mixed as a 6X loading buffer with the nucleic acid samples prior to loading onto the gel.
SafeDye Green Stain
100 mcl
(20000X in Water)

code product name application/description unit \quad \$price

BioLit ${ }^{\circledR}$ Cloning Vectors

A cloning vector is a small piece of DNA into which a foreign DNA fragment can be inserted. The insertion of the fragment into the cloning vector is carried out by treating the vehicle and the foreign DNA with the same restriction vector, then ligating the fragments together. There are many types of cloning vectors. Genetically engineered plasmids are most commonly used for this purpose.

BioLit ${ }^{\circledR}$ Ready-to-use DNA Molecular Weight Standards

BioLit DNA markers come in many useful ranges to cover most of the requirements of researchers and students. The markers are provided in a ready-to-use format for convenience and high reproducibility. We recommend a volume of $10 \mu \mathrm{~L}$ ($\sim 1 \mu \mathrm{~g}$ total DNA) per load to ensure that distinct, prominent DNA bands are observed even with a less sensitive UV transilluminator or in a less than optimal dark chamber. Users might be able to load a volume less than that recommended (without compromising results) if a high-sensitivity gel documentation system is available.

The markers have been carefully prepared under sterile conditions and stored in 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5,1 \mathrm{mM}$ EDTA and $1 \mathrm{mg} / \mathrm{ml}$ sodium azide and are unstained markers. Stocks will be stable for several months if properly stored frozen or even refrigerated.

| 10344 | Low-Range DNA Marker: 0.1 - 1kb | This marker range has been designed to assist in determining the size of PCR product, insert and restriction analysis. These ready-to-load DNA markers contain Bromophenol Blue as the tracking dye. Size range: 103 to 1074bp | $\begin{array}{r} 15 \mathrm{mcg} \\ 50 \mathrm{mcg} \\ 100 \mathrm{mcg} \end{array}$ | $\begin{array}{r} 26.98 \\ 76.33 \\ 143.58 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| 12447 | Mid-Range DNA
 Marker: 0.5 - 5kb | This marker range should facilitate the analysis of inserts cloned into commonly used plasmids and restriction digests.
 These ready-to-load DNA markers contain Bromophenol Blue as the tracking dye. Size range: 448 to 5024bp | $\begin{array}{r} 15 \mathrm{mcg} \\ 50 \mathrm{mcg} \\ 100 \mathrm{mcg} \end{array}$ | $\begin{array}{r} 26.98 \\ 76.33 \\ 143.58 \end{array}$ |
| 45587 | Hi-Range DNA Marker: 2.0 - 25kb | This marker range is useful for experiments involving mega plasmids or genomic analysis. These ready-to-load DNA markers contain Bromophenol Blue as the tracking dye. Size range: 2.0 to 25 kb | $\begin{array}{r} 15 \mathrm{mcg} \\ 50 \mathrm{mcg} \\ 100 \mathrm{mcg} \end{array}$ | $\begin{aligned} & 26.98 \\ & 41.98 \\ & 76.33 \end{aligned}$ |

These DNA markers are packaged in ready-to-use convenient quantities, 150, $500 \& 1000 \mu \mathrm{~L}$, containing $15,50 \& 100 \mu \mathrm{~g}$ respectively, recommended for 15,50 \& 100 loadings respectively.

BLM013

20082
ProxiO DNA
Marker 4 : $0.5-10 \mathrm{~kb}$

54882
$48234 \begin{array}{ll} & \text { ProxiO DNA } \\ & \text { Marker 2:0.1-1.2kb } \\ 30219 & \begin{array}{l}\text { ProxiO DNA } \\ \text { Marker } 3: 0.2-4.5 \mathrm{~kb}\end{array}\end{array}$

BLM014

BLM015

BLM016

Size range: 100 to 600bp
These ready-to load DNA markers contain Bromophenol Blue and Xylene Cyanol as the tracking dye. Accompanied by a vial of 6X Orange Loading Dye.

Size range: 100 to 1200bp These ready-to load DNA markers contain Bromophenol Blue and Xylene Cyanol as the tracking dye. Accompanied by a vial of 6X Orange Loading Dye.

Size range: 200 to 4500bp
These ready-to load DNA markers contain Bromophenol Blue and Xylene Cyanol as the tracking dye. Accompanied by a vial of 6X Orange Loading Dye.
Size range: 500 to 15000 bp
These ready-to load DNA markers contain Bromophenol Blue and Xylene Cyanol as the tracking dye. Accompanied by a vial of 6X Orange Loading Dye.

BioLit ${ }^{\oplus}$ FluroBronze ${ }^{\text {Tw }}$ DNA Marker Packs

The varying range of specially prepared DNA marker packs (ready-to-load) contain in addition to the tracking dyes, a non-carcinogenic nucleic acid stain (BioLit ${ }^{\oplus}$ FluroBronze ${ }^{\text {TM }}$ Stain) for detection of the marker bands. This nucleic acid stain replaces ethidium bromide in agarose gel preparation thus simplifying the preparation of agarose gel sans a potentially mutagenic dye.

Size range: 500 to 15000bp 50 mcg 166.21

These ready-to-load DNA markers contain Bromophenol Blue \& Xylene Cyanol as the tracking dye along with FluroBronze stain as the fluorescent dye. Accompanied by a vial of 6X FluroBronze Stain.

| code | product name application/desc | cription | unit | \$ price |
| :---: | :---: | :---: | :---: | :---: |
| 32462 | FluroBronze ${ }^{\text {rm }}$ Mid Range DNA Marker | Size range: 448 to 5,024bp
 These ready-to-load DNA markers contain Bromophenol Blue as the tracking dye along with FluroBronze stain as the fluorescent dye. Accompanied by a vial of 6X FluroBronze Stain | 50 mcg | 141.47 |
| 99331 | FluroBronze ${ }^{\text {TM }}$ Hi-Range DNA Marker | Size range: 2.0 to 25kb
 These ready-to-load DNA markers contain Bromophenol Blue as the tracking dye along with FluroBronze stain as the fluorescent dye. Accompanied by a vial of 6X FluroBronze Stain | 50 mcg | 189.11 |
| BioLit ${ }^{\circledR}$ SafeDye DNA Marker Packs | | | | |
| The varying range of DNA marker packs (ready-to-load) are accompanied by a vial of SafeDye Stain, a non-carcinogenic nucleic acid stain mixed in a 6X loading buffer, for detection of the marker bands. This nucleic acid stain replaces ethidium bromide in agarose gel preparation thus eliminating a potentially mutagenic dye. | | | | |
| 57493 | SafeDye ${ }^{\text {TM }}$ DNA Marker 1 | Size range: 100 to 600bp
 These ready-to-load DNA markers contain Bromophenol Blue \& Xylene Cyanol as the tracking Accompanied by a vial of 6X SafeDye Stain. | 50 mcg dye. | 147.52 |
| 21054 | SafeDye ${ }^{\text {TM }}$ DNA Marker 4 | Size range: 500 to 15000bp
 These ready-to-load DNA markers contain Bromophenol Blue \& Xylene Cyanol as the tracking Accompanied by a vial of 6X SafeDye Stain. | 50 mcg dye. | 147.52 |
| 81685 | SafeDye ${ }^{\text {Tm }}$ Mid range DNA Marker | Size range: 448 to 5,024 bp
 These ready-to-load DNA markers contain Bromophenol Blue as the tracking dye. Accompanied by a vial of 6X SafeDye Stain. | 50 mcg | 170.55 |
| 56678 | SafeDye ${ }^{\text {TM }}$ Hi-range DNA Marker | Size range: 2.0 to 25 kb
 These ready-to-load DNA markers contain Bromophenol Blue as the tracking dye. Accompanied by a vial of 6X SafeDye Stain. | 50 mcg | 170.55 |

code product name application/description unit price

BioLit ${ }^{\text {D }}$ DNA Ladders

These ready-to-load ladders are designed with precise DNA fragments for accurate quantification by agarose gel electrophoresis. The concentration of each band is kept uniform to give sharp bands. A single or multiple bands in the ladders are made intense to orient the user to the other bands in the ladder. Recommended Loading volume 3-5 μ I. The products are unstained DNA Ladders.

BioLit ${ }^{\text {TM }}$ - Ready-to-use DNA Ladders

| code | product name | application/description | | | unit | \$ price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Proxio | | ProxiO 100bp DNA Ladder Plus | ProxiO 200bp DNA Ladder
 1)TAE, 7 V/cm, 40 min | Proxio 500bp DNA Ladder | Proxi | |
| Proxio | DNA Ladder Pus | D2000 Ladder
 5 ivane. 8 cm oel $0.5 \times$ TBE. $7 \mathrm{Vicm} . ~$ 0 min | D5000 Ladder | | | |
| code old/new | product name | application/description | | | unit | |
| 44897 | ProxiO 10bp | A Ladder $\begin{array}{ll}\text { Size } \\ & \text { Cont } \\ & \text { track } \\ & \text { Load }\end{array}$ | 80 to 300 bp omophenol Blue and es. Accompanied by e. | ene Cyanol as the al of 6X Orange | 50 mcg | 130.68 |
| 98628 | ProxiO 20bp | A Ladder $\begin{array}{ll}\text { Size } \\ & \text { Cont } \\ & \text { trackin } \\ & \text { Load }\end{array}$ | 60 to 300 bp omophenol Blue a es. Accompanied by e. | ene Cyanol as the al of 6X Orange | 50 mcg | 117.26 |
| 68905 | ProxiO Low D | $\begin{array}{ll}\text { A Ladder } & \text { Size } \\ & \text { Cont } \\ & \text { track } \\ & \text { Load }\end{array}$ | Contains Bromophenol Blue and Xylene Cyanol as the tracking dyes. Accompanied by a vial of 6X Orange | | $\begin{array}{r} 50 \mathrm{mcg} \\ 5 \times 50 \mathrm{mcg} \end{array}$ | $\begin{array}{r} 98.70 \\ 483.89 \end{array}$ |
| 82208 | ProxiO 50bp | A Ladder Size
 Cont
 track
 Load | Contains Bromophenol Blue and Xylene Cyanol as the tracking dyes. Accompanied by a vial of 6X Orange | | $\begin{array}{r} 50 \mathrm{mcg} \\ 5 \times 50 \mathrm{mcg} \end{array}$ | $\begin{array}{r} 93.04 \\ 305.84 \end{array}$ |
| 88417 | ProxiO 50bp | A Ladder Plus $\begin{array}{r}\text { Size } \\ \text { Cont } \\ \text { track } \\ \text { Load }\end{array}$ | Contains Bromophenol Blue and Xylene Cyanol as the tracking dyes. Accompanied by a vial of 6X Orange Loading Dye. | | $\begin{array}{r} 50 \mathrm{mcg} \\ 5 \times 50 \mathrm{mcg} \end{array}$ | $\begin{array}{r} 89.09 \\ 311.76 \end{array}$ |
| 92972 | ProxiO 100bp | NA Ladder $\begin{array}{ll}\text { Size } \\ & \text { Cont } \\ & \text { track } \\ & \text { Load }\end{array}$ | Contains Bromophenol Blue and Xylene Cyanol as the tracking dyes. Accompanied by a vial of 6X Orange Loading Dye. | | $\begin{array}{r} 50 \mathrm{mcg} \\ 5 \times 50 \mathrm{mcg} \end{array}$ | $\begin{array}{r} 74.75 \\ 289.39 \end{array}$ |

| code | product name application/description | | unit | \$ price |
| :---: | :---: | :---: | :---: | :---: |
| 84628 | ProxiB 100bp DNA Ladder | Size range: 100 to 1,500 bp | 50 mcg | 74.75 |
| | | Contains Bromophenol Blue and Xylene Cyanol as the tracking dyes. | $5 \times 50 \mathrm{mcg}$ | 289.39 |
| 52075 | ProxiO 100bp DNA Ladder Plus | Size range: 100 to 3,000 bp | 50 mcg | 74.75 |
| | | Contains Bromophenol Blue and Xylene Cyanol as the tracking dyes. Accompanied by a vial of 6X Orange Loading Dye. | $5 \times 50 \mathrm{mcg}$ | 289.39 |
| 50255 | ProxiB 100bp DNA Ladder Plus | Size range: 100 to 3,000 bp | 50 mcg | 74.75 |
| | | Contains Bromophenol Blue and Xylene Cyanol as the tracking dyes. | $5 \times 50 \mathrm{mcg}$ | 289.39 |
| 37217 | ProxiO 200bp DNA Ladder | Size range: 200 to 4,000 bp Contains Bromophenol Blue and Xylene Cyanol as the tracking dyes. Accompanied by a vial of 6X Orange Loading Dye. | 50 mcg | 114.23 |
| 93121 | ProxiO 500bp DNA Ladder | Size range: 500 to 5,000 bp Contains Bromophenol Blue and Xylene Cyanol as the tracking dyes. Accompanied by a vial of 6X Orange Loading Dye. | 50 mcg | 120.15 |
| 48290 | ProxiO 1kb DNA Ladder | Size range: 500 to 10,000 bp | 50 mcg | 73.17 |
| | | Contains Bromophenol Blue and Xylene Cyanol as the tracking dyes. Accompanied by a vial of 6X Orange Loading Dye. | 5X 50 mcg | 313.08 |
| 93406 | ProxiO 1kb DNA Ladder Plus | Size range: 100 to 10,000 bp | 50 mcg | 73.17 |
| | | Contains Bromophenol Blue and Xylene Cyanol as the tracking dyes. Accompanied by a vial of 6X Orange Loading Dye. | 5X50 mcg | 313.08 |
| 77305 | PCR Ladder | This size marker covers the most common range encountered in PCR and shows an aesthetically pleasing ladder of five bands (50, 150, 300, 500, and 800 bp) that separate uniformly as shown. Contains Bromophenol B as the tracking dye. | 10 mcg 50 mcg | $\begin{aligned} & 24.48 \\ & 77.78 \end{aligned}$ |

BioLit ${ }^{\circledR}$ FluroBronze ${ }^{\text {TM }}$ DNA Ladder Packs

The varying range of specially prepared DNA ladder packs (ready-to-load) contain in addition to the tracking dyes, a non-carcinogenic nucleic acid stain (BioLit FluroBronze Stain) for detection of the ladder bands. This nucleic acid stain replaces ethidium bromide in agarose gel preparation thus simplifying the preparation of agarose gel sans a potentially mutagenic dye.

| 76195 | FluroBronze ${ }^{\text {Tm }}$ PCR Ladder | Size range: 50 to 800 bp Contains Bromophenol Blue as the tracking dye along with FluroBronze stain as the fluorescent dye Also accompanied by a vial of 6X FluroBronze Stain | $50 \text { mcg }$ | 145.68 |
| :---: | :---: | :---: | :---: | :---: |
| 39563 | FluroBronze ${ }^{\text {TM }}$ 50bp Ladder Plus | Size range: 50 to 1,000 bp
 Contains Bromophenol Blue \& Xylene Cyanol as the tracking dyes along with FluroBronze stain as the fluorescent dye. Also accompanied by a vial of 6X FluroBronze Stain. | 50 mcg | 158.58 |
| 97958 | FluroBronze ${ }^{\text {Tm }} 100 \mathrm{bp}$ Ladder | Size range: 100 to $1,500 \mathrm{bp}$ Contains Bromophenol Blue \& Xylene Cyanol as the tracking dyes along with FluroBronze stain as the fluorescent dye. Also accompanied by a vial of 6X FluroBronze Stain. | 50 mcg | 142.00 |

| code | application/description | | unit | \$ price |
| :---: | :---: | :---: | :---: | :---: |
| 72601 | FluroBronze ${ }^{\text {rm }} 100 \mathrm{bp}$ Ladder Plus | Size range: 100 to 3,000 bp Contains Bromophenol Blue \& Xylene Cyanol as the tracking dyes along with FluroBronze stain as the fluorescent dye. Also accompanied by a vial of 6X FluroBronze Stain. | 50 mcg | 141.08 |
| 54896 | FluroBronze ${ }^{\text {TM }}$ 500bp Ladder | Size range: 500 to $5,000 \mathrm{bp}$ Contains Bromophenol Blue \& Xylene Cyanol as the tracking dyes along with FluroBronze stain as the fluorescent dye. Also accompanied by a vial of 6X FluroBronze Stain. | 50 mcg | 188.06 |
| 23416 | FluroBronze ${ }^{\text {TM }} \mathbf{1 k b}$ Ladder Plus | Size range: 100 to 10,000 bp Contains Bromophenol Blue \& Xylene Cyanol as the tracking dyes along with FluroBronze stain as the fluorescent dye. Also accompanied by a vial of 6X FluroBronze Stain. | 50 mcg | 134.63 |

BioLit ${ }^{\circledR}$ SafeDye ${ }^{T M}$ DNA Ladder Packs

The varying range of DNA ladder packs (ready-to-load) contain DNA ladders accompanied by the BioLit SafeDye Stain, a non-carcinogenic nucleic acid stain mixed in a 6X loading buffer, for detection of the ladder bands. This nucleic acid stain replaces ethidium bromide in agarose gel preparation thus eliminating a potentially mutagenic dye.

| 64935 | SafeDye ${ }^{\text {TM }}$ PCR Ladder | Size range: 50 to 800 bp Contains Bromophenol Blue as the tracking dye. Also accompanied by a vial of 6X SafeDye Stain. | 50 mcg | 136.47 |
| :---: | :---: | :---: | :---: | :---: |
| 19262 | SafeDye ${ }^{\text {Tm }}$ 50bp Ladder Plus | Size range: 50 to 1,000 bp Contains Bromophenol Blue \& Xylene Cyanol as the tracking dyes. Also accompanied by a vial of 6X SafeDye Stain. | 50 mcg | 140.15 |
| 33902 | SafeDye ${ }^{\text {rm }}$ 100bp Ladder | Size range: 100 to $1,500 \mathrm{bp}$ Contains Bromophenol Blue \& Xylene Cyanol as the tracking dyes. Also accompanied by a vial of 6X SafeDye Stain. | 50 mcg | 142.00 |
| 53261 | SafeDye ${ }^{\text {Tm }}$ 100bp Ladder Plus | Size range: 100 to 3,000 bp Contains Bromophenol Blue \& Xylene Cyanol as the tracking dyes. Also accompanied by a vial of 6X SafeDye Stain. | 50 mcg | 119.89 |
| 27107 | SafeDye ${ }^{\text {TM }}$ 500bp Ladder | Size range: 500 to 5,000 bp Contains Bromophenol Blue \& Xylene Cyanol as the tracking dyes. Also accompanied by a vial of 6X SafeDye Stain. | $50 \mathrm{mcg}$ | 169.63 |
| 29877 | SafeDye ${ }^{\text {TM }} 1 \mathrm{~kb}$ Ladder Plus | Size range: 100 to 10,000 bp Contains Bromophenol Blue \& Xylene Cyanol as the tracking dyes. Also accompanied by a vial of $6 \times$ SafeDye Stain. | 50 mcg | 134.63 |

| code | product name application/description unit | | \$ price |
| :---: | :---: | :---: | :---: |
| Surface Decontamination Spray | | | |
| 69341 | DNA Decontam Surface Decontamination Spray | Eliminate unwanted DNA and DNase from glassware 250ml and plastic ware without affecting subsequent DNA samples and plastic ware without affecting subsequent DNA samples. Supplied in a spray bottle | 46.06 |
| 27248 | RNAse Decontam Surface Decontamination Spray | A surface decontamination solution that destroys 250 ml RNases on contact. Spray the Solution onto surfaces to be decontaminated and rinse off with
 RNase-free-water. Supplied in a spray bottle format. | 52.64 |

BioLit ${ }^{\circledR}$ Restriction Enzymes

BioLit ${ }^{\circledR}$ Restriction Enzymes are highly purified and ensure that the integrity of your DNA is not compromised, making them the enzymes of choice for even the most demanding applications. All the Restriction Enzymes are accompanied with their specific reaction buffer to enable 100\% enzyme activity.

| 85844 | Alul (10U/ $\mu \mathrm{l}$) | 100 unit | 72.38 |
| :---: | :---: | :---: | :---: |
| 51914 | BamHI (10U/ $\mu \mathrm{l}$) | 2500 unit | 43.43 |
| | | 10000 unit | 144.76 |
| 32338 | Bgll (10U/ $\mu \mathrm{l}$) | 1500 unit | 84.49 |
| 24848 | BgIII (10U/ $/ \mathrm{l}$) | 250 unit | 28.95 |
| | | 500 unit | 52.64 |
| 78895 | BspTI (MspCI,AfIII) (10U/ $\mu \mathrm{l}$) | 250 unit | 36.85 |
| 23203 | Eco91I (BstEII) (10U/ $\mu \mathrm{l}$) | 500 unit | 43.43 |
| 99402 | Dral (10U/ $\mu \mathrm{l}$) | 1000 unit | 111.86 |
| 91290 | EcoRI ($10 \mathrm{U} / \mu \mathrm{l})$ | 4000 unit | 46.06 |
| | | 10000 unit | 110.54 |
| 90279 | EcoRV (Eco321) (10U/ $\mu \mathrm{l}$) | 1500 unit | 56.32 |
| 61338 | Haelll (BsuRI, BshFI) (10U/ $\mu \mathrm{l}$) | 3000 unit | 82.91 |
| | | 10000 units | 263.20 |
| 44261 | Hincll (Hindll) ($10 \mathrm{U} / \mu \mathrm{l})$ | 250 units | 46.06 |
| | | 1000 units | 164.50 |
| 77976 | HindIII ($10 \mathrm{U} / \mu \mathrm{l}$) | 2500 units | 50.01 |
| | | 5000 units | 98.70 |
| 36322 | Hinfl (10U/ $\mu \mathrm{l}$) | 750 unit | 47.38 |
| 15100 | KspAI (Hpal) (10U/ $\mu \mathrm{l}$) | 200 unit | 64.48 |
| | | 500 unit | 151.34 |
| 47167 | Kpnl (10U/ $\mu \mathrm{l}$) | 1000 unit | 28.95 |
| | | 2000 unit | 131.60 |
| 65301 | Mbol (10U/ $\mu \mathrm{l}$) | 300 unit | 157.92 |
| | | 1100 unit | 526.40 |
| 79971 | Ncol (10U/ $/$) | 125 unit | 38.16 |
| | | 300 unit | 82.25 |
| 75760 | Ndel (10U/ $\mu \mathrm{l}$) | 500 unit | 28.95 |
| | | 2500 unit | 118.44 |
| 97361 | Notl (10U/ $\mu \mathrm{l}$) | 100 unit | 63.17 |
| | | 250 unit | 144.76 |

| code | product name | application/description | unit |
| :--- | :--- | :--- | ---: | \$ price

BioLit ${ }^{\circledR}$ QuickRxn Restriction Enzymes

These restriction enzymes reduce digestion time and speed up the downstream processes.

| 81536 | QuickRxn BamHI (20U/mcl) | 250 units | 7.90 |
| :---: | :---: | :---: | :---: |
| | | 1000 units | 22.37 |
| 15918 | QuickRxn EcoRI (20U/mcl) | 250 units | 6.58 |
| | | 1000 units | 15.79 |
| 15723 | QuickRxn HindIII (20U/mcl) | 250 units | 6.58 |
| | | 1000 units | 23.69 |
| 38616 | QuickRxn Kpnl (20U/mcl) | 250 units | 12.50 |
| | | 1000 units | 31.58 |
| 54781 | QuickRxn Ncol (20U/mcl) | 100 units | 39.48 |
| | | 250 units | 44.74 |
| 57426 | QuickRxn Ndel (20U/mcl) | 250 units | 19.74 |
| | | 1000 units | 55.27 |
| 60399 | QuickRxn Notl (20U/mcl) | 100 units | 67.12 |
| | | 250 units | 155.29 |
| 64479 | QuickRxn Pstl (20U/mcl) | 250 units | 9.21 |
| | | 1000 units | 28.95 |
| 37862 | QuickRxn Sall | 250 units | 28.95 |
| 49604 | QuickRxn Smal (20U/mcl) | 250 units | 42.11 |
| 25887 | QuickRxn Xhol (20u/mcl) | 250 units | 18.42 |
| | | 1000 units | 47.38 |

code product name application/description unit \quad \$ price

BioLit ${ }^{\circledR}$ Ligases

This DNA ligase, an ATP-dependent recombinant enzyme, isolated from Escherichia coli, is used for DNA cloning

| 85315 | T4 DNA Ligase VLC (20CEU/ μ I or 0.1 Weiss Unit/ μ I) | T4 DNA ligase is a polypeptide that catalyzes the formation of phosphodiaster bonds between adjacent 3^{\prime}-hydroxyl and 5'- phosphate termini in DNA. The enzyme is active on double-stranded DNA, nicked and RNA substrates.
 One Weiss unit is equivalent to approximately 200 cohesive end ligation units (CEU)
 (Includes Reaction Buffer) | 10000 Units (CEU) 40000 Units (CEU)
 NA | $\begin{aligned} & 32.90 \\ & 74.75 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 41686 | T4 DNA Ligase LC (200CEU/ μ I or 1 Weiss Unit/ μ I) | T4 DNA ligase is a polypeptide that catalyzes the formation of phosphodiaster bonds between adjacent 3'-hydroxyl and 5'- phosphate termini in DNA. The enzyme is active on double-stranded DNA, nicked DNA and RNA substrates.
 One Weiss unit is equivalent to approximately 200 cohesive end ligation units (CEU)
 (Includes Reaction Buffer) | 200 Units (Weiss) 1000 Units (Weiss) 5000 Units (Weiss) | $\begin{array}{r} 37.37 \\ 67.38 \\ 112.12 \end{array}$ |
| 67428 | T4 DNA Ligase RC (1000CEU/ μ l or 5 Weiss Unit/ $\mu \mathrm{l}$) | T4 DNA ligase is a polypeptide that catalyzes the formation of phosphodiaster bonds between The enzyme is active on double-stranded DNA, nicked DNA and RNA substrates.
 One Weiss unit is equivalent to approximately 200 cohesive end ligation units (CEU)
 (Includes Reaction Buffer) | 250 Units (Weiss) 1000 Units (Weiss) | $\begin{array}{r} 74.75 \\ 127.13 \end{array}$ |
| 32581 | Tth DNA Ligase Swift ($5 \mathrm{U} / \mu \mathrm{l}$) Thermostable | An enzyme isolated from Escherichia Coli strain containing plasmid carrying the Thermus thermophilus DNA ligase, ligates DNA fragments within 15 minutes. Works on sticky ends only. | 100 Units (Weiss) 200 Units (Weiss) | $\begin{aligned} & 144.76 \\ & 289.52 \end{aligned}$ |

BioLit ${ }^{\circledR}$ Ready-to-use Unstained Protein Molecular Weight Standards

| RRI | Biolit ${ }^{\text {TM }}$ - Ready-to-use Protein Markers | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| bp | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240 |
| Product Code | | | | | | | | | | | | |
| bLm001 | | ge 1 F | ein Ma | | | | | | | | | |
| bLmooz | | gge 3 F | ein Ma | | | | | | | | | |
| BLM004 | | ar rang | rotein | | | | | | | | | |
| BLM005 | Low ra | otein | rker | | | | | | | | | |
| 78084 | | -Rang | Protein | Marke | | | | | | | | |
| 99625 | | Range | otein | rker | | | | | | | | |
| | | | | | | | | | | | | |

BioLit protein molecular weight standards cover the useful range of protein sizes that a researcher or student requires for routine experiments. The recommended loading volume is $20 \mu \mathrm{l}$, giving approximately $5 \mu \mathrm{~g}$ of each protein sufficient for detection by Coomassie blue staining. The products are unstained markers. The proteins have been dissolved and denatured in the standard SDS-PAGE sample-loading buffer. Prepared under sterile conditions, these markers have appropriate additives to ensure long-term stability when they are stored in a refrigerator or freezer and even with brief exposure to room temperature. Although boiling is not required prior to loading, doing so will not affect results.

Profile in SDS-12\% PAGE
($20 \mu 1$ in a mini gel)

58511
Mid-Range 3
Protein Marker: $14-95 \mathrm{kDa}$
This ready-to-use marker covers a slightly higher
range of protein sizes of $14-95 \mathrm{kDa}$ and contains Bromophenol
Blue as the tracking dye. It has eight bands of varying molecular sizes that a researcher or student requires for routine experiments.

78084
Popular-Range
This molecular weight marker covers a general
kDa Protein Marker: 14-66kDa
0.5 ml
0.5 ml
32.11
range of protein sizes 14-66 kDa that is typically
1 ml
used by a reseacher. It contains Bromophenol
Blue as the tracking dye.
57.90
57.90
0.5 ml

1 ml
2.5 ml Blue as the tracking dye. It has nine bands
This ready-to-use marker covers the useful range

$$
121.86
$$ of varying molecular sizes that a researcher or student requires for routine experiments.

Profile in SDS-12\% PAGE
($20 \mu 1$ in a mini gel)

Ready-to-use Prestained Protein Molecular Weight Standards

| 68894 | PreStained Blue Protein Marker: 14-66kDa | Blue Prestained Protein Molecular Weight Standard, contains a mix of proteins, coupled with a blue chromophore. This marker has 6 bands in range of 14 to 66kDa. | 0.5 ml | 33.56 |
| :---: | :---: | :---: | :---: | :---: |
| 93675 | PreStained Dual Coloured | This Protein Molecular Weight Standard, contains a mix of | 0.25 ml | 33.16 |
| | Protein Marker: 14-66kDa proteins, coupled with blue and red chromophore. | | 0.5 ml | 55.27 |
| | | This marker has 6 bands in range of 14 to 66kDa. | | |
| 27839 | PreStained High Range 1 | This Protein Ladder is a three-color protein standard with | 0.25 ml | 159.89 |
| | Tri-Coloured Protein | 10 bands in the range of 10 to 180 kDa . Proteins are covalently | 1 ml | 461.26 |
| | Ladder: 10-180kDa | coupled with a blue chromophore except for two reference bands (one green and one red band at 25 kDa and 75 kDa respectively) when separated on SDS-PAGE (Tris-glycine buffer). | | |

| code | product name | application/description | unit | \$ price |
| :---: | :---: | :---: | :---: | :---: |
| 67792 | PreStained High Range 2 Tri-Coloured Protein Ladder: 10-245kDa | This Protein Ladder is a three-color protein standard with 12 bands in the range of 10 to 245 kDa . Proteins are covalently coupled with a blue chromophore except for two reference bands (one green and one red band at 25 kDa and 75 kDa respectively) when separated on SDS-PAGE (Tris-glycine buffer). | $\begin{array}{r} 0.25 \mathrm{ml} \\ 1 \mathrm{ml} \end{array}$ | $\begin{aligned} & 131.60 \\ & 500.08 \end{aligned}$ |
| 49772 | PreStained High Range 3 Tri-Coloured Protein Marker: 10-315kDa | A ready-to-use Prestained protein marker giving 12 discrete fragments (in kDa): 315 (orange), 250, 180, 130, 95 (Blue) , 72 (orange), 52 (green), 43, 34, 26, 17 (blue), and 10 (green). | 0.25 ml | 552.72 |

BioLit ${ }^{\circledR}$ Staining Dyes for Proteins

$25437 \quad$ BioLit SpryBlue Stain
Store at $2-8^{\circ} \mathrm{C}$
for SDS PAGE

| A snappy stain for Polyacrylamide gels that accelerates | 250 ml | 9.21 |
| :--- | :--- | ---: |
| the staining of proteins and eliminates the need for destains. | 500 ml | 15.79 |

the staining of proteins and eliminates the need for destains. 500 ml

Buffers

85074

Borate Buffer (20X) (Amine-free)
88480
SDS PAGE Sample Buffer (2X) (Reducing)

Ideal buffer solution that is used in protein modification $\begin{array}{ll}\text { procedures requiring amine-free buffer at alkaline } \mathrm{pH} . & 500 \mathrm{ml} \\ 98.70\end{array}$

100 ml
28.95 (Laemmli Buffer 2X)

It is the most commonly used sample buffer for SDS-PAGE $\quad 5 \mathrm{ml} \quad 5.13$
$\begin{array}{lll}\text { of denatured proteins it is a ready-to-use 2X solution. It can be used } & 20 \mathrm{ml} & 19.74\end{array}$
for SDS-PAGE protein loading of conventional proteins.
99573
SDS PAGE Sample Buffer (5X) (Reducing)

It is the most commonly used sample buffer for SDS-PAGE
5 ml

98786 SDS PAGE Sample of denatured proteins it is a ready-to-use 5 X solution. It can be used 20 ml 23.69 for SDS-PAGE protein loading of conventional proteins. Buffer (5X) (Reducing) w/ DTT w/ BPB
35974
SDS PAGE Sample
It is the most commonly used sample buffer for SDS-PAGE 5 ml 32.90
of denatured proteins it is a ready-to-use 5 X solution. It can be used for SDS-PAGE protein loading of conventional proteins.
It is the most commonly used sample buffer for SDS-PAGE $5 \mathrm{ml} \quad 32.90$ of denatured proteins it is a ready-to-use 5 X solution. It can be used for SDS-PAGE protein loading of conventional proteins.

BioLit ${ }^{\circledR}$ SDS PAGE Accessory Reagents

Ready-to-use Separating gel mix in a various percentage ranges and Stacking gel mix to simplify the process of SDS PAG preparation and eliminate pipetting errors.

| 91574 | Ready-To-Use Stacking Gel mix - 4\% | 250 ml | 28.56 |
| :---: | :---: | :---: | :---: |
| 86325 | Ready-To-Use Stacking Gel mix - 4\% (Coloured) | 100 ml | 13.69 |
| 24723 | Ready-To-Use Separating Gel mix - 10\% | 100 ml | 32.11 |
| 80306 | Ready-To-Use Separating Gel mix - 12\% | 100 ml | 32.11 |
| 88394 | Ready-To-Use Separating Gel mix - 15\% | 100 ml | 32.11 |

BioLit ${ }^{\circledR}$ Protease for Recombinant Protein Fusion Tag Cleavage

| A highly sequence-specific cysteine protease from Tobacco | 1000 Units | 134.63 |
| :--- | :--- | :--- |
| Etch Virus (TEV). Removes affinity tags from purified | 5000 Units | 523.11 |
| recombinant fusion proteins and its specificity gives controlled | | |
| cleavage. Effective over a broad range of temperature | | |

| code | product name | application/description | unit | \$ price |
| :---: | :---: | :---: | :---: | :---: |
| Antibodies | | | | |
| 41262 | Express Coating Buffer (1X, pH 6.4) for Antigens \& Antibodies | A special coating buffer for rapid adsorptive immobilization of proteins, enzymes, antigens or antibodies on any plastic surface including ELISA plates. It coats the surface within 10-15mins. | 100 ml 500 ml | $\begin{array}{r} 32.90 \\ 105.28 \end{array}$ |
| 91754 | Express Coating Buffer (1X, pH pH 8.5) for Antigens \& Antibodies | A special coating buffer for rapid adsorptive immobilization of proteins, enzymes, antigens or antibodies on any plastic surface including ELISA plates. It coats the surface within 10-15mins. | $\begin{aligned} & 100 \mathrm{ml} \\ & 500 \mathrm{ml} \end{aligned}$ | $\begin{array}{r} 46.06 \\ 118.44 \end{array}$ |
| 37971 | Goat anti-Human IgG (affinity purified) ($2 \mathrm{mg} / \mathrm{ml}$) | Antiserum is produced in Goat using highly purified human IgG as the immunogen. Whole antiserum is fractionated and then further purified by affinity chromatography to provide the IgG fraction of antiserum. | 1 ml | 63.43 |
| 77924 | Goat anti-Human IgG-HRP ($\mathbf{1 m g} / \mathrm{ml}$) | Purified IgG conjugated to Horseradish Peroxidase (HRP). Pooled antisera from goats hyperimmunized with human IgG | 1 ml | 168.97 |
| 57404 | Goat anti-Mouse IgG-HRP (1 mg/ml) | Polyclonal Goat antibodies conjugated with HRP. Pooled antisera from goats hyperimmunized with Mouse IgG | 1 ml | 168.97 |
| 54537 | Goat anti-Rabbit IgG (whole serum) ($3 \mathrm{mg} / \mathrm{ml}$) | Antiserum is produced in Rabbit using highly purified bovine IgG as the immunogen. Whole antiserum is fractionated and then further purified by affinity chromatography to provide the IgG fraction of anti | 1 ml 5 ml iserum. | $\begin{array}{r} 42.24 \\ 168.97 \end{array}$ |
| 88495 | Goat anti-Rabbit IgG-HRP ($1 \mathrm{mg} / \mathrm{ml}$) | Polyclonal Goat antibodies conjugated with HRP. Pooled antisera from goats hyperimmunized with Rabbit IgG. | 1 ml | 168.97 |
| 68977 | Rabbit anti-Bovine IgG (whole serum) ($\mathbf{2 m g} / \mathrm{ml}$) | Antiserum is produced in Rabbit using highly purified bovine IgG as the immunogen. Whole antiserum is fractionated and then further purified by affinity chromatography to provide the IgG fraction of anti | 1 ml
 iserum. | 33.82 |
| 21105 | $\begin{aligned} & \text { Rabbit anti-Bovine } \\ & \text { IgG-HRP } \\ & \text { (whole serum) (} 1 \mathrm{mg} / \mathrm{ml} \text {) } \end{aligned}$ | Anti-Bovine secondary antibodies conjugated with HRP. Pooled antisera from cows hyperimmunized with rabbit IgG | 1 ml | 168.97 |
| 57919 | Rabbit anti-Chicken IgY (whole serum) | | $\begin{aligned} & 1 \mathrm{ml} \\ & 5 \mathrm{ml} \end{aligned}$ | $\begin{array}{r} 98.57 \\ 309.79 \end{array}$ |
| 26249 | Rabbit Anti-Human IgG (whole serum) | | $\begin{aligned} & 1 \mathrm{ml} \\ & 5 \mathrm{ml} \end{aligned}$ | $\begin{array}{r} 56.32 \\ 253.46 \end{array}$ |

BioLit ${ }^{\circledR}$ Research Kits

A column based quick and easy method for DNA Extraction from bacteria/ tissue/whole blood yielding pure DNA useful for down-stream processes.

| 51826 | BioLit Genomic DNA Extraction Mini Kit (Research)
 Kit contents : • Spin Colu | Isolation of high quality genomic DNA using the silica spin columns from various sources - plasma, serum, body fluids, cultured cells, sputum and other body fluids. | 25 Extractions 50 Extractions | $\begin{array}{r} 93.17 \\ 180.03 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| 56860 | BioLit Plant DNA
 Extraction Mini Kit
 (Research)
 Kit contents : • Spin Colu | Kit works to efficiently extract genomic DNA from various plant and tissue samples rapidly. Mini silica columns deliver high quality genomic DNA without use of expensive reagents and time consuming processes. | 25 Extractions 50 Extractions | $\begin{array}{r} 65.80 \\ 118.44 \end{array}$ |
| 75718 | BioLit Tissue DNA Extraction Mini Kit (Research)
 Kit contents :
 Spin Colu | Isolation of high quality tissue DNA using the silica spin columns from soft and hard tissues samples like liver, spleen, thymus, heart, kidney, brain, etc | 25 Extractions 50 Extractions | $\begin{aligned} & 118.97 \\ & 203.45 \end{aligned}$ |
| 94733 | BioLit Whole Blood D Extraction Mini Kit (Research)
 Kit contents: • Spin Colu | A Isolation of high quality DNA using the silica spin columns from human whole blood.
 Buffers | 25 Extractions 50 Extractions | $\begin{aligned} & 111.86 \\ & 210.56 \end{aligned}$ |
| 33981 | BioLit Tissue RNA Extraction Mini Kit (Research)
 Kit contents: • Spin Colu | Tissue RNA can be purified from soft and hard tissues samples like liver, spleen, thymus, heart, kidney, brain, etc | 25 Extractions 50 Extractions | $\begin{aligned} & 134.89 \\ & 256.62 \end{aligned}$ |
| 87883 | BioLit Viral RNA
 Extraction Mini Kit
 (Research)
 Kit contents: • Spin Colu | Viral RNA can be purified from plasma, serum and other cell body fluids. | 25 Extractions 50 Extractions 1000 Extractions | $\begin{array}{r} 75.54 \\ 130.55 \\ 239.38 \end{array}$ |
| 76108 | BioLit Whole Blood RNA Extraction Mini Kit (Research)
 Kit contents : | A fast, easy method for the preparation of total cellular RNA from human whole blood. Multiple blood samples can be processed simultaneously in less than 1 hour.
 - Collection Tubes | 25 Extractions 50 Extractions | $\begin{aligned} & 140.81 \\ & 273.86 \end{aligned}$ |
| 91210 | BioLit Animal Tissue
 Direct PCR Kit
 (Research)
 Kit contents: •2XTaq mi | Amplifies DNA directly from a wide variety of animal tissues including mice, fish, birds and insects. | 50 Preps | 342.03 |
| 74578 | BioLit Gel Extraction
 Kit (Research)
 Kit contents: • Silica Spi | Kit for quick and easy extraction of DNA fragment from Low melting agarose. Useful for various downstream processes. olumns \bullet Buffers | 50 Preps | 138.18 |

| code | product name | application/description ${ }^{\text {n }}$ expe | no. of
 experiments | | \$ price |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 76941 | FITC Conjugation Kit (Teaching)
 Kit contents : • FITC isomer | Fluorescein isothiocyanate (FITC)is a fluorescent dye used in labeling antibodies and proteins. FITC is a derivative of fluroscein and reacts with the amines and sulphydryl groups on proteins. This kit provides components for conjugation of fluorescein isothiocyanate with antibodies or other proteins in a quick and easy manner.
 - Buffers | 5 | 1 Kit | 72.38 |
| 19317 | BioLit Gene Amplification Kit - PCR (Teaching)
 Kit contents : \bullet Template \bullet Rea
 \bullet Enzyme Diluent Buffer • Dye • | PCR or Polymerase Chain Reaction has become a mainstay in modern recombinant DNA technology. BioLit's PCR kit has been specifically designed and standardized to eliminate the initial pitfalls so that even a beginner can be successful in the first try itself. The kit allows students to vary cycle conditions and find their effects on yield of the amplified product, an E.coli gene
 action Mix: containing dNTP mix, Buffer, primers and $\mathrm{MgCl}_{2} \bullet$ TAQ DNA Polym garose - TAE buffer • Ethidium Bromide • Marker | 10 25
 rase | $\begin{aligned} & 1 \text { Kit } \\ & 1 \text { Kit } \end{aligned}$ | $\begin{aligned} & 160.29 \\ & 227.54 \end{aligned}$ |
| 83462 | BioLit Genomic DNA Extraction (from bacteria) Kit (Tea Kit contents : • Bacterial Cell P Ethidium Bromide - Agarose | This genomic DNA extraction kit uses a rapid and simple technique.
 aching) | 15
 lution • | 1 Kit
 Buffer | 98.44 |
| 61498 | BioLit Genomic DNA Extraction (from leaves) Kit (Teach Kit contents : © Bacterial Cell P - Ethidium Bromide \bullet Agarose | This genomic DNA extraction kit uses a rapid and simple technique ideal for school and college students.
 ing)
 Pellets Lysis Buffer - Saturated Phenol
 Chloroform DNA Precipitation S Gel Loading Dye Marker | 15 Iution • T | 1 Kit
 Buffer | 137.39 |
| 87377 | Onion Root Tip Mitosis Kit (Teaching) | Demonstrates the different stages of mitosis present in the meristamatic cells located in the onion root tips.
 Mitosis is the process in which a eukaryotic cell nucleus splits in two, followed by division of the parent cell into two daughter | $\begin{aligned} & 10 \\ & 50 \\ & \text { ells. } \end{aligned}$ | $\begin{aligned} & 1 \text { Kit } \\ & 1 \text { Kit } \end{aligned}$ | $\begin{array}{r} 39.48 \\ 118.44 \end{array}$ |
| 27725 | Plasmid Isolation Kit from Bacterial cells (Teaching)
 Kit contents : • Bacterial Cell
 TE Buffer, Gel Loading Dye \bullet Ag | This plasmid mini-prep kit facilitates the rapid ($\sim 2 \mathrm{~h}$) isolation of plasmid DNA from bacterial cells already transformed with a plasmid. The detailed instructions which accompanythe kit will allow typical school and college students to use the kit with no additional assistance.
 Pellets • Alkaline Iysis Reagents • DNA Precipitation Solution - Wash Solution arose \bullet TAE Buffer •Ethidium Bromide \bullet Plasmid Control | $\begin{aligned} & 15 \\ & 25 \end{aligned}$ | $\begin{aligned} & 1 \text { Kit } \\ & 1 \text { Kit } \end{aligned}$ | $\begin{array}{r} 89.22 \\ 121.07 \end{array}$ |
| 31377 | Protoplast Fusion Kit from Plants (Teaching) | Protoplast fusion kit is used as a means to generate hybrids with useful characteristics in plants. The method requires careful manipulations of plant parts like leaves, petals etc. to be digested with cell wall breaking enzymes. The separated and digested cells round up and in presence of polyethylene glycol fuse together which can be viewed under a microscope
 Macrozyme • PEG | 15 | 1 Kit | 123.31 |

Catalogue 2024-25

| code | product name | application/description exp | no. of experiments | unit | \$ price |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 18450 | Restriction Digestion Kit (Teaching)
 Kit contents : \bullet Lambda
 Gel Loading Dye \bullet TAE buf | This kit contains materials to teach the use of restriction enzymes HindIII and EcoRI \& demonstrate restriction mapping of lambda DNA mapping.
 These experiments constitute essential learning experiences for a student interested in cloning and genetic mapping.
 Agarose •Restriction Enzymes \bullet Reaction Buffer •Ethidium Bromide NA Molecular Size Marker | $\begin{aligned} & 10 \\ & 50 \end{aligned}$ | $\begin{aligned} & 1 \text { Kit } \\ & 1 \text { Kit } \end{aligned}$ | $\begin{array}{r} 52.64 \\ 184.24 \end{array}$ |
| 83775 | SDS PAGE Kit (Teaching) | This kit teaches the technique of separation of proteins based on their size under denaturing conditions using sodium dodecyl sulphate (SDS) and beta mercaptoethanol (BME). SDS cleaves non ionic interactions while BME cleaves disulphide bonds. SDS also imparts a strong negative charge to the polypeptides thereby their charge to mass ratio is rendered uniform. This allows the polypeptides to be separated on the basis of only their size, which is read by comparison with a standard marker
 e Solution \bullet Separating and Stacking Buffer Solutions \bullet APS \bullet TEMED
 - Stain and Destain Solutions | $\begin{gathered} 5 \\ 15 \end{gathered}$ | $\begin{aligned} & 1 \text { Kit } \\ & 1 \text { Kit } \end{aligned}$ | $\begin{array}{r} 65.80 \\ 111.86 \end{array}$ |
| 31105 | Silver Staining Kit (Teaching) | Silver staining is a rapid, easy and sensitive method used for staining proteins, DNA and RNA after polyacrylamide gel electrophoresis. Silver staining is a far more sensitive method of staining than Coomassie Brilliant blue and can detect protein \& even polypeptides as low as 0.05 ng in concentration. Reagents sufficient for 15 reactions are enclosed.
 - Silver nitrate
 Developing solution - Stop solution | $\begin{gathered} 5 \\ 15 \end{gathered}$ | $\begin{aligned} & 1 \text { Kit } \\ & 1 \text { Kit } \end{aligned}$ | $\begin{array}{r} 65.80 \\ 131.60 \end{array}$ |
| 46037 | Southern Blotting Kit (Teaching) | E. M. Southern invented a technique to transfer separated DNA molecules to a membrane, which is capable of binding the DNA, and immobilizing it for further analysis. The technique named as Southern blotting, after its inventor, involves placing either a nitrocellulose or nylon membrane in contact with the agarose gel and facilitating the transfer process by capillary action. By drawing buffer from the gel to the membrane, the DNA fragments are forced to move with the buffer and deposit on the membrane. (Hydbridization not included)
 - SSPE Buffer • Filter Paper Wicks and Strips • DNA Samples • Marker | 5 | 1 Kit | 111.86 |
| 52166 | SpinCol Plasmid
 Miniprep kit
 from Bacterial cells
 (Teaching)
 Kit contents: • Spin colu | A new teaching kit for isolation of plasmid DNA from E.coli cultures based on silica - membrane technology on a mini spin columns. This is a fast and efficient method and yields high quality plasmid DNA.
 Lysis buffer \bullet precipitating buffer \bullet wash buffer \bullet elution buffer | $\begin{aligned} & 20 \\ & 50 \end{aligned}$ | $\begin{aligned} & 1 \text { Kit } \\ & 1 \text { Kit } \end{aligned}$ | $\begin{aligned} & 65.80 \\ & 93.30 \end{aligned}$ |

Microcentrifuge Tube and Screw Cap

Our gamma irradiated microcentrifuge tubes are highly recommended in the areas of Life Science, Industry or Chemistry for use in research and critical reagent packaging requirements.

Our tubes are designed with conical bottoms allowing for complete sample retrieval. Screw caps with O-rings guard against leakage by forming a positive seal against the rim of the tube. External ribs on the free standing microcentrifuge tubes allow for single-handed opening and closing when placed in racks with serrated holes. Screw Cap Microcentrifuge Tubes work with many automated systems. The O-ring is manufactured from durable ethylene polypropylene dimonomere compound.

Product Features:

- Capacity: $0.5 \mathrm{ml} \& 1.5 \mathrm{ml}$ sizes
- Plastic (Polypropylene) clear colorless tube
- Self Standing Tubes with Screw Cap \& O-Ring
- Sterile
- Operating range: $-196^{\circ} \mathrm{C}$ to $+121^{\circ} \mathrm{C}$
- Autoclavable at $121^{\circ} \mathrm{C}$
- Withstands maximum RCF of $20000 \times$ G
- No Graduations
- DNase \& RNase Free

| Prdt. Code | Product Name | Packing Unit |
| :---: | :--- | :---: |
| 31635 | Microcentrifuge Tube and Screw Cap (0.5ml), Self Standing, Conical,
 O-Ring, Clear, Non-Hinged, Sterile, Molecular Grade | 500 Nos. |
| 60838 | Microcentrifuge Tube and Screw Cap (1.5ml), Self Standing, Conical,
 O-Ring, Clear, Non-Hinged, Sterile, Molecular Grade | 500 Nos. |

* Bulk packs available on request

Nucleic Acid Purification Aids:

Spin Column Set
A purification aide utilizing silica membrane in a column form which is used for purifying/extracting nucleic acids (DNA or RNA) of high quality. These columns are compatible with in-house buffers as well as store-brought ones.
Applications:

- Purification of Gel / PCR products
- Extraction of Genomic DNA
- Extraction of Plasmid DNA

| Prdt. Code | Product Name |
| :---: | :--- |
| 39738 | Mini Silica Spin Column Set A (2ml SC w/CT each) |
| 89887 | Mini Silica Spin Column Set B (2ml SC w/CT each) |
| 69516 | Mini Silica Spin Column Set C (2ml SC w/CT each) |
| 37351 | RNA Mini Spin Column Set (2ml SC w/CT each) |

Collection Tubes

Collection tube of 2 ml capacity to be used in purification of DNA / RNA samples.
They are used along with mini silica spin column sets $A / B / C$ \& RNA spin column sets.

| Prdt. Code | Product Name | Packing Unit |
| :---: | :--- | :---: |
| 41425 | Collection Tubes (CT) for DNA, RNA purification (2ml) | 50 Nos, 500 Nos |

Part L

Laboratory Accessories

code product name unit \$ price

Buffer capsules

Indicator Papers

| 74183 | Brilliant Yellow Indicator Papers | | 10 Books | 4.74 |
| :---: | :---: | :---: | :---: | :---: |
| 11902 | Bromothymol Blue Indicator Papers | | 10 Books | 4.47 |
| 84795 | Chlorine Test Indicator Papers | | 10 Books | 5.13 |
| 54494 | Congo Red Indicator Papers | | 10 Books | 4.34 |
| 72874 | Indicator Papers pH 1.0-14.0 | | 10 Books | 5.26 |
| 12794 | Indicator Papers pH 1.0-10.0 | | 4 Books | 10.40 |
| 47603 | Indicator Papers pH 2.0-4.5 | | 10 Books | 5.66 |
| 27671 | Indicator Papers pH 2.0-10.5 | ${ }^{7} 7874$ | 10 Books | 5.00 |
| 84794 | Indicator Papers pH 3.5-6.0 | | 10 Books | 5.00 |
| 82811 | Indicator Papers pH 3.8-5.3 | RR1 | 10 Books | 5.26 |
| 98044 | Indicator Papers pH 3.8-5.4 | | 10 Books | 5.26 |
| 36120 | Indicator Papers pH 5.0-7.5 | | 10 Books | 5.00 |
| 61169 | Indicator Papers pH 6.5-9.0 | | 10 Books | 5.00 |
| 94744 | Indicator Papers pH 8.0-10.5 | | 10 Books | 5.40 |
| 76345 | Litmus Blue Indicator Papers | | 10 Books | 4.08 |
| 67562 | Litmus Red Indicator Papers | | 10 Books | 4.08 |
| 48758 | Phenolphthalein Indicator Papers | | 10 Books | 4.74 |
| 27893 | Starch Indicator Papers | | 10 Books | 6.45 |
| 75672 | Starch lodide Indicator Papers | | 10 Books | 5.40 |
| 45438 | Turmeric Indicator Papers | | 10 Books | 5.92 |

| | Barrier Pen | | |
| :--- | :--- | :--- | :--- | :--- |
| 93071 | PAP Pen Mini (Hydrophobic Barrier Pen, 1mm, Blue) | 1 nos | 94.75 |
| 59164 | PAP Pen Regular (Hydrophobic Barrier Pen, 3mm, Blue) | 1 nos | 157.92 |

High quality disposable Petri Dishes, suitable for all microbiological applications manufactured as per ISO 24998. Dimensional accuracy of 90 mm ensures compatibility with most automated systems. Extremely high optical clarity for easy viewing on a microscope. Petri Dishes have elevated lids (vented) that allows for superior gas exchange and evaporation. Convenient \& easy to stack.

Spin Columns

A purification aid set comprising of Silica membrane spin column and a collection tube. Silica membrane in a column form is used for purifying/ extracting nucleic acids (DNA or RNA) of high quality. These columns are compatible with in-house buffers as well as Store-bought ones.

| 39738 | Mini Silica Spin Column Set A (2ml SC w/ CT each) | 50 nos | 68.96 |
| :---: | :---: | :---: | :---: |
| | Binding capacity - $45 \mu \mathrm{~g}$ | 100 nos | 128.44 |
| | Supplied with 2ml Collection Tube (CT) | | |
| | Used in purifying nucleic acids of 65bp to 10kb size from PCR amplifications and agarose gel extractions. | | |
| 89887 | Mini Silica Spin Column Set B (2ml SC w/ CT each) | 50 nos | 68.96 |
| | Binding capacity - 50 $\mu \mathrm{g}$ | 100 nos | 128.44 |
| | Supplied with 2ml Collection Tube (CT) | | |
| | Used in purifying nucleic acids of less than 10kb size from lysed cell cultures. | | |
| 69516 | Mini Silica Spin Column Set C (2ml SC w/ CT each) | 50 nos | 73.70 |
| | | 100 nos | 137.79 |
| | Supplied with 2ml Collection Tube (CT) | | |
| | Used in purifying nucleic acids of less than 10kb size from lysed cell cultures. | | |
| 37351 | RNA Mini Spin Column Set (2mI SC w/ CT each) | 50 nos | 92.78 |
| | Binding capacity - $40 \mu \mathrm{~g}$ | 100 nos | 157.00 |
| | Supplied with 2ml Collection Tube (CT) | | |
| | Used in purifying RNA from agarose gel extractions. | | |

Tubes and Screw Caps

| 31635 | Microcentrifuge Tube and Screw Cap (0.5ml), Self Standing, Conical, | 500 Nos | 96.73 |
| :---: | :---: | :---: | :---: |
| | O-Ring, Clear, Non-Hinged, Sterile, Molecular Grade | | |
| | - Capacity - 0.5 ml • Self Standing Tube With Screw Cap \& O-Ring • Sterile - Gamma Irradiated. | | |
| | - Operating range: $-196^{\circ} \mathrm{C}$ to $+121^{\circ} \mathrm{C}$. Autoclavable at $121^{\circ} \mathrm{C} \bullet$ Withstands Maximum RCF of 20000 X G
 - No Graduation | | |
| 60838 | Microcentrifuge Tube and Screw Cap (1.5ml), Self Standing, Conical, | 500 Nos | 103.70 |
| | O-Ring, Clear, Non-Hinged ,Sterile, Molecular Grade
 - Capacity - $1.5 \mathrm{ml} \bullet$ Self Standing Tubes With Screw Cap \& O-Ring • Sterile - Gamma Irradiated. | | |
| | | | |
| | - Operating range: $-196^{\circ} \mathrm{C}$ to $+121^{\circ} \mathrm{C} \cdot$ Autoclavable at $121^{\circ} \mathrm{C} \cdot$ Withstands maximum of 20000 X G
 - No Graduations | | |
| 41425 | Collection Tubes (CT) for DNA, RNA purification (2ml) | 50 nos | 5.79 |
| | | 500 nos | 54.09 |
| 11876 | Centrifuge Tube and Screw Cap (15ml) | 50 nos | 11.19 |
| | | 250 nos | 52.64 |
| | | 500 nos | 94.75 |
| 11048 | Centrifuge Tube and Screw Cap (50ml) | 50 nos | 13.16 |
| | | 250 nos | 64.48 |
| | | 500 nos | 126.34 |

Crucible Tall Form

These crucibles are made of high quality Porcelain for basic laboratory use to heat chemical compounds. Each product is well tested for its strength, thermal performance, and enhanced chemical resistance with low water absorbance. Widely suitable for burning solid matter, evaporation, concentration or crystallization of solutions.

45866
Crucible Porcelain, 5 ml , Tall with Lid

| 6 Nos | 9.48 |
| :--- | :--- |
| 6 Nos | 9.87 |
| 4 Nos | 8.55 |
| 4 Nos | 9.87 |
| 1 Nos | 2.90 |

| Capacity | Top OD | Height | Wall Thickness | Weight | Lid Dia |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 ml | 24 mm | 20 mm | 1.7 mm | 8 gm | 26 mm |
| 10 ml | 31 mm | 26 mm | 1.8 mm | 12 gm | 34 mm |
| 15 ml | 35 mm | 29 mm | 1.8 mm | 13 gm | 38 mm |
| 30 ml | 45 mm | 36 mm | 1.8 mm | 18.5 gm | 47 mm |
| 40 ml | 50 mm | 40 mm | 1.8 mm | 23 gm | 53 mm |

Crucible Wide Form

These crucibles are made of high quality Porcelain for basic laboratory use to heat chemical compounds. Each product is well tested for its strength, thermal performance, and enhanced chemical resistance with low water absorbance. Widely suitable for burning solid matter, evaporation, concentration or crystallization of solutions.

| Capacity | Top OD | Height | Wall Thickness | Weight | Lid Dia |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 ml | 18 mm | 12 mm | 1.3 mm | 3 gm | 26 mm |
| 8 ml | 32 mm | 20 mm | 1.6 mm | 10 gm | 34 mm |
| 17 ml | 41 mm | 26 mm | 1.6 mm | 18 gm | 47 mm |
| 30 ml | 50 mm | 31 mm | 1.8 mm | 25 gm | 53 mm |
| 50 ml | 61 mm | 37 mm | 1.8 mm | 35 gm | 69 mm |

```
code
product name
unit $ price
```


Mortar \& Pestle

Mortar \& Pestle are made from high quality Porcelain for basic laboratory application such as crushing, grinding, etc. They are designed with a spout which enables easy pouring.

| $\mathbf{4 4 2 4 9}$ | Mortar \& Pestle Set, Porcelain, $\mathbf{6 0 ~ m l}$ | 1 Nos | 3.42 |
| :--- | :--- | :--- | :--- |
| $\mathbf{4 1 2 7 8}$ | Mortar \& Pestle Set, Porcelain, $\mathbf{1 0 0 ~ m l}$ | 1 Nos | 3.95 |
| $\mathbf{1 3 9 6 8}$ | Mortar \& Pestle Set, Porcelain, $\mathbf{1 5 0 ~ m l}$ | 1 Nos | 6.58 |
| $\mathbf{5 1 6 8 6}$ | Mortar \& Pestle Set, Porcelain, 275 ml | 1 Nos | 7.90 |

| Mortar | | | | | | Pestle | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Capacity | Top OD | Top ID | Outer Height | Wall Thickness | Weight | Length | Head OD | Weight |
| 60 ml | 80 mm | 60 mm | 44 mm | 7.5 mm | 200 gm | 98 mm | 27 mm | 50 gm |
| 100 ml | 90 mm | 75 mm | 48 mm | 10 mm | 280 gm | 98 mm | 27 mm | 50 gm |
| 150 ml | 105 mm | 85 mm | 72 mm | 9 mm | 490 gm | 114 mm | 30 mm | 90 gm |
| 275 ml | 125 mm | 100 mm | 70 mm | 11.5 mm | 650 gm | 130 mm | 36 mm | $130-140 \mathrm{gm}$ |

Evaporating Dish

These evaporating dishes are made from high quality Porcelain with spout for easy pouring of liquids. These have wide applications in scientific laboratories such as evaporating, drying \& crystallizing. They are highly suitable for critical laboratory use.

| $\mathbf{1 1 4 4 3}$ | Dish Evaporating Porcelain, $\mathbf{2 0} \mathbf{~ m l}$ | 6 Nos | 10.53 |
| :--- | :--- | :--- | :--- |
| $\mathbf{4 2 4 1 8}$ | Dish Evaporating Porcelain, $\mathbf{4 0} \mathbf{~ m l}$ | 6 Nos | 10.92 |
| $\mathbf{9 6 7 0 4}$ | Dish Evaporating Porcelain, 100 ml | 6 Nos | 13.16 |

| Capacity | Top OD | Height | Wall Thickness | Weight |
| :---: | :---: | :---: | :---: | :---: |
| 20 ml | 50 mm | 22 mm | 1.3 mm | 19 gm |
| 40 ml | 60 mm | 27 mm | 1.3 mm | 25 gm |
| 100 ml | 75 mm | 35 mm | 2 mm | 51 gm |

code product name unit \$ price

Buchner Funnel

Each Buchner funnel is autoclavable, made from high quality Porcelain with fixed perforated plate \& a thick stem. It is commonly used in chemistry labs for filtration purposes to eliminate unwanted particles.

| $\mathbf{5 3 0 9 2}$ | Funnel Buchner, Porcelain, $\mathbf{6 ~ m l}$ | 1 Nos | 3.68 |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 4 7 0 2}$ | Funnel Buchner, Porcelain, $\mathbf{3 0} \mathbf{~ m l}$ | 1 Nos | 3.95 |
| $\mathbf{3 8 6 3 5}$ | Funnel Buchner, Porcelain, 87 ml | 1 Nos | 4.21 |
| $\mathbf{5 9 4 2 5}$ | Funnel Buchner, Porcelain, $\mathbf{1 8 6 ~ \mathrm { ml }}$ | 1 Nos | 5.79 |

| Capacity | Top OD | FP Dia | Height | Perforated Dia | Wall Thickness | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 ml | 35 mm | 20 mm | 72 mm | 23 mm | 3 mm | 32 gm |
| 30 ml | 50 mm | $35-40 \mathrm{~mm}$ | 89 mm | 23 mm | 3 mm | 48 gm |
| 87 ml | 60 mm | $50-55 \mathrm{~mm}$ | 110 mm | 38 mm | 3 mm | 110 gm |
| 186 ml | 84 mm | 70 mm | 143 mm | 62 mm | 3.5 mm | 180 gm |

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| Prices | The prices shall be quoted in USD/EURO on either Ex-works/FOB/C\&F basis as requested by the Buyer. |
| :---: | :---: |
| Insurance | Insurance coverage shall be the responsibility of the Buyer. |
| Payment | Payment terms are 100\% advance, to be remitted through Bank Transfers only to our Bank account or Irrevocable \& Confirmed Letter of Credit in our favour - Sisco Research Laboratories Pvt Ltd. 608, B Wing, Satellite Gazebo, Andheri Ghatkopar Link Road, Chakala, Andheri (E), Mumbai - 400 099, Maharashtra, India. |
| | International bank charges should be to the Buyer's account. |
| Delivery | Goods shall be dispatched from Mumbai/Mumbai Airport/Nhava-Sheva or as per the terms of the quotations. |
| Packaging | If the Buyer has any special shipping or handling requirements, Buyer shall notify SRL in a timely manner regarding any such special requirements. Buyer shall be responsible for any increase in cost for such special packaging. |
| Damage or Loss | Any losses incurred by the Buyer on account of Leakage, Breakage, Damage, etc to be claimed by the Buyer from his/her Insurance Company. |
| | Any demurrage/detention charges shall be to Buyer's account. |
| Liability | Quality complaint will be entertained only if they are communicated to SRL within 30 days from the receipt of goods. The quality of the products shall be strictly as per the specifications offered by SRL. We shall not be responsible for any accident or loss arising due to mishandling of our products. It is presumed that Buyers are well aware about the properties and handling of the goods purchased. |
| Goods once sold shall not be taken back. | |
| It is the Buyer's responsibility to verify and check the products ordered/bought by them are not banned / restricted in their country. | |
| All the products are sold for Laboratory Use only. | |
| All our Terms and | ditions are subject to Mumbai (India) Jurisdiction. |

The Electrophoresis Leaders of India

We are India's best company in the field of molecular biology since the last 40 years. Our expertise lies in the manufacture of reagents and buffers used in gel electrophoresis for nucleic acid, DNA/RNA and protein separation. Having the most extensive range of protein and nucleic acid electrophoresis applications, we are 100% sure that our products will be very important for you to conduct most critical molecular biology techniques such as electrophoresis of DNA and RNA, PFGE for large fragment analysis, PCR fragment analysis, cloning and recovery of DNA and RNA and various blotting techniques such as Northern \& Southern blotting.

SRL is manufacturing few products in bulk scale to meet the following applications in molecular biology for critical applications:

- Gel Electrophoresis
- SDS Page Electrophoresis
- Pulse Field Gel Electrophoresis
- Immunoelectrophoresis
- Counter Current Electrophoresis
- Tissue Culture \& Cell Culture Studies
- Forensic \& Diagnostic Analysis
- Antigen Antibody Reaction Studies
- Molecular Weight Screening

\mathbb{R} Special

 Agarose Low-6 \& Agarose Low-8 have been specially developed for molecular screening applications and improves resolution of small DNA fragments \& PCR products| Product code | Agarose | Sulphate $\%$ | $\begin{gathered} \text { Gel st } \\ (1.5 \% \\ \mathrm{gm} \end{gathered}$ | ength
 gel)
 ${ }^{2}$ | Gelling tempera $(1.5 \%$ s | | Melting temperature (1.5\% gel) | Electroendosmosis (EEO) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60645 | High EEO for MB | <0.3 | | | $36^{\circ} \mathrm{C}(\pm$ | | $85-90^{\circ} \mathrm{C}$ | 0.25-0.30 |
| 10423 | Medium EEO for MB | <0.2 | | | $36^{\circ} \mathrm{C}(\pm$ | | $85-90^{\circ} \mathrm{C}$ | 0.16-0.19 |
| 91466 | Low EEO Regular grade (100bp-25kb) | <0.15 | | | $36^{\circ} \mathrm{C}(\pm$ | | $85-90^{\circ} \mathrm{C}$ | 0.09-0.13 |
| 36601 | Low EEO for MB (100bp-25kb) | <0.15 | | | $36^{\circ} \mathrm{C}(\pm$ | | $85-90^{\circ} \mathrm{C}$ | 0.09-0.13 |
| 23287 | Low EEO Superior grade for MB (100bp-25kb) | <0.15 | | | $36^{\circ} \mathrm{C}(\pm$ | | $85-90^{\circ} \mathrm{C}$ | 0.09-0.13 |
| Product code | Agarose
 (for Low Base Pairs) | Sulphate $\%$ | $\begin{gathered} \text { Gel st } \\ \text { (3\% } \\ \text { gm } \end{gathered}$ | ength
 gel)
 m^{2} | Gell tempe (3\% | | Melting temperature (3\% gel) | Electroendosmosis (EEO) |
| 32417 | Low Melting for MB (10-1200bp) | <0.2 | | | $35^{\circ} \mathrm{C}(\pm$ | | $\sim 65^{\circ} \mathrm{C}$ | max 0.1 |
| 27813 | Metaphor (10-1200bp) | - | min | | $<35^{\circ} \mathrm{C}$ | | $<75^{\circ} \mathrm{C}$ | max 0.1 |
| 78711 | Low-6 (10-1200bp) | <0.1 | min | | $<35^{\circ}$ | | $<75^{\circ} \mathrm{C}$ | max 0.12 |
| 52734 | Low-8 (10-1200bp) | <0.11 | min | 500 | $<35.5{ }^{\circ}$ | | $<80^{\circ} \mathrm{C}$ | $\max 0.12$ |
| Product code | Acrylamide | Solubility | Assay (Nitrogen) | | | pH (5\% aq. soln) | | A1\% aq. 290 nm |
| 89314 | $1 \times$ Cryst. extrapure | 30\% aq. Clear \& colourless | | 99.5\% | | min. 5.0 | | - |
| 15657 | $3 \times$ Cryst. extrapure AR | 60\% aq. Clear \& colourless | | 99.9\% | | min. 5.0 | | max. 0.5 |
| 61346 | $3 \times$ Cryst. for MB | 30% aq. Clear \& colourless | | 99.5\% | | | min. 5.0 | max. 0.5 |

| Product code | Acrylamide/
 Bis-acrylamide Premix | Solubility | pH (5\% aq. soln) | Specific conductance
 $(5 \%$ aq. soln $)$ |
| :---: | :---: | :---: | :---: | :---: |
| 24263 | $19: 1$ | 10% aq. Clear \& colourless | $5-8$ | min. $10 \mu \mathrm{mho} / \mathrm{cm}$ |
| 10762 | $29: 1$ | 10% aq. Clear \& colourless | $5-8$ | $\mathrm{~min} .10 \mu \mathrm{mho} / \mathrm{cm}$ |
| 74379 | $37.5: 1$ | 10% aq. Clear \& colourless | $5-8$ | $\mathrm{~min} .10 \mu \mathrm{mho} / \mathrm{cm}$ |

| Product code | \mathbf{N}, \mathbf{N}-Methylene Bis Acrylamide | Solubility | Assay (CG) | pH (2.5\% aq. soln) | A1\% aq. 290nm |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 38516 | $3 \times$ Cryst. extrapure AR | 2.5% aq. | 99.5% | min. 5.0 | max. 0.2 |
| 67320 | $3 \times$ Cryst. for MB | 2.5% aq. | 99.5% | min. 5.0 | max. 0.1 |

SISCO RESEARCH LABORATORIES PVT. LTD.
Administrative Office:
608-B, Satellite Gazebo, Near Solitaire Corporate Park, Andheri Ghatkopar Link Road, Chakala, Andheri (East), Mumbai 400 099. India Tel.: +91-22-4268 5800 • E-mail: export@srlchem.com

[^0]: * Document support provided depends on individual product and its chemistry.

[^1]: Ph.Eur

